Two Forms for Maclaurin Power Series Expansion of Logarithmic Expression Involving Tangent Function
Abstract
:1. Introduction
2. Preliminaries
3. The First Form of Maclaurin Power Series Expansion
4. The Second Form of Maclaurin Power Series Expansion
5. Applications of Theorems 1 and 2 and Remarks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition; Elsevier/Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Power expansions of powers of trigonometric functions and series containing Bernoulli and Euler polynomials. Integral Transform. Spec. Funct. 2009, 20, 797–804. [Google Scholar] [CrossRef]
- Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Borwein, J.M.; Crandall, R.E. Closed forms: What they are and why we care. Not. Am. Math. Soc. 2013, 60, 50–65. [Google Scholar] [CrossRef]
- Serre, D. Matrices, Theory and Applications; Graduate Texts in Mathematics 216; Translated from the 2001 French original; Springer: New York, NY, USA, 2002. [Google Scholar]
- Liu, X.-L.; Long, H.-X.; Qi, F. A series expansion of a logarithmic expression and a decreasing property of the ratio of two logarithmic expressions containing sine. Mathematics 2023, 11, 3107. [Google Scholar] [CrossRef]
- Sun, Z.-Y.; Guo, B.-N.; Qi, F. Determinantal expressions, identities, concavity, Maclaurin power series expansions for van der Pol numbers, Bernoulli numbers, and cotangent. Axioms 2023, 12, 665. [Google Scholar] [CrossRef]
- Bourbaki, N. Elements of Mathematics: Functions of a Real Variable: Elementary Theory; Translated from the 1976 French original by Philip Spain; Elements of Mathematics (Berlin); Springer: Berlin, Germany, 2004. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards; Applied Mathematics Series; 55, Reprint of the 1972 edition; Dover Publications, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Kishore, N. A structure of the Rayleigh polynomial. Duke Math. J. 1964, 31, 513–518. [Google Scholar] [CrossRef]
- Kishore, N. Binary property of the Rayleigh polynomial. Duke Math. J. 1965, 32, 429–435. [Google Scholar] [CrossRef]
- Kishore, N. Congruence properties of the Rayleigh functions and polynomials. Duke Math. J. 1968, 35, 557–562. [Google Scholar] [CrossRef]
- Kishore, N. The Rayleigh polynomial. Proc. Am. Math. Soc. 1964, 15, 911–917. [Google Scholar] [CrossRef]
- Moll, V.H.; Vignat, C. On polynomials connected to powers of Bessel functions. Int. J. Number Theory 2014, 10, 1245–1257. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, B.-N.; Qi, F. Determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind. CMES Comput. Model. Eng. Sci. 2021, 129, 409–423. [Google Scholar] [CrossRef]
- deLyra, J.L. On the sums of inverse even powers of zeros of regular Bessel functions. arXiv 2014, arXiv:1305.0228. [Google Scholar]
- Howard, F.T. Properties of the van der Pol numbers and polynomials. J. Reine Angew. Math. 1973, 260, 35–46. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Macmillan: New York, NY, USA, 1944. [Google Scholar]
- Dickinson, D. On Lommel and Bessel polynomials. Proc. Am. Math. Soc. 1954, 5, 946–956. [Google Scholar] [CrossRef]
- Durán, A.J.; Pérez, M.; Varona, J.L. On the properties of zeros of Bessel series in the real line. Integral Transform. Spec. Funct. 2021, 32, 912–931. [Google Scholar] [CrossRef]
- Qi, F.; Taylor, P. Series expansions for powers of sinc function and closed-form expressions for specific partial Bell polynomials. Appl. Anal. Discrete Math. 2024, 18, 1–24. [Google Scholar]
- Chen, X.-Y.; Wu, L.; Lim, D.; Qi, F. Two identities and closed-form formulas for the Bernoulli numbers in terms of central factorial numbers of the second kind. Demonstr. Math. 2022, 55, 822–830. [Google Scholar] [CrossRef]
- Hagen, R.J. On division of series. Am. J. Math. 1882, 5, 236–237. [Google Scholar] [CrossRef]
- Qi, F. On Signs of Certain Toeplitz–Hessenberg Determinants Whose Elements Involve Bernoulli Numbers. Contrib. Discrete Math. 2024, 19. in press. Available online: https://www.researchgate.net/publication/356579520 (accessed on 2 August 2023).
- Berg, C. Integral representation of some functions related to the gamma function. Mediterr. J. Math. 2004, 1, 433–439. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2010, 72, 21–30. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1993. [Google Scholar] [CrossRef]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions, 2nd ed.; de Gruyter Studies in Mathematics 37; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Widder, D.V. The Laplace Transform; Princeton Mathematical Series 6; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
- Biernacki, M.; Krzyż, J. On the monotonity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1955, 9, 135–147. [Google Scholar]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities, and Quasiconformal Maps; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Yang, Z.-H.; Chu, Y.-M.; Wang, M.-K. Monotonicity criterion for the quotient of power series with applications. J. Math. Anal. Appl. 2015, 428, 587–604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-W.; Qi, F.; Du, W.-S. Two Forms for Maclaurin Power Series Expansion of Logarithmic Expression Involving Tangent Function. Symmetry 2023, 15, 1686. https://doi.org/10.3390/sym15091686
Li Y-W, Qi F, Du W-S. Two Forms for Maclaurin Power Series Expansion of Logarithmic Expression Involving Tangent Function. Symmetry. 2023; 15(9):1686. https://doi.org/10.3390/sym15091686
Chicago/Turabian StyleLi, Yue-Wu, Feng Qi, and Wei-Shih Du. 2023. "Two Forms for Maclaurin Power Series Expansion of Logarithmic Expression Involving Tangent Function" Symmetry 15, no. 9: 1686. https://doi.org/10.3390/sym15091686
APA StyleLi, Y.-W., Qi, F., & Du, W.-S. (2023). Two Forms for Maclaurin Power Series Expansion of Logarithmic Expression Involving Tangent Function. Symmetry, 15(9), 1686. https://doi.org/10.3390/sym15091686