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Abstract: There is always an asymmetric phenomenon between traffic data quantity and unit
information content. Labeled data is more effective but scarce, while unlabeled data is large but
weaker in sample information. In an urban transportation assessment system, semi-supervised
extreme learning machine (SSELM) can unite manual observed data and extensively collected data
cooperatively to build connection between congestion condition and road information. In our method,
semi-supervised learning can integrate both small-scale labeled data and large-scale unlabeled data,
so that they can play their respective advantages, while the ELM can process large scale data at high
speed. Optimized by kernel function, Kernel-SSELM can achieve higher classification accuracy and
robustness than original SSELM. Both the experiment and the real-time application show that the
evaluation system can precisely reflect the traffic condition.
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1. Introduction

Urban road networks are an integral part of the organic link to achieve mutual coordination for a
city. Road traffic congestion is an important indicator to measure the level of road service and traffic
capacity. Based on the collection of the floating car data combined with the urban road conditions to
achieve urban congestion assessment is the main method of the current study.

In most previous researches, the value of congestion is often obtained in two ways. One is to
generate assessment models directly by analyzing a large number of unlabeled traffic data [1–4].
The alternative approach is judged by the citizens or traffic governors [5,6]. They make a subjective
assessment of congestion and produce some labeled samples, based on the observation of road
conditions. Then the evaluation model is built by learning the experience of those labeled samples.

However, there is always an asymmetric phenomenon between traffic data quantity and unit
information content. Unlabeled data can be easily obtained so that the number is huge, but the
deficiency of subjective evaluation information means evaluation results based on unlabeled data
usually deviate to match the public’s feeling. Labeled data reflect the public’s direct experience and
has more information, but the number is fewer because the labeled samples are difficult to obtain.
This leads to a gap between the model generated by the first method and the users’ experience, and the
poor generalization performance of the second methods.

In this paper, kernel based semi-supervised extreme learning machine is used to train the traffic
congestion evaluation framework, with both small-scale labeled data and large-scale unlabeled data.
In our method, semi-supervised learning can integrate two kinds of data, and use their respective
advantages, while the Extreme Learning Machine (ELM) can process large scale data at high speed and
the kernel function can increase the stability of the model. Based on this model, we build an evaluation
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system to clearly show the traffic congestion on the web map, which can provide assistance for traffic
control and public travel.

In our work, the Urban Transportation Assessment and Forecast System analyzes the traffic
congestion of the transportation network in a city of southwest China and shows the evaluation results
of the real-time traffic states on the Geographic Information System (GIS) map using different colors
(Figure 1).

The traffic congestion evaluation system based on floating car data is the fundamental part of
core function whose data source consists of road sections information (containing road grades, the
number of lanes, the number of neighborhood lanes) and floating car data. We pre-process the floating
car data and match the effective floating car speed information to every road section. Finally, road
section traffic flow eigenvalues are calculated.
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Figure 1. The user interface of the traffic congestion evaluation system: (a) Congestion evaluation on
the map; (b) Floating car distribution on the map.

In previous work on traffic congestion evaluation, the empirical evaluation frameworks [1–3]
are adopted to build a connection between average speed of floating cars and congestion.
These frameworks were based on the analysis of large amounts of unlabeled data. Table 1 shows the
road congestion evaluation framework of Beijing. This method is easy to implement and consumes
few system resources.

Table 1. Empirical framework based on average speed (km/h).

Congestion Smooth Average Congested

Highway >65 35~65 <35
Main road >40 30~40 <20

Minor road and Branch road >35 25~35 <10

However, it is only possible to get the time distributions and spatial distributions of the traffic flow
based on floating car data while the traffic density and flow are unpredictable. Therefore, the empirical
evaluation frameworks do not take full consideration of the road information and network conditions.
The fixed evaluation standards lack flexibility and do not truly reflect specific urban traffic conditions,
traffic regulations and residents’ actual feelings about congestion, which results in the gap between
the congestion information on the map and users’ experience.

To overcome the shortcomings above, intelligent methods are introduced into the traffic congestion
evaluation system. Aimed at specific urban traffic conditions, more precise evaluation models are built
by least absolute shrinkage and selection operator (LASSO) [4], Neural Network [5], hidden markov
model (HMM) [6], support vector machine (SVM) [7], etc. However, these approaches have the
following deficiencies when applied to the traffic congestion evaluation system based on floating
car data.

