A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction
<p>Research framework.</p> "> Figure 2
<p>Hierarchy of decision problem.</p> "> Figure 3
<p>Four parameters describing the trapezoidal membership function.</p> "> Figure 4
<p>Trapezoidal membership functions.</p> "> Figure 5
<p>Architectural view of the eight-story building.</p> "> Figure 6
<p>Building structure using RC.</p> "> Figure 7
<p>Building structure using SS.</p> "> Figure 8
<p>Building structure using RM.</p> "> Figure 9
<p>Building structure using timber.</p> "> Figure 10
<p>Summary of the fuzzified normalized weightage of all teams.</p> "> Figure 11
<p>Alternative and evaluation criteria selection.</p> "> Figure 12
<p>Distribution of weightage.</p> "> Figure 13
<p>Assigning preferences for different alternatives.</p> "> Figure 14
<p>Graphical output for weightage distribution and ranking of alternatives.</p> "> Figure 15
<p>Radar chart showing the sensitivity of the model for criteria weightage.</p> "> Figure 16
<p>Chart showing the sensitivity of the model for user preferences.</p> "> Figure 17
<p>Comparison of final ranking results by fuzzy TOPSIS and fuzzy VIKOR.</p> ">
Abstract
:1. Introduction
2. Related Literature and Past Research
2.1. Structural Materials Commonly Used for Multistory Building Construction
2.2. Multi-Criteria Decision-Making (MCDM)
2.3. Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA)
2.4. Integrated Project Delivery (IPD)
2.5. Application of MCDM in Construction
3. Material and Method
3.1. Sustainability Evaluation Criteria
3.2. MCDM Methods Chosen for This Research
3.3. Research Framework and Hierarchy of the Decision Problem
3.4. LCA and LCCA Calculations
3.5. Normalizing Objective Values into Subjective Inputs
3.6. Fuzzy AHP
3.7. Ranking of Alternatives with Fuzzy TOPSIS
3.8. Ranking of Alternatives with Fuzzy VIKOR
4. Case Study
4.1. Description of the Case Study
4.2. Calculation of LCA and LCCA
4.3. Normalizing of the Quantitative User Input to Qualitative Value
4.4. Calculation of Weightage for Each Criteria Using the Fuzzy AHP
4.4.1. Criteria and Codes
4.4.2. Calculation of Weightage for Each Criterion
4.5. Ranking of Alternatives with Fuzzy TOPSIS
4.6. Ranking of Alternatives with Fuzzy VIKOR
4.7. Results
5. Details of DSS Desktop Application Software
5.1. User Input to the System
5.1.1. Alternatives and Criteria Selection
5.1.2. Weightage Distribution
5.1.3. Assigning Preferences for Different Alternatives
5.2. System Output
6. Sensitivity Analysis
6.1. Criteria Weightage Sensitivity
6.2. Sensitivity Analysis of User Preferences for Alternatives
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNEP 2021 Global Status Report for Buildings and Construction|Globalabc. Available online: https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction (accessed on 10 June 2022).
- CURT. Managing Construction Productivity. Available online: https://www.curt.org/committees/managing-construction-productivity/ (accessed on 10 September 2022).
- COP26. The Glasgow Climate Pact–Key Outcomes from COP26|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from-cop26 (accessed on 12 September 2022).
- Farzanehrafat, M.; Akbarnezhad, A.; Ghoddousi, P. Analysis of Different Views towards Social Sustainability in Construction. In Proceedings of the International Symposium on Automation and Robotics in Construction, Oulu, Finland, 18 June 2015. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Schoolman, E.; Guest, J.; Bush, K.; Bell, A. How Interdisciplinary is Sustainability Research? Analyzing the Structure of an Emerging Scientific Field. Sustain. Sci. 2012, 7, 67–80. [Google Scholar] [CrossRef]
- Müller, J. Reforming United Nations—The Struggle for Legitimacy and Effectiveness; Brill: Leiden, The Netherlands, 2006; pp. 442–484. ISBN 978-90-47-40960-1. [Google Scholar]
- Yılmaz, M.; Bakış, A. Sustainability in Construction Sector. Procedia-Soc. Behav. Sci. 2015, 195, 2253–2262. [Google Scholar] [CrossRef]
- Ochshorn, J. Structural Elements for Architects and Builders, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2009; ISBN 979-8-68442-803-6. [Google Scholar]
- Stephan, A.; Stephan, L. Life Cycle Energy and Cost Analysis of Embodied, Operational and User-Transport Energy Reduction Measures for Residential Buildings. Appl. Energy 2016, 161, 445–464. [Google Scholar] [CrossRef]
- Oldfield, P. The Sustainable Tall Building, 1st ed.; Routledge: Abingdon, UK, 2019; ISBN 978-1138905863. [Google Scholar]
- Cowan, H.J. A History of Masonry and Concrete Domes in Building Construction. Build. Environ. 1977, 12, 1–24. [Google Scholar] [CrossRef]
- Laguarda Mallo, M.F.; Espinoza, O. Awareness, Perceptions and Willingness to Adopt Cross-Laminated Timber by the Architecture Community in the United States. J. Clean. Prod. 2015, 94, 198–210. [Google Scholar] [CrossRef]
- Gharehbaghi, K. Advancements in Concrete Technology in Australia: Geo-Polymer Concrete. Int. J. Constr. Environ. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Goggins, J.; Keane, T.; Kelly, A. The Assessment of Embodied Energy in Typical Reinforced Concrete Building Structures in Ireland. Energy Build. 2010, 42, 735–744. [Google Scholar] [CrossRef]
