On the Urban Link Fundamental Diagram Based on Velocity-Weighted Flow and Queue Length
<p>The diagram of a link in VISSIM.</p> "> Figure 2
<p>Comparison of the traditional FD and the proposed urban link FD: (<b>a</b>) scatter diagram of traditional flow and queue length; (<b>b</b>) scatter diagram of the velocity-weighted flow and queue length.</p> "> Figure 3
<p>Vehicle speed versus driving distance for different queue length.</p> "> Figure 4
<p><math display="inline"><semantics> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </semantics></math> versus queue length for different green times with a cycle time of 60 s: (<b>a</b>) cycle time <span class="html-italic">C</span> is 60 s, green time <span class="html-italic">g</span> is 10 s; (<b>b</b>) cycle time <span class="html-italic">C</span> is 60 s, green time <span class="html-italic">g</span> is 20 s; (<b>c</b>) cycle time <span class="html-italic">C</span> is 60 s, green time <span class="html-italic">g</span> is 30 s; (<b>d</b>) cycle time <span class="html-italic">C</span> is 60 s, green time <span class="html-italic">g</span> is 40 s; (<b>e</b>) cycle time <span class="html-italic">C</span> is 60 s, green time <span class="html-italic">g</span> is 30 s; (<b>f</b>) the summary figure and the fitting curve of the critical point.</p> "> Figure 5
<p><math display="inline"><semantics> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </semantics></math> versus queue length for different green times with a cycle time of 90 s: (<b>a</b>) cycle time <span class="html-italic">C</span> is 90 s, green time <span class="html-italic">g</span> is 20 s; (<b>b</b>) cycle time <span class="html-italic">C</span> is 90 s, green time <span class="html-italic">g</span> is 30 s; (<b>c</b>) cycle time <span class="html-italic">C</span> is 90 s, green time <span class="html-italic">g</span> is 40 s; (<b>d</b>) cycle time <span class="html-italic">C</span> is 90 s, green time <span class="html-italic">g</span> is 50 s; (<b>e</b>) cycle time <span class="html-italic">C</span> is 90 s, green time <span class="html-italic">g</span> is 60 s; (<b>f</b>) the summary figure and the fitting curve of the critical point.</p> "> Figure 6
<p><math display="inline"><semantics> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </semantics></math> versus queue length for different green time with a cycle time of 120 s: (<b>a</b>) cycle time <span class="html-italic">C</span> is 120 s, green time <span class="html-italic">g</span> is 30 s; (<b>b</b>) cycle time <span class="html-italic">C</span> is 120 s, green time <span class="html-italic">g</span> is 40 s; (<b>c</b>) cycle time <span class="html-italic">C</span> is 120 s, green time <span class="html-italic">g</span> is 50 s; (<b>d</b>) cycle time <span class="html-italic">C</span> is 120 s, green time <span class="html-italic">g</span> is 60 s; (<b>e</b>) cycle time <span class="html-italic">C</span> is 120 s, green time <span class="html-italic">g</span> is 70 s; (<b>f</b>) the summary figure and the fitting curve of the critical point.</p> "> Figure 7
<p><math display="inline"><semantics> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </semantics></math> versus queue length for different split: (<b>a</b>) split is 1/3; (<b>b</b>) split is 1/2; (<b>c</b>) split is 2/3.</p> "> Figure 8
<p><math display="inline"><semantics> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </semantics></math> versus queue length for different cycle times: (<b>a</b>) green time <span class="html-italic">g</span> is 20 s; (<b>b</b>) green time <span class="html-italic">g</span> is 30 s; (<b>c</b>) green time <span class="html-italic">g</span> is 40 s.</p> "> Figure 9
<p>Scatter diagram of critical <math display="inline"><semantics> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </semantics></math> vs. critical queue length for different splits.</p> ">
Abstract
:1. Introduction
- (a)
- A variable named the velocity-weighted flow combining the flow and space-mean velocity of each vehicle is proposed, which contains characteristics of both velocities and flows.
- (b)
- A new kind of link fundamental diagram (LFD) based on the velocity-weighted flow and queue length is presented in this paper, which can show the relationship between traffic condition and queue length.
- (c)
- Features of the proposed LFD related to cycle times, green times, and splits are presented: The LFD shape is generally determined by the splits. Both the critical queue length and critical velocity-weighted flow increase with increasing green time. The critical queue length is more closely related to the green time than the cycle time.