• It is difficult to attain the reliable labeled data. Data resources are more than 23,000 taxicabs
with GPS in the city. The quantity of data from the floating cars each week is more than
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15,000,000 samples and the quantity of road traffic samples is around 700,000. The reliable
labeled data of congestion is derived from the real-time observations of the Transportation
Department staff that cost much human resources and working time. The traffic network of
the city is complex on account of different kinds of bridges, tunnels, main roads, sub roads and
intersections. The evaluation models based upon the supervised learning are ineffective because
of the sparsely-labeled samples.

• For many semi-supervised learning algorithms, large scale data results in huge computation cost.
With the continuous change of traffic conditions, the evaluation model needs to be retrained
frequently. So this application demands a machine learning framework that offers more stable
and efficient training.

ELM was designed for single hidden layer feedforward neural networks with unique advantages
such as high training efficiency, easy implementation and unification of multi-classification
and regression [8]. Recently, ELM has gained great progresses in different research field.
Incremental ELM [9] makes hidden nodes incrementally constructed and Sequential ELM [10] makes
input data processed sequentially. The multilayer learning architecture that uses ELM auto-encoder [11]
and subnetwork nodes [12] expands ELM from a single layer structure to a multilayer structure.
Also, recent applications of ELM have included: machine vision [13,14], ensemble learning [15,16],
sparse learning [17,18] big data applications [19,20], etc.

Semi-supervised ELM [21] extends the capacity to deal with unlabeled data with high training
efficiency and accuracy. Kernel based methods [22,23] solved the problem resulting from random
distribution of hidden layer parameters in ELM and gain higher relevance to corresponding datasets
as well as higher stability. Optimized by kernel function, semi-supervised extreme learning machine
(SSELM) can achieve higher classification accuracy and robustness. This paper applied Kernel-SSELM
in a traffic congestion evaluation system to unite small-scale labeled data and large-scale unlabeled
data cooperatively, and build a connection between congestion conditions and road information with
high efficiency and accuracy.

Applying Kernel-SSELM to a traffic congestion evaluation system based on floating car data,
this paper has the following strengths:

• Though the congestion value of unlabeled data is uncertain, it represents the different traffic
conditions which reflect the distribution information of traffic data. Kernel-SSELM improves the
recognition accuracy of evaluation models by involving unlabeled data in the training.

• Extreme learning machine has high training efficiency and is easy to implement. In the case
of large data scales, high training speed ensures that the congestion evaluation model can be
updated in time according to the data changes.

• In neglecting the number of hidden layer nodes, the optimization of kernel function improves the
stability of SSELM.

Our previous work [24] introduced Kernel-SSELM to traffic evaluation. In this paper, we introduce
the feature extraction of the congestion (Section 2) and the training algorithm of the evaluation
model (Section 3) in detail. Furthermore, based on the training experiment for feasibility verification
(Section 4), we have implemented the multi-level evaluation system (Section 5) from the road level to
the zone level.

2. Traffic Congestion Eigenvalue

Traffic congestion evaluation system takes the road sections as the individual samples. Specifically,
a road section demonstrates a portion of a road in a single direction. The traffic congestion evaluation
of each road section originates from two sources cooperatively.
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2.1. Road Section Information

The first source is the essential information of the road section from the Transportation Department.
The following information is extracted:

• Number of lanes:

The number of lanes represents the road capacity. Under the circumstances of same congestion,
the more lanes there is, higher the speed is.

• Number of Entrance and Exit:

These two numbers represent the capacity of the road’s input and output. This capacity has an
obvious effect on stopping time and speed of cars in the different conditions of congestion.

• Number of traffic lights:

The number of traffic lights influences the stopping time and average speed of cars on the road,
especially at an intersection. Despite the long stopping and low average speed, if cars have a certain
velocity and there are some traffic lights, the road will still remain smooth.

• Road grades:

Roads in the system have four road grades. They are: highway, major road, minor road and
branch way. This eigenvalue is defined with the numerical value. From branch way to highway
the numerical values are 1, 2, 3, 4, respectively. The higher the road grade is, the higher the road
standard speed and maximum speed the road has. The congestion evaluation is also different because
of different road grades.