- Nassar, R.-U.-D.; Soroushian, P.; Ghebrab, T. Field Investigation of High-Volume Fly Ash Pavement Concrete. Resour. Conserv. Recycl. 2013, 73, 78–85. [Google Scholar] [CrossRef]
- Allwood, J.M.; Cullen, J.M.; Milford, R.L. Options for Achieving a 50% Cut in Industrial Carbon Emissions by 2050. Environ. Sci. Technol. 2010, 44, 1888–1894. [Google Scholar] [CrossRef]
- Jayasinghe, C.; Fonseka, W.M.C.D.J.; Abeygunawardhene, Y.M. Load Bearing Properties of Composite Masonry Constructed with Recycled Building Demolition Waste and Cement Stabilized Rammed Earth. Constr. Build. Mater. 2016, 102, 471–477. [Google Scholar] [CrossRef]
- Hendry, E.A.W. Masonry Walls: Materials and Construction. Constr. Build. Mater. 2001, 15, 323–330. [Google Scholar] [CrossRef]
- Thamboo, J.A. Reinforced Masonry, An Alternative to Reinforced Concrete. In Proceedings of the 2018 Society of Structural Engineers Sri Lanka Conference, Colombo, Sri Lanka, 27 March 2018. [Google Scholar]
- Guo, H.; Liu, Y.; Meng, Y.; Huang, H.; Sun, C.; Shao, Y. A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China. Sustainability 2017, 9, 1426. [Google Scholar] [CrossRef]
- Gale, F.P. The Tropical Timber Trade Regime; Palgrave MacMillan: London, UK, 1998; pp. 61–78. ISBN 978-0333697696. [Google Scholar]
- Miller, A.; Ip, K. Sustainable Construction Materials. In Design and Management of Sustainable Built Environments; Yao, R., Ed.; Springer: London, UK, 2013; pp. 341–358. ISBN 978-1-4471-4780-0. [Google Scholar]
- Švajlenka, J.; Kozlovská, M. Modern Method of Construction Based on Wood in the Context of Sustainability. Civ. Eng. Environ. Syst. 2017, 34, 127–143. [Google Scholar] [CrossRef]
- Buck, D.; Wang, X.A.; Hagman, O.; Gustafsson, A. Comparison of Different Assembling Techniques Regarding Cost, Durability, and Ecology—A Survey of Multi-Layer Wooden Panel Assembly Load-Bearing Construction Elements. BioResources 2015, 10, 8378–8396. [Google Scholar] [CrossRef]
- Eom, S.B. Decision Support Systems Research: Current State and Trends. Ind. Manag. Data Syst. 1999, 99, 213–221. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Multi-Criteria Decision-Making Techniques for Improvement Sustainability Engineering Processes. Symmetry 2020, 12, 986. [Google Scholar] [CrossRef]
- Chai, J.; Liu, J.N.K.; Ngai, E.W.T. Application of Decision-Making Techniques in Supplier Selection: A Systematic Review of Literature. Expert Syst. Appl. 2013, 40, 3872–3885. [Google Scholar] [CrossRef]
- Bouyssou, D. Multicriteria Decision-Aid, Vincke, Ph., Chichester: Wiley, 1992. J. Multi-Criteria Decis. Anal. 1994, 3, 131. [Google Scholar] [CrossRef]
- Deng, H.; Yeh, C.-H.; Willis, R.J. Inter-Company Comparison Using Modified TOPSIS with Objective Weights. Comput. Oper. Res. 2000, 27, 963–973. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A Review of Application of Multi-Criteria Decision Making Methods in Construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Sharma, A.; Saxena, A.; Sethi, M.; Shree, V. Varun Life Cycle Assessment of Buildings: A Review. Renew. Sustain. Energy Rev. 2011, 15, 871–875. [Google Scholar] [CrossRef]
- Islam, H.; Jollands, M.; Setunge, S.; Bhuiyan, M.A. Optimization Approach of Balancing Life Cycle Cost and Environmental Impacts on Residential Building Design. Energy Build. 2015, 87, 282–292. [Google Scholar] [CrossRef]
- Marszal, A.J.; Heiselberg, P. Life Cycle Cost Analysis of a Multi-Storey Residential Net Zero Energy Building in Denmark. Energy 2011, 36, 5600–5609. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life Cycle Energy Analysis of Buildings: An Overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Stazi, F.; Mastrucci, A.; Munafò, P. Life Cycle Assessment Approach for the Optimization of Sustainable Building Envelopes: An Application on Solar Wall Systems. Build. Environ. 2012, 58, 278–288. [Google Scholar] [CrossRef]
- Russell-Smith, S.V.; Lepech, M.D. Cradle-to-Gate Sustainable Target Value Design: Integrating Life Cycle Assessment and Construction Management for Buildings. J. Clean. Prod. 2015, 100, 107–115. [Google Scholar] [CrossRef]
- Hajare, A.; Elwakil, E. Integration of Life Cycle Cost Analysis and Energy Simulation for Building Energy-Efficient Strategies Assessment. Sustain. Cities Soc. 2020, 61, 102293. [Google Scholar] [CrossRef]
- AbouHamad, M.; Abu-Hamd, M. Framework for Construction System Selection Based on Life Cycle Cost and Sustainability Assessment. J. Clean. Prod. 2019, 241, 118397. [Google Scholar] [CrossRef]
- Islam, H.; Jollands, M.; Setunge, S.; Haque, N.; Bhuiyan, M.A. Life Cycle Assessment and Life Cycle Cost Implications for Roofing and Floor Designs in Residential Buildings. Energy Build. 2015, 104, 250–263. [Google Scholar] [CrossRef]
- Schade, J. Life Cycle Cost Calculation Models for Buildings. In Proceedings of the 4th Nordic Conference on Construction Economics and Organization: Development Processes in Construction Management, Luleå, Sweden, 14 June 2007; pp. 321–329. [Google Scholar]
- AIA Integrated Project Delivery: A Guide. Available online: https://www.bdcnetwork.com/aia-and-aia-california-council-partner-introduce-integrated-project-delivery-guide (accessed on 14 February 2022).