2. Problem Formulation
2.1. Traffic Flow Description
2.2. Vehicle Velocity Description
3. Link Fundamental Diagram Based on Queue
3.1. The Definition of Velocity-Weighted Flow
3.2. Drawing Link Fundamental Diagram
4. Characters of the Link Fundamental Diagram
4.1. Impact of Green Time on the Link Fundamental Diagram
4.2. The Impact of Split on the Link Fundamental Diagram
4.3. The Impact of Cycle Time on the Link Fundamental Diagram
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FD | Fundamental diagram |
MFD | Macroscopic fundamental diagram |
LFD | Link fundamental diagram |
References
- Greenshields, B.D.; Bibbins, J.R.; Channing, W.S.; Miller, H.H. A study of traffic capacity. In Highway Research Board Proceedings; National Research Council (USA), Highway Research Board: Washington, DC, USA, 1935; Available online: https://www.semanticscholar.org/paper/A-study-of-traffic-capacity-Greenshields-Bibbins/a3f3c282a7a35b5265ee74757d0edfa163d69bad#citing-papers (accessed on 8 May 2020).
- Greenberg, H. An Analysis of Traffic Flow. Oper. Res. 1959, 7, 79–85. [Google Scholar] [CrossRef]
- Edie, L.C. Car-following and steady-state theory for noncongested traffic. Oper. Res. 1961, 9, 66–76. [Google Scholar] [CrossRef]
- Hall, F.L.; Allen, B.L.; Gunter, M.A. Empirical analysis of freeway flow–density relationships. Transp. Res. Part A Gen. 1986, 20, 197–210. [Google Scholar] [CrossRef]
- Kerner, B.S.; Konhäuser, P. Structure and parameters of clusters in traffic flow. Phys. Rev. E Statal Phys. Plasmas Fluids Relat. Interdiplinary Top. 1994, 50, 54. [Google Scholar] [CrossRef] [PubMed]
- Kerner, B.S. Three-Phase Traffic Theory and Highway Capacity. Phys. A Statal Mech. Appl. 2002, 333, 379–440. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, H.M. Fundamental Diagram of Traffic Flow: New Identification Scheme and Further Evidence from Empirical Data. Transp. Res. Rec. 2011, 2260, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, J.; Chen, Q.Y.; Ni, D. Logistic modeling of the equilibrium speed–density relationship. Transp. Res. Part A Policy Pract. 2011, 45, 554–566. [Google Scholar] [CrossRef]
- Ni, D.; Wang, H. A unified perspective on traffic flow theory. Part III: Validation and benchmarking. Appl. Math. Sci. 2013, 7, 1965–1982. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Wang, S.; Zhang, J. On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models. Transp. Res. Part B Methodol. 2015, 73, 91–102. [Google Scholar] [CrossRef]
- Zhang, H. A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B Methodol. 2002, 36, 275–290. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Ma, D.; Jin, S. A Novel Speed–Density Relationship Model Based on the Energy Conservation Concept. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1179–1189. [Google Scholar] [CrossRef]
- Leclercq, L. Calibration of Flow-Density Relationships on Urban Streets. Transp. Res. Rec. J. Transp. Res. Board 2005, 1934, 226–234. [Google Scholar] [CrossRef]
- Gartner, N.H.; Wagner, P. Traffic flow characteristics on signalized arterials. Transp. Res. Rec. J. Transp. Res. Board 2004, 1883, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, H.X.; Geroliminis, N. An empirical analysis on the arterial fundamental diagram. Transp. Res. Part B Methodol. 2011, 45, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Hallenbeck, M.E.; Ishimaru, J.M.; Davis, K.D.; Kang, J.M. Arterial performance monitoring using stop bar sensor data. In Proceedings of the 87th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- He, Z.; Ming, C.; Wang, L.; LI, M. Empirical Analysis of Urban Arterial Fundamental Diagram. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018. [Google Scholar]
- Daganzo, C.F.; Geroliminis, N. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transp. Res. Part B Methodol. 2008, 42, 771–781. [Google Scholar] [CrossRef]
- Geroliminis, N.; Daganzo, C.F. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transp. Res. Part B Methodol. 2008, 42, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Daamen, W.; Hoogendoorn, S.; Hoogendoorn-Lanser, S.; Qian, X. Investigating the Shape of the Macroscopic Fundamental Diagram Using Simulation Data. Transp. Res. Rec. J. Transp. Res. Board 2010, 2161, 40–48. [Google Scholar] [CrossRef]
- Geroliminis, N.; Sun, J. Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. Part B Methodol. 2011, 45, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Buisson, C.; Ladier, C. Exploring the Impact of Homogeneity of Traffic Measurements on the Existence of Macroscopic Fundamental Diagrams. Transp. Res. Rec. 2009, 2124, 127–136. [Google Scholar] [CrossRef]