2.2. Speed Information Based on Floating Car Data

The second source is the real-time speed information of the road section from the floating car data.
In the interval ∆T defined by ∆T = 5 min, the data is calculated and matched to the corresponding
road section and is transformed to the following kinds of eigenvalues:

• Average speed:

First, we calculate the average speed of every car in the interval of ∆T on the road section.
Then the average speed of all cars is attained. In the interval of ∆T, the velocity measurement sites of
the floating car r on the terminal road section are distributed as shown in the Figure 2.
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Sequence
{

t0, t1, . . . tp
}

and sequence
{

u0, u1, . . . up
}

are the time sequence and speed sequence
of floating car r on the road section. The floating car’s driving distance Sr is defined by:

Sr =
∫ tp

t0

udt ≈ u0

(
t1 − t0

2

)
+ up

(
tp − tp−1

2

)
+

p−1

∑
i=1

ui

(
ti+1 − ti−1

2

)
. (1)

Therefore, the average speed of floating car r can be represented as Ur =
Sr

tp−t0
.

If the number of floating cars on the road section at a particular moment is n, the average speed
of all cars on the road section can be written as Ũ = ∑n

1 Ur
n .



Symmetry 2017, 9, 70 5 of 12

• Speed distribution:

The car speed is distinguished into different levels and the histogram is used to represent the
distribution of speed data of all floating cars on the read section. The standard of division is based on
the speed distribution of floating cars in the city (Figure 3). Car speed data is mainly no more than
75 km/h except on a highway. Therefore, the car speed is distributed into 5 grades as shown in Table 2.

Table 2. The 5 levels of the speed of floating cars (km/h).

Speed Grades 1 2 3 4 5

Range(km/h) <15 15~35 35~55 55~75 >75
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• Average stopping time:

When a car’s speed is below 5 km/h, it is identified as a stopped car. The stopping time of floating
car r can be represented as Tr = ∑

p−1
i=0 (ti+1 − ti)(ui < 5).

Thus, the average stopping time of all cars on the road section can be written as T̃ = ∑n
1 Tr
n .

From all kinds of eigenvalues above, 12-dimensional traffic congestion eigenvalue can
be calculated.

2.3. Congestion Value

The work of labeling training samples is completed by five experts from the Transportation
Department of the city. Through surveillance cameras, experts recorded information and gave
evaluation of the traffic congestion at that time. Congestion evaluation is divided into three grades:
Smooth, Average and Congested. The final label is in the grade which receives the most votes in
5 experts.

We indicate the congestion grades with the 3-dimensional eigenvalue. In each of the evaluation
results, each dimension corresponds to a congestion level. The dimension of the corresponding
congestion grade is set to 1 and other dimensions are set to 0. Thus, the congestion evaluation problem
is transformed into a classification problem. Therefore, the evaluation result is the congestion grade
which corresponds to the dimension having the largest value.
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3. Kernel-Based SSELM

In a given training data set, the number of samples is n. A training sample (x, y) consists of
congestion eigenvalue x and the corresponding congestion value y.

The formula of the single hidden layer feedforward neural network (SLFN) with Nh hidden nodes
can be represented as:

Nh

∑
i=1

βig(wix + bi) = y. (2)

In a single hidden nodes i, g is the activation function, βi is the output weight, wi is the input
weight, bi is the bias. The output function of ELM can be written as:

y = FELM(x) =
Nh

∑
i=1

βig(wix + bi) = h(x)β, (3)

where h(x) =
[
g(w1x + b1), . . . , g

(
wNh x + bNh

)]
represents the output of hidden layer network, and

β =
[
β1, . . . , βNh

]T represents the output weights of all hidden nodes. The output for all the n training
samples can be written as:

Y = Hβ Y = [y1, . . . , yn]
T H = [h(x1), . . . , h(xn)]

T . (4)

Previously, Huang et al. [8] used the smallest norm least squares solution of Y = Hβ. With a
user-defined cost coefficient C, Huang et al. [10] optimized the calculation of the output weights β.
Among them, when the number of hidden nodes is more than the number of training data, the result
of β is:

β = HT
(

I
C
+ HHT

)−1
Y. (5)

Huang et al. [25] suggested to use a kernel function if the hidden layer feature mapping h(x) is
unknown. The kernel matrix χ for ELM can be written as follows, where K

(
xi, xj

)
is Kernel function:

χELM = HHT χELMi,j
= h(xi)·h

(
xj
)
= K

(
xi, xj

)
. (6)

Then the output function of Kernel-ELM can be represented as:

y = FELM(x) = h(x)β = h(x)HT
(

I
C
+ HHT

)−1
Y =

 K(x, x1)
...

