Dirac Hydrodynamics in 19 Forms
Abstract
:1. Introduction
2. Dirac Hydrodynamics
2.1. Kinematic Quantities
2.1.1. Spinor Fields in the Polar Form
2.1.2. Tensorial Connections
2.2. Dynamical Equations
3. The 19 Formulations
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Takabayasi, T. On the Formulation of Quantum Mechanics associated with Classical Pictures. Prog. Theor. Phys. 1952, 8, 143. [Google Scholar] [CrossRef]
- Bohm, D.; Schiller, R.; Tiomno, J. A Causal Interpretation of the Pauli Equation (A and B). Nuovo Cim. 1955, 1, 48–67. [Google Scholar] [CrossRef]
- Takabayasi, T. On the Hydrodynamical Representation of Non-Relativistic Spinor Equation. Prog. Theor. Phys. 1954, 12, 810. [Google Scholar] [CrossRef]
- Bohm, D. Comments on an Article of Takabayasi concerning the Formulation of Quantum Mechanics with Classical Pictures. Prog. Theor. Phys. 1953, 9, 273. [Google Scholar] [CrossRef]
- Takabayasi, T. Relativistic Hydrodynamics of the Dirac Matter. Prog. Theor. Phys. Suppl. 1957, 4, 1. [Google Scholar] [CrossRef]
- Holland, P.R. The Dirac Equation in the de Broglie-Bohm Theory of Motion. Found. Phys. 1992, 22, 1287. [Google Scholar] [CrossRef]
- Whittaker, E.T. On the Relations of the Tensor-calculus to the Spinor-calculus. Proc. R. Soc. Lond. A 1937, 158, 38. [Google Scholar]
- Ruse, H.S. On the Geometry of Dirac’s Equations and their Expression in Tensor Form. Proc. R. Soc. Edinb. 1938, 57, 97. [Google Scholar] [CrossRef]
- Taub, A.H. Tensor Equations Equivalent to the Dirac Equations. Ann. Math. 1939, 40, 937. [Google Scholar] [CrossRef]
- Yvon, J. Équations de Dirac-Madelung. J. Phys. Radium 1940, 1, 18. [Google Scholar] [CrossRef]
- Takabayasi, T. Relativistic Hydrodynamics Equivalent to the Dirac Equation. Prog. Theor. Phys. 1955, 13, 222. [Google Scholar] [CrossRef]
- Takabayasi, T. Hydrodynamical Description of the Dirac Equation. Nuovo Cim. 1956, 3, 233. [Google Scholar] [CrossRef]
- Hestenes, D. Real Spinor Fields. J. Math. Phys. 1967, 8, 798. [Google Scholar] [CrossRef]
- Hestenes, D. Local Observables in the Dirac Theory. J. Math. Phys. 1973, 14, 893. [Google Scholar] [CrossRef]
- Hestenes, D. Observables, Operators and Complex Numbers in the Dirac Theory. J. Math. Phys. 1975, 16, 556. [Google Scholar] [CrossRef]
- Hestenes, D. Quantum mechanics from self-interaction. Found. Phys. 1985, 15, 63. [Google Scholar] [CrossRef]
- Hestenes, D. The Zitterbewegung Interpretation of Quantum Mechanics. Found. Phys. 1990, 20, 1213. [Google Scholar] [CrossRef]
- Zhelnorovich, V.A. Theory of Spinors and Its Application in Physics and Mechanics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Jakobi, G.; Lochak, G. Introduction des paramètres relativistes de Cayley-Klein dans la représentation hydrodynamique de l’équation de Dirac. Comp. Rend. Acad. Sci. 1956, 243, 234. [Google Scholar]
- Jakobi, G.; Lochak, G. Decomposition en paramètres de Clebsch de l’impulsion de Dirac et interprétation physique de l’invariance de jauge des équations de la Mécanique ondulatoire. Comp. Rend. Acad. Sci. 1956, 243, 357. [Google Scholar]
- Fabbri, L. Weyl and Majorana Spinors as Pure Goldstone Bosons. Adv. Appl. Clifford Algebr. 2022, 32, 3. [Google Scholar] [CrossRef]
- Fabbri, L. Spinors in Polar Form. Eur. Phys. J. Plus 2021, 136, 354. [Google Scholar] [CrossRef]
- Fabbri, L. Fundamental Theory of Torsion Gravity. Universe 2021, 7, 305. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Perseus: New York, NY, USA, 1995. [Google Scholar]
- Fabbri, L. Dirac Theory in Hydrodynamic Form. Found. Phys. 2023, 53, 54. [Google Scholar] [CrossRef]
- Fabbri, L. de Broglie-Bohm Formulation of Dirac Fields. Found. Phys. 2022, 52, 116. [Google Scholar] [CrossRef]
- Florkowski, W.; Kumar, A.; Ryblewski, R. Relativistic hydrodynamics for spin-polarized fluids. Prog. Part. Nucl. Phys. 2019, 108, 103709. [Google Scholar] [CrossRef]
- Montenegro, D.; Torrieri, G. Linear response theory and effective action of relativistic hydrodynamics with spin. Phys. Rev. D 2020, 102, 036007. [Google Scholar] [CrossRef]
- Weickgenannt, N.; Wagner, D.; Speranza, E.; Rischke, D.H. Relativistic second-order dissipative spin hydrodynamics from the method of moments. Phys. Rev. D 2022, 106, 096014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, L. Dirac Hydrodynamics in 19 Forms. Symmetry 2023, 15, 1685. https://doi.org/10.3390/sym15091685
Fabbri L. Dirac Hydrodynamics in 19 Forms. Symmetry. 2023; 15(9):1685. https://doi.org/10.3390/sym15091685
Chicago/Turabian StyleFabbri, Luca. 2023. "Dirac Hydrodynamics in 19 Forms" Symmetry 15, no. 9: 1685. https://doi.org/10.3390/sym15091685
APA StyleFabbri, L. (2023). Dirac Hydrodynamics in 19 Forms. Symmetry, 15(9), 1685. https://doi.org/10.3390/sym15091685