- Hall, D.M.; Scott, W.R. Early Stages in the Institutionalization of Integrated Project Delivery. Proj. Manag. J. 2019, 50, 128–143. [Google Scholar] [CrossRef]
- Elghaish, F.; Hosseini, M.R.; Talebi, S.; Abrishami, S.; Martek, I.; Kagioglou, M. Factors Driving Success of Cost Management Practices in Integrated Project Delivery (IPD). Sustainability 2020, 12, 9539. [Google Scholar] [CrossRef]
- Zhu, X.; Meng, X.; Zhang, M. Application of Multiple Criteria Decision Making Methods in Construction: A Systematic Literature Review. J. Civ. Eng. Manag. 2021, 27, 372–403. [Google Scholar] [CrossRef]
- Marcher, C.; Giusti, A.; Matt, D.T. Decision Support in Building Construction: A Systematic Review of Methods and Application Areas. Buildings 2020, 10, 170. [Google Scholar] [CrossRef]
- Minhas, M.R.; Potdar, V. Decision Support Systems in Construction: A Bibliometric Analysis. Buildings 2020, 10, 108. [Google Scholar] [CrossRef]
- Hashemi, H.; Ghoddousi, P.; Nasirzadeh, F. Sustainability Indicator Selection by a Novel Triangular Intuitionistic Fuzzy Decision-Making Approach in Highway Construction Projects. Sustainability 2021, 13, 1477. [Google Scholar] [CrossRef]
- Bektur, G. A Hybrid Fuzzy MCDM Approach for Sustainable Project Portfolio Selection Problem and an Application for a Construction Company. İktisadi Ve İdari Bilim. Fakültesi Derg. 2021, 23, 182–194. [Google Scholar] [CrossRef]
- Marović, I.; Perić, M.; Hanak, T. A Multi-Criteria Decision Support Concept for Selecting the Optimal Contractor. Appl. Sci. 2021, 11, 1660. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Yang, Q. Identifying Critical Risk Factors in Green Product Certification Using Hybrid Multiple-Criteria Decision-Making. Sustainability 2022, 14, 4513. [Google Scholar] [CrossRef]
- Lu, M.; Wudhikarn, R. Using the Best-Worst Method to Develop Intellectual Capital Indicators in Financial Service Company. In Proceedings of the 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Chiang Rai, Thailand, 26–28 January 2022; pp. 81–86. [Google Scholar]
- Zoghi, M.; Rostami, G.; Khoshand, A.; Motalleb, F. Material Selection in Design for Deconstruction Using Kano Model, Fuzzy-AHP and TOPSIS Methodology. Waste Manag. Res. 2022, 40, 410–419. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-Criteria Evaluation Model for the Selection of Sustainable Materials for Building Projects. Autom. Constr. 2013, 30, 113–125. [Google Scholar] [CrossRef]
- Josiah Marut, J.; Alaezi, J.O.; Obeka, I.C. A Review of Alternative Building Materials for Sustainable Construction Towards Sustainable Development. J. Mod. Mater. 2020, 7, 68–78. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K.N. Performance Indicators for Sustainability Assessment of Buildings. In Proceedings of the 5th International/11th Construction Specialty Conference, CSCE, Regina, SK, Canada, 27–30 May 2015. [Google Scholar]
- Li, P.; Froese, T.M. A Green Home Decision-Making Tool: Sustainability Assessment for Homeowners. Energy Build. 2017, 150, 421–431. [Google Scholar] [CrossRef]
- Minhas, M.R.; Potdar, V. Development of an Effective System for Selecting Construction Materials for Sustainable Residential Housing in Western Australia. Appl. Math. 2020, 11, 825–844. [Google Scholar] [CrossRef]
- Pearce, A.R.; Hastak, M.; Vanegas, J.A. A Decision Support System for Construction Materials Selection Using Sustainability as a Criterion. In Proceedings of the NCSBCS Conference on Building Codes and Standards, Annapolis, MA, USA, 1995; p. 13. [Google Scholar]
- Yang, J.; Ogunkah, I.C.B. A Multi-Criteria Decision Support System for the Selection of Low-Cost Green Building Materials and Components. J. Build. Constr. Plan. Res. 2013, 01, 89–130. [Google Scholar] [CrossRef]
- Fazeli, A.; Jalaei, F.; Khanzadi, M.; Banihashemi, S. BIM-Integrated TOPSIS-Fuzzy Framework to Optimize Selection of Sustainable Building Components. Int. J. Constr. Manag. 2019, 22, 1240–1259. [Google Scholar] [CrossRef]
- Sahlol, D.G.; Elbeltagi, E.; Elzoughiby, M.; Abd Elrahman, M. Sustainable Building Materials Assessment and Selection Using System Dynamics. J. Build. Eng. 2021, 35, 101978. [Google Scholar] [CrossRef]
- Alam Bhuiyan, M.M.; Sulle, A.; Hammad, A. Application of Choosing by Advantage (CBA) to Select Most Sustainable Project, Metro Extension Case Study. In Proceedings of the 4th European and Mediterranean Structural Engineering and Construction Conference, Leipzig, Germany, 20–25 June 2022. [Google Scholar] [CrossRef]
- Kappenthuler, S.; Seeger, S. From Resources to Research—A Framework for Identification and Prioritization of Materials Research for Sustainable Construction. Mater. Today Sustain. 2020, 7, 100009. [Google Scholar] [CrossRef]
- Figueiredo, K.; Pierott, R.; Hammad, A.W.A.; Haddad, A. Sustainable Material Choice for Construction Projects: A Life Cycle Sustainability Assessment Framework Based on BIM and Fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- Rahim, F.A.; Muzaffar, S.A.; Yusoff, N.S.M.; Zainon, N.; Wang, C. Sustainable Construction Through Life Cycle Costing. J. Build. Perform. 2014, 5, 12. [Google Scholar]
- Danso, H. Dimensions and Indicators for Sustainable Construction Materials: A Review. Res. Dev. Mater. Sci. 2018, 3, 1–9. [Google Scholar] [CrossRef]
- Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Olugu, E.U.; Nilashi, M.; Turskis, Z. A Fuzzy Decision Support System for Sustainable Construction Project Selection: An Integrated FPP-FIS Model. J. Civ. Eng. Manag. 2020, 26, 247–258. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria Decision Making in Energy Planning Using a Modified Fuzzy TOPSIS Methodology. Expert Syst. Appl. 2011, 38, 6577–6585. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Valasai, G.D.; Khan, M.W.A.; Ikram, M. An Integrated Delphi-AHP and Fuzzy TOPSIS Approach toward Ranking and Selection of Renewable Energy Resources in Pakistan. Processes 2019, 7, 118. [Google Scholar] [CrossRef]
- El khouli, S.; John, V.; Zeumer, M. Sustainable Construction Techniques: From Structural Design to Material Selection: Assessing and Improving the Environmental Impact of Buildings; DETAIL: München, Germany, 2016; ISBN 978-3-95553-238-3. [Google Scholar]
- Ren, J.; Manzardo, A.; Mazzi, A.; Zuliani, F.; Scipioni, A. Prioritization of Bioethanol Production Pathways in China Based on Life Cycle Sustainability Assessment and Multicriteria Decision-Making. Int. J. Life Cycle Assess. 2015, 20, 842–853. [Google Scholar] [CrossRef]
- Jost, L. Entropy and Diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Wang, T.-C.; Lee, H.-D. Developing a Fuzzy TOPSIS Approach Based on Subjective Weights and Objective Weights. Expert Syst. Appl. 2009, 36, 8980–8985. [Google Scholar] [CrossRef]
- ATHENA Impact Estimator for Buildings. 2022. Available online: http://www.athenasmi.org/our-software-data/impact-estimator (accessed on 10 September 2022).