- Mazloumian, A.; Geroliminis, N.; Helbing, D. The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4627–4647. [Google Scholar] [CrossRef] [Green Version]
- Gayah, V.V.; Daganzo, C.F. Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability. Transp. Res. Part B Methodol. 2011, 45, 643–655. [Google Scholar] [CrossRef]
- Geroliminis, N.; Sun, J. Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks. Transp. Res. Part A Policy Pract. 2011, 45, 966–979. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; He, S.; Guan, W. A figure-eight hysteresis pattern in macroscopic fundamental diagrams and its microscopic causes. Transp. Lett. 2014, 7, 133–142. [Google Scholar] [CrossRef]
- Xie, D.F.; Wang, D.Z.; Gao, Z.Y. Macroscopic analysis of the fundamental diagram with inhomogeneous network and instable traffic. Transp. A Transp. Sci. 2016, 12, 20–42. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, X.; Kondor, D.; Santi, P.; Ratti, C. Understanding spatio-temporal heterogeneity of bike-sharing and scooter-sharing mobility. Comput. Environ. Urban Syst. 2020, 81, 101483. [Google Scholar] [CrossRef]
- Brockmann, D.; Hufnagel, L.; Geisel, T. The scaling laws of human travel. Nature 2006, 439, 462–465. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Yan, X.Y.; Han, X.P.; Wang, B.H.; Zhou, T. Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci. Rep. 2013, 3, 2678. [Google Scholar] [CrossRef]
- Zhao, K.; Musolesi, M.; Hui, P.; Rao, W.; Tarkoma, S. Explaining the power-law distribution of human mobility through transportationmodality decomposition. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gallotti, R.; Bazzani, A.; Rambaldi, S.; Barthelemy, M. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mizzi, C.; Fabbri, A.; Rambaldi, S.; Bertini, F.; Curti, N.; Sinigardi, S.; Luzi, R.; Venturi, G.; Davide, M.; Muratore, G.A. Unraveling pedestrian mobility on a road network using ICTs data during great tourist events. EPJ Data Sci. 2018, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Ban, X.; Guo, C. Urban Traffic Congestion Evaluation Based on Kernel the Semi-Supervised Extreme Learning Machine. Symmetry 2017, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Ning, Z.; Xia, F.; Ullah, N.; Kong, X.; Hu, X. Vehicular social networks: Enabling smart mobility. IEEE Commun. Mag. 2017, 55, 16–55. [Google Scholar] [CrossRef]
- Silva, T.H.; de Melo, P.O.V.; Almeida, J.M.; Viana, A.C.; Salles, J.; Loureiro, A.A. Participatory sensor networks as sensing layers. In Proceedings of the 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, NSW, Australia, 3–5 December 2014; pp. 386–393. [Google Scholar]
- Rodrigues, D.O.; Boukerche, A.; Silva, T.H.; Loureiro, A.A.F.; Villas, L.A. Combining taxi and social media data to explore urban mobility issues. Comput. Commun. 2018, 132, 111–125. [Google Scholar] [CrossRef]
- Lighthill, M.J.; Whitham, G.B. On kinetic waves, II. A theory of traffic flow on long crowded roads. Proc. R. Soc. A 1955, 229, 317–345. [Google Scholar]
Symbol | Explanation |
---|---|
the velocity of vehicle i at time step t | |
free-flow velocity | |
following velocity | |
distance from vehicle i to stop line at time step t | |
queue length at time step t | |
Discharge shock wave | |
queuing shock wave | |
density when following with vehicles | |
jam density | |
s | saturation flow |
g | green time |
r | red time |
C | cycle time |
beginning of the cycle | |
q | traffic flow |
traffic flow passing an intersection in one cycle | |
arriving flow during green time | |
velocity-weighted traffic flow |
Symbol | Quantity | Sample |
---|---|---|
i | vehicle number | No. 549 |
moment of being positioned | 600 (s) | |
instantaneous velocity | 31.27 (km/h) | |
distance from vehicle to link entrance | 386.48 (m) | |
The number of the link where the vehicle is located | No. 30 | |
length of the link | 826.41 (m) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Kong, J.; Ren, Y.; Yin, C. On the Urban Link Fundamental Diagram Based on Velocity-Weighted Flow and Queue Length. Symmetry 2020, 12, 1852. https://doi.org/10.3390/sym12111852
Yu H, Kong J, Ren Y, Yin C. On the Urban Link Fundamental Diagram Based on Velocity-Weighted Flow and Queue Length. Symmetry. 2020; 12(11):1852. https://doi.org/10.3390/sym12111852
Chicago/Turabian StyleYu, Hansong, Junwei Kong, Ye Ren, and Chenkun Yin. 2020. "On the Urban Link Fundamental Diagram Based on Velocity-Weighted Flow and Queue Length" Symmetry 12, no. 11: 1852. https://doi.org/10.3390/sym12111852
APA StyleYu, H., Kong, J., Ren, Y., & Yin, C. (2020). On the Urban Link Fundamental Diagram Based on Velocity-Weighted Flow and Queue Length. Symmetry, 12(11), 1852. https://doi.org/10.3390/sym12111852