EEG in Neurorehabilitation: A Bibliometric Analysis and Content Review
"> Figure 1
<p>According to the annual scientific production (top) and source growth (bottom), there is rising scientific interest in using EEG in neurorehabilitation.</p> "> Figure 2
<p>The figure shows the scientific production of the most influential authors.</p> "> Figure 3
<p>We noted important changes in the scientific trends with time, as recorded from the words’ growth (top).</p> "> Figure 4
<p>Significant international collaborations among institutions and countries on the use of EEG in neurorehabilitation.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Eligibility
2.3. Data Collection
2.4. Data Analysis
2.5. Data Synthesis and Quality Assessment
3. Results
3.1. Literature Search
3.2. Top-20 Most-Cited Documents
3.3. Top-20 Most-Productive Authors
3.4. Top-20 Journals
3.5. Top-20 Most-Common Author’s Keywords and Word Trends
3.6. Collaboration Analysis
3.7. Coword Analyses
4. Review Based on the Top-20 Most Cited Articles
5. Discussion
5.1. Overview of Our Findings
5.2. Bibliometrics
5.3. Temporal Trends
5.4. Journal Preferences
5.5. Geographical Distribution
5.6. Document Type
5.7. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Berthier, M.L.; Pulvermüller, F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat. Rev. Neurol. 2011, 7, 86–97. [Google Scholar] [CrossRef]
- Maier, M.; Ballester, B.R.; Verschure, P.F.M.J. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front. Syst. Neurosci. 2019, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Daly, J.J.; Wolpaw, J.R. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- Tong, S.; Thakor, N.V. (Eds.) Quantitative EEG Analysis Methods and Clinical Applications; Artech House Series: Bedford, MA, USA, 2009. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Health Insurance Portability and Accountability Act of 1996 (HIPAA)|CDC 2019. Available online: https://www.cdc.gov/phlp/publications/topic/hipaa.html (accessed on 10 September 2021).
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. J. Vis. Exp. JoVE 2019, 152, e58494. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Barrett, A.M.; Oh-Park, M.; Chen, P.; Ifejika, N.L. Neurorehabilitation. Neurol. Clin Pract 2013, 3, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Oravec, C.S.; Frey, C.D.; Berwick, B.W.; Vilella, L.; Aschenbrenner, C.A.; Wolfe, S.Q.; Fargen, K.M. Predictors of Citations in Neurosurgical Research. World Neurosurg. 2019, 130, e82–e89. [Google Scholar] [CrossRef]
- Lira, R.P.C.; Vieira, R.M.C.; Gonçalves, F.A.; Ferreira, M.C.A.; Maziero, D.; Passos, T.H.M.; Arieta, C.E.L. Influence of English language in the number of citations of articles published in Brazilian journals of ophthalmology. Arq. Bras. Oftalmol. 2013, 76, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Sweileh, W.M.; AbuTaha, A.S.; Sawalha, A.F.; Al-Khalil, S.; Al-Jabi, S.W.; Zyoud, S.H. Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug-resistant tuberculosis (2006–2015). Multidiscip. Respir. Med. 2017, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, Ö.; Msc, F.L.B.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis, A.; et al. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 2013, 74, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Naseer, N.; Hong, K.-S. fNIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural. Syst. Rehabil. Eng. 2017, 25, 171–182. [Google Scholar] [CrossRef]