K(x, xn)

( I
C
+ χELM

)−1
Y. (7)

Huang et al. [21] introduced manifold assumption into ELM, and proposed the solution of β

in SSELM. In SSELM, Laplacian matrix is used to construct the distribution relationship among all
training samples, so that both unlabeled and labeled data can be used to train the evaluation model in
a united framework. For a training data set having l labeled samples and u unlabeled samples, the
output weights β of a SSELM is:

β = HT
(

I + C̃HHT + λLHHT
)−1

C̃Ỹ. (8)

The formula is valid when the number of hidden nodes is higher than the number of labeled
samples l. The Ỹ is the training target including the first l rows of labeled data equal to Y and the rest
equal to 0. λ is user-defined semi-supervised learning rate. C̃ is a (l + u)× (l + u) diagonal matrix
with the first l diagonal elements of cost coefficient and the rest equal to 0. C̃ can be calculated as:



Symmetry 2017, 9, 70 7 of 12

Ci =
C0
NPi

i = 1, . . . , l , (9)

where C0 is user-defined cost coefficient, and NPi represents the sample quantity of the pattern of ith
sample. L is Laplacian matrix, which can be calculated as L = D − W. W =

[
wi,j
]

is the similarity
matrix of all the labeled and unlabeled samples. D is a diagonal matrix with its diagonal elements
Dii = ∑n

j=1 wij.
When the hidden layer is unknown, we use the Kernel function to calculate inner product without

hidden layer feature mapping. The output function of Kernel-SSELM can be written as:

y = FSSELM(x) = h(x)β =

 K(x, x1)
...

K(x, xn)

(I + C̃χELM + λLχELM

)−1
C̃Ỹ. (10)

4. Evaluation Performance Results

4.1. Experimental Setup

In the experiment, we collect the floating car data from 15 June to 16 June 2015, and the quantity
is more than 30,000,000 samples. The data is grouped in interval for 5 min and matched to the
corresponding road section. Finally, we collect 13,681 samples. The evaluation of experts is based on
the video from surveillance cameras at about 30 typical road sections in the city. In total, 537 valid
samples were finally collected, and the remaining 13,144 samples were unlabeled. The experiment was
implemented using Matlab R2013b (The MathWork Inc., Natick, MA, USA) on a 3.40 GHz machine
with 4 GB of memory.

4.2. Comparisons with Related Algorithms

For comparison, we tested the empirical rule, SSELM, Kernel-SSELM and state-of-the-art
semi-supervised learning algorithms such as TSVM [26], LDS [27], LapRLS [28], and LapSVM [28].
The test set had 100 samples randomly selected from the labeled sample, and the random generation
process was repeated 10 times. The cost coefficient C0 was fixed to 100 and the semi-supervised
learning rate λ was chosen from in

{
2−20, 2−19, . . . , 220}. The kernel function of Kernel-SSELM is

Gaussian function with the parameter γ fixed to 1. The number of hidden layer nodes of SSELM was
set to 5000.

Table 3 shows that the evaluation model trained by Kernel-SSELM had the highest average
accuracy at 86.2%. In addition, Kernel-SSELM only takes 48.2 s for training, which keep the high
training efficiency of SSELM. In comparison, the other semi-supervised learning algorithms can also
get relatively high accuracy, but the training consumptions are too huge.

Table 3. Evaluation result on realistic traffic data.

Empirical
Rule TSVM LDS LapRLS LapSVM SSELM Kernel-SSELM

Average Accuracy 68.9% 81.3% 82.2% 81.4% 84.8% 82.6% 86.2%
Best Accuracy 73.0% 87.0% 86.0% 86.0% 88.0% 87.0% 88.0%

Std. Dev. 3.79% 2.15% 2.71% 2.35% 1.97% 2.43% 1.55%
Training Time (s) - 18,437 35,334 931 825 41.6 48.2

Figure 4 shows the confusion matrix of each evaluation model trained by machine learning
methods in the 10 repetitions of the experiments. Geometric mean (G-mean) is used to evaluate
the balance classification performance of each algorithm. In our work, the traffic evaluation is a
multi-classification problem and the G-mean is calculated as:
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G–mean =
(

∏k
i=1 Ri

) 1
k Ri =

TPi
Ni

(11)

where Ri is the recall value of each class, Ni is the number of samples in the class, and TPi is the
number of correctly classified samples of the class. k is the number of class, and it was set as 3 in
our work.