- Reza, B.; Sadiq, R.; Hewage, K. Emergy-Based Life Cycle Assessment (Em-LCA) of Multi-Unit and Single-Family Residential Buildings in Canada. Int. J. Sustain. Built Environ. 2014, 3, 207–224. [Google Scholar] [CrossRef]
- ISO 14044; Environmental Management: Life Cycle Assessment. Critical Review Processes and Reviewer Competencies: Additional Requirements and Guidelines to ISO 14044:2006. BSI: London, UK, 2014.
- Forman, E.H.; Gass, S.I. The Analytic Hierarchy Process—An Exposition. Oper. Res. 2001, 49, 469–486. [Google Scholar] [CrossRef]
- Dağdeviren, M.; Yavuz, S.; Kılınç, N. Weapon Selection Using the AHP and TOPSIS Methods under Fuzzy Environment. Expert Syst. Appl. 2009, 36, 8143–8151. [Google Scholar] [CrossRef]
- Sirisawat, P.; Kiatcharoenpol, T. Fuzzy AHP-TOPSIS Approaches to Prioritizing Solutions for Reverse Logistics Barriers. Comput. Ind. Eng. 2018, 117, 303–318. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Ertuğrul, İ.; Karakaşoğlu, N. Comparison of Fuzzy AHP and Fuzzy TOPSIS Methods for Facility Location Selection. Int. J. Adv. Manuf. Technol. 2008, 39, 783–795. [Google Scholar] [CrossRef]
- Kahraman, C.; Yasin Ateş, N.; Çevik, S.; Gülbay, M.; Ayça Erdoğan, S. Hierarchical Fuzzy TOPSIS Model for Selection among Logistics Information Technologies. J. Enterp. Inf. Manag. 2007, 20, 143–168. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Tsao, C.-Y. The Interval-Valued Fuzzy TOPSIS Method and Experimental Analysis. Fuzzy Sets Syst. 2008, 159, 1410–1428. [Google Scholar] [CrossRef]
- Gligoric, Z.; Beljic, C.; Simeunovic, V. Shaft Location Selection at Deep Multiple Orebody Deposit by Using Fuzzy TOPSIS Method and Network Optimization. Expert Syst. Appl. 2010, 37, 1408–1418. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Çifçi, G. A Combined Fuzzy AHP and Fuzzy TOPSIS Based Strategic Analysis of Electronic Service Quality in Healthcare Industry. Expert Syst. Appl. 2012, 39, 2341–2354. [Google Scholar] [CrossRef]
- Mocq, J.; St-Hilaire, A.; Cunjak, R.A. Assessment of Atlantic Salmon (Salmo Salar) Habitat Quality and Its Uncertainty Using a Multiple-Expert Fuzzy Model Applied to the Romaine River (Canada). Ecol. Model. 2013, 265, 14–25. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Multicriteria Planning of Post-Earthquake Sustainable Reconstruction. Comput.-Aided Civ. Infrastruct. Eng. 2002, 17, 211–220. [Google Scholar] [CrossRef]
- Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A Fuzzy VIKOR Method for Supplier Selection Based on Entropy Measure for Objective Weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Opricovic, S. Fuzzy VIKOR with an Application to Water Resources Planning. Expert Syst. Appl. 2011, 38, 12983–12990. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Extended VIKOR Method in Comparison with Outranking Methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Government of Canada, S.C. Average Expected Useful Life of New Municipally Owned Social and Affordable Housing Assets, by Urban and Rural, and Population Size, Infrastructure Canada. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=4610000801 (accessed on 17 June 2022).
- Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; ISBN 0-470-87093-1. [Google Scholar]
- Bakhoum, E.S.; Brown, D.C. An Automated Decision Support System for Sustainable Selection of Structural Materials. Int. J. Sustain. Eng. 2015, 8, 80–92. [Google Scholar] [CrossRef]
- Dara, C.; Hachem-Vermette, C.; Assefa, G. Life Cycle Assessment and Life Cycle Costing of Container-Based Single-Family Housing in Canada: A Case Study. Build. Environ. 2019, 163, 106332. [Google Scholar] [CrossRef]
- Awasthi, A.; Govindan, K.; Gold, S. Multi-Tier Sustainable Global Supplier Selection Using a Fuzzy AHP-VIKOR Based Approach. Int. J. Prod. Econ. 2018, 195, 106–117. [Google Scholar] [CrossRef] [Green Version]
Main Criteria | Sub-Criteria/Evaluation Criteria | Type | Reference(s) |
---|---|---|---|
Technical | Durability (life expectancy) | Qualitative | [54,55,56,57,58,59,60] |
Constructability (ease of construction) | Qualitative | [54,58,60,61,62,63] | |
Maintainability (ease of maintenance) | Qualitative | [54,58,59,60,62] | |
Resistance to water and weather | Qualitative | [60,64] | |
Economic | Material cost | Quantitative | [54,55,56,62,65,66] |
Construction cost | Quantitative | [56,58,61,67,68] | |
Maintenance cost | Qualitative | [54,56,58,60,61,64,67,69,70] | |
End of life cost | Quantitative | [56,58] | |
Social | Job opportunity creation | Qualitative | [63,67,68,69] |
Fire resistance and safety | Qualitative | [54,58,60,62,64,71] | |
Skilled labor availability | Qualitative | [54,58,62] | |
Compatibility with local heritage | Qualitative | [55,56,60] | |
Environmental | Greenhouse gas emission | Quantitative | [23,55,56,62,64,70,72] |
Impact during manufacturing | Qualitative | [58,64] | |
Impact during construction | Qualitative | [54,58,60,62,64,68,70] | |
Recycle and reuse potential | Qualitative | [54,58,59,64,70] |
Importance Index | Definition of Importance Index |
---|---|
1 | Equally Important Preferred |
Equally to Moderately Important Preferred | |
3 | Moderately Important Preferred |
Moderately to Strongly Important Preferred | |
5 | Strongly Important Preferred |
Strongly to Very Strongly Important Preferred | |
7 | Very Strongly Important Preferred |
Very Strongly to Extremely Important Preferred | |
9 | Extremely Important Preferred |
Importance Index | Crisp Number | Fuzzy Number (l, m, n, p) |
---|---|---|
Extremely more important | 9 | 7, 8, 9, 10 |
Very strongly more important | 7 | 5, 6, 7, 8 |
Strongly more important | 5 | 3, 4, 5, 6 |
Moderately more important | 3 | 1, 2, 3, 4 |
Equal Importance | 1 | 1, 1, 1, 1 |
Moderately less important | 1/3 | 1/4, 1/3, 1/2, 1 |
Strongly less important | 1/5 | 1/6, 1/5, 1/4, 1/3 |
Very strongly less important | 1/7 | 1/8, 1/7, 1/6, 1/5 |
Extremely less important | 1/9 | 1/10, 1/9, 1/8, 1/7 |
Criteria | Alternative 1 | Alternative 2 | … | Alternative n |
---|---|---|---|---|
Criteria 1 | High | High | … | Medium |
Criteria 2 | Low | Very Low | … | Low |
Criteria 3 | Medium | Medium | … | Medium |
: | … | … | … | |
Criteria n | Very High | High | … | Very Low |
Number | Linguistic Variable | Trapezoidal Fuzzy Number | |||
---|---|---|---|---|---|
a, | b, | c, | d | ||
1 | Very Low | 1, | 1, | 1, | 1 |
3 | Low | 1, | 2, | 3, | 4 |
5 | Medium | 3, | 4, | 5, | 6 |
7 | High | 5, | 6, | 7, | 8 |
9 | Very High | 7, | 8, | 9, | 10 |
Importance Factor | Criteria 1 | Criteria 2 | … | Criteria m | |
---|---|---|---|---|---|
DM 1 | X1 | S1 | T1 | … | Z1 |
DM 2 | X2 | S2 | T2 | … | Z2 |
: | … | … | … | ||
DM n | Xn | Sn | Tn | … | Zn |
Parameters | Details |
---|---|
Project location | Calgary, Alberta |
Building type | Residential |
Building life expectancy | 80 years |
Building height | 26.1 metre (m) |
Number of floors | 8 |
Gross floor area | 798.66 m2 |
Structural components considered | Columns Beams |
Options of structural materials | Reinforced concrete Structural steel Reinforced masonry Timber |
Team | Role in the Case Study | Profession/Position | Company/Institution | Work Experience (Years) |
---|---|---|---|---|
Team 1 | Owner | Chief engineer | RJC Engineers | 25–30 |
Design team | Principal architect | Stantec | 25–30 | |
Constructor | Project manager | Clark Builders | 20–25 | |
Team 2 | Owner | Project coordinator | University of Alberta | 20–25 |
Design team | Chief structural engineer | GEC Architecture | 30–35 | |
Constructor | Principal architect | Clark Builders | 30–35 | |