- Chaudhary, U.; Birbaumer, N.; Ramos-Murguialday, A. Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 2016, 12, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Kos, D.; Kerckhofs, E.; Nagels, G.; D’hooghe, M.B.; Ilsbroukx, S. Origin of fatigue in multiple sclerosis: Review of the literature. Neurorehabil. Neural Repair 2008, 22, 91–100. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Fabbri-Destro, M.; Cattaneo, L. Mirror neurons and their clinical relevance. Nat. Clin. Pract. Neurol. 2009, 5, 24–34. [Google Scholar] [CrossRef]
- Donati, A.R.C.; Shokur, S.; Morya, E.; Campos, D.S.F.; Moioli, R.C.; Gitti, C.M.; Augusto, P.B.; Tripodi, S.; Pires, C.G.; Pereira, G.A.; et al. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Sci. Rep. 2016, 6, 30383. [Google Scholar] [CrossRef] [Green Version]
- Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Wagner, J.; Solis-Escalante, T.; Grieshofer, P.; Neuper, C.; Müller-Putz, G.; Scherer, R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage 2012, 63, 1203–1211. [Google Scholar] [CrossRef]
- Dobkin, B.H. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 2007, 579, 637–642. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Nicolelis, M.A.L. Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 2017, 97, 767–837. [Google Scholar] [CrossRef]
- Soekadar, S.R.; Birbaumer, N.; Slutzky, M.W.; Cohen, L.G. Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 2015, 83, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Lew, E. Detection of self-paced reaching movement intention from EEG signals. Front Neuroengineering 2012, 5, 13. [Google Scholar] [CrossRef]
- Elbert, T.; Rockstroh, B. Reorganization of human cerebral cortex: The range of changes following use and injury. Neurosci Rev, J. Bringing Neurobiol. Neurol. Psychiatry 2004, 10, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Obrig, H. NIRS in clinical neurology—A ‘promising’ tool? NeuroImage 2014, 85, 535–546. [Google Scholar] [CrossRef]
- Ang, K.K.; Guan, C. Brain-computer interface for neurorehabilitation of upper limb after stroke. Proc. IEEE 2015, 103, 944–953. [Google Scholar] [CrossRef]
- Altenmüller, E.; Marco-Pallares, J.; Münte, T.F.; Schneider, S. Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N. Y. Acad. Sci. 2009, 1169, 395–405. [Google Scholar] [CrossRef]
- Ramos-Murguialday, A.; Schürholz, M.; Caggiano, V.; Wildgruber, M.; Caria, A.; Hammer, E.M.; Halder, S.; Birbaumer, N. Proprioceptive Feedback and Brain Computer Interface (BCI) Based Neuroprostheses. PLoS ONE 2012, 7, e47048. [Google Scholar] [CrossRef]
- Moura, L.K.B.; De Mesquita, R.F.; Mobin, M.; Matos, F.T.C.; Monte, T.L.; Lago, E.C.; Falcão, C.A.M.; Ferraz, M.D.A.L.; Santos, T.C.; Sousa, L.R.M. Uses of Bibliometric Techniques in Public Health Research. Iran J. Public Health 2017, 46, 1435–1436. [Google Scholar]
- Benke, K.; Benke, G. Artificial Intelligence and Big Data in Public Health. Int. J. Environ. Res. Public Health 2018, 15, E2796. [Google Scholar] [CrossRef] [Green Version]
- Ring, J.; Castanov, V.; McLaren, C.; Hajjar, A.E.J.; Jeschke, M.G. Scientific Impact and Clinical Influence: Identifying Landmark Studies in Burns. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2020, 41, 1240–1252. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. J. Neural. Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Shukla, N.; Merigó, J.M.; Lammers, T.; Miranda, L. Half a century of computer methods and programs in biomedicine: A bibliometric analysis from 1970 to 2017. Comput. Methods Programs Biomed 2020, 183, 105075. [Google Scholar] [CrossRef]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–254. [Google Scholar] [CrossRef]
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Main Information about Data | |
Timespan | 1964:2021 |
Sources (journals, books, etc.) | 420 |
Documents | 874 |