As seen from the Figure 4, each method has a certain degree of unbalanced classification problem.
The G-mean is about 2% or more lower than the accuracy. The majority class “Smooth” is easier to
distinguish, and the minority classes “Average” and “Congested” have lower recall value. There are
many samples incorrectly classified between classes “Average” and “Congested”, which means these
two classes are more difficult to distinguish. Compared to the other method, Kernel-SSELM can more
accurately classify the class “Smooth”, so that it gets higher accuracy and G-mean.Symmetry 2017, 9, 70  8 of 12 
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Figure 4. Confusion matrix and G-mean of each machine learning algorithms: (a) TSVM; (b) LDS;
(c) LapRLS; (d) LapSVM; (e) SSELM; (f) Kernel-SSELM.

Figure 5 shows that with the increase of the number of unlabeled data in the training set,
the performance of Kernel-SSELM and SSELM get better. In particular, Kernel-SSELM gives a more
significant growth when the number of unlabeled parts is below 40%, and its performance becomes
stable when there are more unlabeled data. By comparison, the performance of SSELM grows slower
and it is hard to get stable result.
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4.3. Performance Sensitivity on Parameters

Figure 6 shows the performance sensitivity. In order to achieve good generalization performance,
the cost coefficient C0 and kernel parameter γ need to be chosen appropriately. The best performance is
usually achieved in a very narrow range of cost coefficient C0, which means the Kernel-SSELM model
is very sensitive to C0. However, when the C0 is properly chosen, the performance will be not sensitive
to the kernel parameter γ. Semi-supervised learning rate λ also significantly affects the performance of
Kernel-SSELM. There is an obvious trend that Kernel-SSELM gives a lower prediction error with more
unlabeled data. However, the best performance is achieved in a very narrow range of λ. Moreover,
with different numbers of unlabeled data, the best value of λ varies in a small rage.
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5. Evaluation on the Realistic Traffic Data

The trained model was used in the Urban Transportation Assessment and Forecast System
in the city of Nanning, China. The evaluation results are shown on the map though the website.
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Figure 7 displays the real-time traffic condition evaluation. In the map, green represents smooth traffic,
yellow shows average condition, and red means the road is congested.
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Besides the quantitative analysis of evaluation accuracy, it is also important to investigate whether
the evaluation results are consistent with the intuitive feeling of citizens. Figure 8 shows the comparison
between the evaluation on the map and the real road conditions taken by surveillance cameras.
Seen from the Figure 8, the traffic evaluation accurately reflects the road traffic congestion at that time.

1 
 

 

Figure 8. Performance of real-time traffic evaluation on road level.

The Urban Transportation Assessment and Forecast System also use thermodynamic chart to
provide evaluation on zone level. In the Figure 9, the deeper the color, the more serious the congestion
of a zone.

Seen from the map, the congestion concentrates in the center of the city including the central
business circle, train station and central main road. These places are in the old city district,
which has small network capacity, large population and big traffic flow, so the congestion is more
serious. In addition, beltway entrances, main road overpass bridges and rail transit nodes also have
concentrated traffic. Comparing the traffic condition between morning and evening, congestion is
more serious at 18:00, which means traffic is more concentrated in the evening peak. These states are
consistent with the actual situation of urban traffic in Nanning. Therefore, based on the congestion
accurate evaluation, the transportation assessment system has high reliability and practicability.
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6. Conclusions

In this paper, semi-supervised learning solved the asymmetry problem between traffic data
quantity and unit information content. Our method was used to train the evaluation model by
integrating small-scale labeled data and large-scale unlabeled data cooperatively. The extreme learning
machine has high training efficiency and is easy to implement. In the case of large data scales,
high training speed ensures that, despite changing traffic conditions, it can still renew training several
times to choose a better model. Kernel function improves the recognition accuracy. In neglecting the
number of hidden layer nodes, the optimization of kernel function improves the stability. Both the
experiment and the real-time application show that the evaluation system builds a connection between
congestion condition and road information with high efficiency and accuracy. The evaluation system
clearly shows the congestion on the GIS map, which can provide assistance for traffic control and
public travel.
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