Team 3 | Owner | Academic researcher | University of Alberta | 30–35 |
Design team | Prime consultant | Chandos Construction | 25–30 | |
Constructor | Project coordinator | Alberta Masonry Council, Wood Works | 20–25 |
Alternatives | Material Cost ($/sqm) | Construction Cost ($/sqm) | End of Life Cost ($/sqm) | Greenhouse Gas Emission (kg CO2 Equivalent/sqm) |
---|---|---|---|---|
Reinforced Concrete | 550 | 152 | 50 | 115 |
Structural Steel | 480 | 115 | 95 | 110 |
Timber | 300 | 85 | 80 | 25 |
Reinforced Masonry | 380 | 180 | 65 | 95 |
Alternatives | Material Cost ($/sqm) | Construction Cost ($/sqm) | End of Life Cost ($/sqm) | Greenhouse Gas Emission (kg CO2 Equivalent/sqm) |
---|---|---|---|---|
Reinforced Concrete | 0.3216 | 0.2857 | 0.1724 | 0.3333 |
Structural Steel | 0.2807 | 0.2161 | 0.3275 | 0.3188 |
Timber | 0.1754 | 0.1597 | 0.2758 | 0.0724 |
Reinforced Masonry | 0.2222 | 0.3383 | 0.2241 | 0.2753 |
Alternatives | Material Cost ($/sqm) | Construction Cost ($/sqm) | End of Life Cost ($/sqm) | Greenhouse Gas Emission (kg CO2 Equivalent/sqm) |
---|---|---|---|---|
Shannon diversity index | 1.36 | 1.35 | 1.36 | 1.28 |
Shannon’s equitability index | 0.98 | 0.97 | 0.98 | 0.92 |
Linguistic Term | Conversion Scale in the Normalized Matrix |
---|---|
Very High | >0.2811 |
High | 0.2289 to 0.2811 |
Medium | 0.1768 to 0.2289 |
Low | 0.1246 to 0.1768 |
Very Low | <0.1246 |
Alternatives | Material Cost ($/sqm) | Construction Cost ($/sqm) | End of Life Cost ($/sqm) | Greenhouse Gas Emission (kg CO2 Equivalent/sqm) |
---|---|---|---|---|
Reinforced Concrete | Very High | Very High | Low | Very High |
Structural Steel | High | Medium | Very High | Very High |
Timber | Low | Low | High | Very Low |
Reinforced Masonry | Medium | Very High | Medium | High |
Sustainability Pillars | Evaluation Criteria | Code | Influence | Reference(s) |
---|---|---|---|---|
Technical | Durability | TEC1 | Beneficial criteria | [54,55,56,57,58,59,60] |
Constructability | TEC2 | Beneficial criteria | [54,58,60,61,62] | |
Maintainability | TEC3 | Beneficial criteria | [54,58,59,60,62] | |
Resistance to Water and Weather | TEC4 | Beneficial criteria | [60,64] | |
Economical | Material Cost | ECO1 | Cost criteria | [54,55,56,62,65,66] |
Construction Cost | ECO2 | Cost criteria | [56,58,61,67,68] | |
Maintenance Cost | ECO3 | Cost criteria | [54,56,58,60,61,64,67,69,70] | |
End of Life Cost | ECO4 | Beneficial criteria | [56,58] | |
Social | Job Opportunity Creation | SOC1 | Beneficial criteria | [67,68,69] |
Fire Resistance and Safety | SOC2 | Beneficial criteria | [54,58,60,62,64,71] | |
Skilled Labor Availability | SOC3 | Beneficial criteria | [54,58,62] | |
Compatibility with Heritage | SOC4 | Beneficial criteria | [55,56,60] | |
Environmental | Greenhouse Gas Emission | ENV1 | Cost criteria | [23,55,56,62,64,70,72] |
Impact During Manufacturing | ENV2 | Cost criteria | [58,64] | |
Impact During Construction | ENV3 | Cost criteria | [54,58,60,62,64,68,70] | |
Recycle and Reuse Potential | ENV4 | Beneficial criteria | [54,58,59,64,70] |
Owner 1 | Owner 2 | Owner 3 | Constructor 1 | Constructor 2 | Constructor 3 | Designer 1 | Designer 2 | Designer 3 | |
---|---|---|---|---|---|---|---|---|---|
Durability | 0.06 | 0.06 | 0.07 | 0.09 | 0.12 | 0.05 | 0.07 | 0.05 | 0.09 |
Constructability | 0.04 | 0.07 | 0.05 | 0.11 | 0.02 | 0.06 | 0.08 | 0.11 | 0.07 |
Maintainability | 0.05 | 0.06 | 0.06 | 0.07 | 0.10 | 0.05 | 0.05 | 0.05 | 0.04 |
Resistance to Water and Weather | 0.06 | 0.09 | 0.03 | 0.06 | 0.03 | 0.03 | 0.07 | 0.06 | 0.04 |
Material Cost | 0.13 | 0.04 | 0.11 | 0.12 | 0.01 | 0.06 | 0.11 | 0.14 | 0.08 |
Construction Cost | 0.18 | 0.07 | 0.06 | 0.14 | 0.01 | 0.05 | 0.12 | 0.14 | 0.08 |
Maintenance Cost | 0.06 | 0.09 | 0.04 | 0.06 | 0.10 | 0.04 | 0.06 | 0.07 | 0.06 |
End of Life Cost | 0.05 | 0.05 | 0.03 | 0.03 | 0.11 | 0.03 | 0.04 | 0.02 | 0.03 |
Job Opportunity Creation | 0.04 | 0.06 | 0.04 | 0.02 | 0.04 | 0.04 | 0.04 | 0.02 | 0.03 |
Fire Resistance and Safety | 0.10 | 0.09 | 0.04 | 0.06 | 0.07 | 0.03 | 0.08 | 0.09 | 0.03 |
Skilled Labor Availability | 0.04 | 0.08 | 0.04 | 0.09 | 0.01 | 0.03 | 0.04 | 0.10 | 0.03 |
Compatibility with Heritage | 0.03 | 0.07 | 0.03 | 0.02 | 0.09 | 0.02 | 0.03 | 0.04 | 0.02 |
Greenhouse Gas Emission | 0.05 | 0.05 | 0.17 | 0.03 | 0.09 | 0.12 | 0.07 | 0.03 | 0.18 |
Impact During Manufacturing | 0.04 | 0.04 | 0.10 | 0.03 | 0.08 | 0.12 | 0.05 | 0.03 | 0.07 |
Impact During Construction | 0.04 | 0.05 | 0.08 | 0.04 | 0.04 | 0.14 | 0.05 | 0.03 | 0.07 |
Recycle and Reuse Potential | 0.04 | 0.05 | 0.06 | 0.04 | 0.08 | 0.13 | 0.03 | 0.02 | 0.07 |
Alternatives | RC | SS | Timber | RM | |
---|---|---|---|---|---|
Criteria | |||||
Technical | |||||
Durability | Very High | High | High | Very High | |
Constructability | Medium | High | Very High | Medium | |
Maintainability | Very High | Medium | High | High | |
Resistance to Water and Weather | High | High | High | High | |
Economic | |||||
Material Cost | Very High | High | Low | Medium | |
Construction Cost | Very High | Medium | Low | Very High | |
Maintenance Cost | Very Low | Medium | Medium | Very Low | |
End of Life Cost | Low | Very High | High | Medium | |
Social | |||||
Job Opportunity Creation | High | High | Very High | High | |
Fire Resistance and Safety | Very High | Medium | Medium | Very High | |
Skilled Labor Availability | Medium | Medium | High | Medium | |
Compatibility with Heritage | Low | Low | High | Very High | |
Environmental | |||||
Greenhouse Gas Emission | Very High | Very High | Very Low | High | |
Impact During Manufacturing | High | High | Very Low | Medium | |
Impact During Construction | High | Medium | Low | High | |
Recycle and Reuse Potential | Very Low | High | Very High | Medium |
Alternative | Criteria | TEC1 | TEC2 | TEC3 | TEC4 | ECO1 | ECO2 | ECO3 | ECO4 | SOC1 | SOC2 | SOC3 | SOC4 | ENV1 | ENV2 | ENV3 | ENV4 | SUM (di*) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reinforced Concrete | 0.00 | 0.30 | 0.00 | 0.00 | 0.14 | 0.09 | 0.03 | 0.19 | 0.11 | 0.00 | 0.10 | 0.15 | 0.02 | 0.06 | 0.18 | 0.41 | 1.76 | |
Structural Steel | 0.18 | 0.17 | 0.22 | 0.04 | 0.13 | 0.07 | 0.00 | 0.00 | 0.13 | 0.19 | 0.07 | 0.14 | 0.02 | 0.00 | 0.00 | 0.17 | 1.52 | |
Timber | 0.23 | 0.00 | 0.13 | 0.03 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.18 | 0.00 | 0.04 | 0.06 | 0.10 | 0.08 | 0.00 | 0.94 | |
Reinforced Masonry | 0.10 | 0.32 | 0.14 | 0.02 | 0.11 | 0.09 | 0.03 | 0.15 | 0.10 | 0.00 | 0.10 | 0.00 | 0.00 | 0.04 | 0.13 | 0.29 | 1.62 |
Alternative | Criteria | TEC1 | TEC2 | TEC3 | TEC4 | ECO1 | ECO2 | ECO3 | ECO4 | SOC1 | SOC2 | SOC3 | SOC4 | ENV1 | ENV2 | ENV3 | ENV4 | SUM (di−) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reinforced Concrete | 0.23 | 0.02 | 0.22 | 0.04 | 0.14 | 0.09 | 0.00 | 0.00 | 0.02 | 0.19 | 0.00 | 0.00 | 0.02 | 0.05 | 0.10 | 0.00 | 1.11 | |
Structural Steel | 0.08 | 0.15 | 0.00 | 0.00 | 0.13 | 0.07 | 0.03 | 0.19 | 0.00 | 0.00 | 0.03 | 0.01 | 0.02 | 0.10 | 0.08 | 0.24 | 1.12 | |
Timber | 0.00 | 0.32 | 0.11 | 0.01 | 0.00 | 0.00 | 0.03 | 0.10 | 0.13 | 0.01 | 0.10 | 0.11 | 0.06 | 0.00 | 0.00 | 0.41 | 1.39 | |
Reinforced Masonry | 0.16 | 0.00 | 0.08 | 0.02 | 0.11 | 0.09 | 0.00 | 0.04 | 0.05 | 0.19 | 0.00 | 0.15 | 0.00 | 0.06 | 0.06 | 0.12 | 1.12 |
Alternatives | di* | di− | CC | Rank |
---|---|---|---|---|
Reinforced Concrete | 1.76 | 1.11 | 0.38629 | 4 |
Structural Steel | 1.52 | 1.12 | 0.425182 | 2 |
Timber | 0.94 | 1.39 | 0.59663 | 1 |
Reinforced Masonry | 1.62 | 1.12 | 0.408299 | 3 |
CC (Owner) | CC (Constructor) | CC (Designer) | Weighted CC | Rank | |
---|---|---|---|---|---|
Importance of Opinion | 0.4 | 0.3 | 0.3 | ||
Alternatives | |||||
Reinforced Concrete | 0.3863 | 0.3888 | 0.3139 | 0.3653 | 4 |
Structural Steel | 0.4252 | 0.4873 | 0.4756 | 0.4590 | 2 |
Timber | 0.5966 | 0.6365 | 0.7026 | 0.6404 | 1 |
Reinforced Masonry | 0.4083 | 0.3966 | 0.3209 | 0.3786 | 3 |
Team 1 | Team 2 | Team 3 | ||||
---|---|---|---|---|---|---|
Alternatives | Weighted CC | Rank | Weighted CC | Rank | Weighted CC | Rank |
Reinforced Concrete | 0.5753 | 1 | 0.7572 | 1 | 0.3653 | 4 |
Structural Steel | 0.5502 | 2 | 0.5441 | 2 | 0.4590 | 2 |
Timber | 0.3915 | 4 | 0.1892 | 4 | 0.6404 | 1 |
Reinforced Masonry | 0.4327 | 3 | 0.3884 | 3 | 0.3786 | 3 |
Criteria | TEC1 | TEC2 | TEC3 | TEC4 | ECO1 | ECO2 | ECO3 | ECO4 | SOC1 | SOC2 | SOC3 | SOC4 | ENV1 | ENV2 | ENV3 | ENV4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.67 | 0.74 | 0.53 | 0.75 | 0.09 | 0.11 | 0.18 | 0.74 | 0.69 | 0.60 | 0.65 | 0.59 | 0.13 | 0.11 | 0.09 | 0.70 | |
0.54 | 0.37 | 0.37 | 0.49 | 0.40 | 0.43 | 0.44 | 0.23 | 0.42 | 0.29 | 0.45 | 0.21 | 0.47 | 0.56 | 0.48 | 0.22 |
Criteria | TEC1 | TEC2 | TEC3 | TEC4 | ECO1 | ECO2 | ECO3 | ECO4 | SOC1 | SOC2 | SOC3 | SOC4 | ENV1 | ENV2 | ENV3 | ENV4 | Si | Ri | Qi | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reinforced Concrete | 0.0000 | 0.0363 | 0.0000 | 0.0000 | 0.1054 | 0.0642 | 0.0000 | 0.0278 | 0.0196 | 0.0000 | 0.0356 | 0.0256 | 0.1681 | 0.1000 | 0.0806 | 0.0589 | 0.7222 | 0.1681 | 1.0000 | 4 |
Structural Steel | 0.0696 | 0.0000 | 0.0631 | 0.0000 | 0.0703 | 0.0214 | 0.0203 | 0.0000 | 0.0392 | 0.0000 | 0.0356 | 0.0256 | 0.1681 | 0.1000 | 0.0403 | 0.0147 | 0.6681 | 0.1681 | 0.9485 | 3 |
Timber | 0.0696 | 0.0000 | 0.0315 | 0.0000 | 0.0000 | 0.0000 | 0.0405 | 0.0093 | 0.0000 | 0.0382 | 0.0000 | 0.0085 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1976 | 0.0696 | 0.0000 | 1 |
Reinforced Masonry | 0.0000 | 0.0545 | 0.0315 | 0.0000 | 0.0351 | 0.0642 | 0.0000 | 0.0185 | 0.0196 | 0.0000 | 0.0356 | 0.0000 | 0.1261 | 0.0667 | 0.0806 | 0.0295 | 0.5619 | 0.1261 | 0.6340 | 2 |
Qi (Owner) | Qi (Constructor) | Qi (Designer) | Weighted Qi | Rank | |
---|---|---|---|---|---|
Importance of Opinion | 0.4 | 0.3 | 0.3 | ||
Alternatives | |||||
Reinforced Concrete | 1.000 | 1.000 | 1.000 | 1.000 | 4 |
Structural Steel | 0.948 | 0.699 | 0.854 | 0.845 | 3 |
Timber | 0.000 | 0.000 | 0.000 | 0.000 | 1 |
Reinforced Masonry | 0.634 | 0.663 | 0.796 | 0.692 | 2 |
Team 1 | Team 2 | Team 3 | ||||
---|---|---|---|---|---|---|
Alternatives | Weighted Qi | Rank | Weighted Qi | Rank | Weighted Qi | Rank |
Reinforced Concrete | 0.027 | 1 | 0.306 | 2 | 1.000 | 4 |
Structural Steel | 0.342 | 2 | 0.199 | 1 | 0.845 | 3 |
Timber | 0.997 | 4 | 0.850 | 4 | 0.000 | 1 |
Reinforced Masonry | 0.946 | 3 | 0.580 | 3 | 0.692 | 2 |
Sustainability Pillars | Criteria | Code | Criteria Weight | |||
---|---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |||
Technical | Durability (life expectancy) | TEC1 | 0.10 | 0.05 | 0.05 | 0.05 |
Constructability | TEC2 | 0.10 | 0.05 | 0.05 | 0.05 | |
Maintainability | TEC3 | 0.10 | 0.05 | 0.05 | 0.05 | |
Resistance to Water and Weather | TEC4 | 0.10 | 0.05 | 0.05 | 0.05 | |
Economical | Material Cost | ECO1 | 0.05 | 0.10 | 0.05 | 0.05 |
Construction Cost | ECO2 | 0.05 | 0.10 | 0.05 | 0.05 | |
Maintenance Cost | ECO3 | 0.05 | 0.10 | 0.05 | 0.05 | |
End of Life Cost | ECO4 | 0.05 | 0.10 | 0.05 | 0.05 | |
Social | Job Opportunity Creation | SOC1 | 0.05 | 0.05 | 0.10 | 0.05 |
Fire Resistance and Safety | SOC2 | 0.05 | 0.05 | 0.10 | 0.05 | |
Skilled Labor Availability | SOC3 | 0.05 | 0.05 | 0.10 | 0.05 | |
Compatibility with Heritage | SOC4 | 0.05 | 0.05 | 0.10 | 0.05 | |
Environmental | Green House Gas Emission | ENV1 | 0.05 | 0.05 | 0.05 | 0.10 |
Impact During Manufacturing | ENV2 | 0.05 | 0.05 | 0.05 | 0.10 | |
Impact During Construction | ENV3 | 0.05 | 0.05 | 0.05 | 0.10 | |
Recycle and Reuse Potential | ENV4 | 0.05 | 0.05 | 0.05 | 0.10 |
CCi | Scenario 1 | Scenario 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Owner | Constructor | Designer | Overall | Rank | Owner | Constructor | Designer | Overall | Rank | |
CCrc | 0.367 | 0.493 | 0.358 | 0.402 | 2 | 0.287 | 0.393 | 0.337 | 0.334 | 4 |
CCss | 0.352 | 0.394 | 0.438 | 0.390 | 3 | 0.451 | 0.471 | 0.478 | 0.465 | 2 |
CCt | 0.621 | 0.533 | 0.685 | 0.614 | 1 | 0.625 | 0.534 | 0.616 | 0.595 | 1 |
CCrm | 0.395 | 0.394 | 0.333 | 0.376 | 4 | 0.409 | 0.441 | 0.394 | 0.414 | 3 |
Criteria | Scenario 3 | Scenario 4 | ||||||||
Owner | Constructor | Designer | Overall | Rank | Owner | Constructor | Designer | Overall | Rank | |
CCrc | 0.308 | 0.398 | 0.339 | 0.345 | 4 | 0.269 | 0.432 | 0.318 | 0.332 | 4 |
CCss | 0.308 | 0.357 | 0.390 | 0.347 | 3 | 0.404 | 0.418 | 0.425 | 0.415 | 2 |
CCt | 0.638 | 0.610 | 0.678 | 0.642 | 1 | 0.676 | 0.553 | 0.655 | 0.633 | 1 |
CCrm | 0.479 | 0.477 | 0.434 | 0.465 | 2 | 0.390 | 0.416 | 0.333 | 0.381 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam Bhuiyan, M.M.; Hammad, A. A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction. Sustainability 2023, 15, 3128. https://doi.org/10.3390/su15043128
Alam Bhuiyan MM, Hammad A. A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction. Sustainability. 2023; 15(4):3128. https://doi.org/10.3390/su15043128
Chicago/Turabian StyleAlam Bhuiyan, Mohammad Masfiqul, and Ahmed Hammad. 2023. "A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction" Sustainability 15, no. 4: 3128. https://doi.org/10.3390/su15043128
APA StyleAlam Bhuiyan, M. M., & Hammad, A. (2023). A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction. Sustainability, 15(4), 3128. https://doi.org/10.3390/su15043128