Average years from publication | 5.03 |
Average citations per documents | 21.63 |
Average citations per year per doc | 3.13 |
References | 41104 |
Document Types | |
article | 546 |
book | 1 |
book chapter | 17 |
conference paper | 145 |
conference review | 4 |
editorial | 18 |
erratum | 1 |
letter | 11 |
note | 5 |
retracted | 1 |
review | 119 |
short survey | 6 |
Document Contents | |
Keywords Plus | 6146 |
Author’s Keywords | 1946 |
AUTHORS | |
Authors | 3589 |
Author appearances | 4623 |
Authors of single-authored documents | 40 |
Authors of multi-authored documents | 3549 |
Authors Collaboration | |
Single-authored documents | 45 |
Documents per author | 0.244 |
Authors per document | 4.11 |
Coauthors per documents | 5.29 |
Collaboration index | 4.28 |
Paper | Year | Journal | Total Citations | Study Design | Clinical Entity | Main Topic | Use |
---|---|---|---|---|---|---|---|
Nicolas-Alfonso L and Gomez-Gill J [3] | 2012 | Sensors | 997 | Review | Multiple | BCI | Rehabilitation |
Daly J and Wolpaw J [4] | 2008 | Lancet Neurol | 708 | Review | Multiple | BCI | Rehabilitation |
Ramos-Murguialday A et al. [15] | 2013 | Ann Neurol | 521 | Research | Multiple | BCI | Motion |
Naseer N and Hong K [16] | 2015 | Front Human Neurosci | 483 | Review | Multiple | BCI | Motion |
Young A and Ferris D [17] | 2017 | IEEE Trans Neural Syst Rehabil Eng | 305 | Review | Multiple | Exoskeleton | Motion |
Chaudhary U et al. [18] | 2016 | Nat Rev Neurol | 293 | Review | Multiple | BCI | Communication |
Kos D et al. [19] | 2008 | Neurorehabil Neural Repair | 274 | Review | MS | MS | Rehabilitation |
Rizzolatti G et al. [20] | 2009 | Nat. Clin. Pact. Neurol | 268 | Review | Multiple | Mirror neurons | Rehabilitation |
Donati A et al. [21] | 2016 | Sci Rep | 197 | Research | SCI | BCI | Rehabilitation |
Kevric J and Subasi A [22] | 2017 | Biomed Signal Process | 194 | Research | Multiple | BCI | Rehabilitation |
Wagner J [23] | 2012 | Neuroimage | 173 | Research | Multiple | Robotics | Rehabilitation |
Dobkin B [24] | 2007 | J Physiol | 165 | Conference | ALS, LiS | BCI | Rehabilitation |
Lebedev M and Nicolelis M [25] | 2017 | Physiol Rev | 162 | Review | Multiple | BCI | Rehabilitation |
Soekadar S et al. [26] | 2015 | Neurobiol Dis | 156 | Review | Stroke | BCI | Rehabilitation |
Lew E et al. [27] | 2012 | Front Neuroengineering | 153 | Research | Stroke | EEG decomposition | Rehabilitation |
Elbert T and Rockstroh B [28] | 2004 | Neuroscientist | 152 | Review | TBI | Plasticity | Rehabilitation |
Obrig H [29] | 2014 | Neuroimage | 151 | Review | Multiple | NIRS | Clinical |
Ang K et al. [30] | 2010 | Annu Int Conf IEEE Eng Med Biol Soc EMBC | 148 | Review | Stroke | BCI | Rehabilitation |
Altenmuller E et al. [31] | 2009 | Ann New York Acad Sci | 146 | Research | Stroke | Plasticity | Rehabilitation |
Ramos-Murguialday A et al. [32] | 2012 | PLOS One | 138 | Research | Stroke | BCI | Rehabilitation |
Country | Articles | Frequency | SCP | MCP | MCP Ratio |
---|---|---|---|---|---|
USA | 96 | 0.14 | 76 | 20 | 0.21 |
Italy | 91 | 0.136 | 73 | 18 | 0.19 |
Germany | 66 | 0.098 | 38 | 28 | 0.42 |
China | 49 | 0.073 | 41 | 8 | 0.16 |
United Kingdom | 40 | 0.059 | 24 | 16 | 0.4 |
Japan | 34 | 0.050 | 32 | 2 | 0.06 |
Korea | 33 | 0.049 | 28 | 5 | 0.15 |
Spain | 28 | 0.041 | 11 | 17 | 0.60 |
Switzerland | 22 | 0.033 | 14 | 8 | 0.36 |
India | 20 | 0.03 | 15 | 5 | 0.25 |
Canada | 17 | 0.025 | 9 | 8 | 0.47 |
Denmark | 16 | 0.023 | 4 | 12 | 0.75 |
France | 15 | 0.022 | 7 | 8 | 0.53 |
Austria | 13 | 0.019 | 9 | 4 | 0.31 |
Poland | 13 | 0.019 | 12 | 1 | 0.078 |
Australia | 11 | 0.016 | 6 | 5 | 0.45 |
Brazil | 10 | 0.014 | 4 | 6 | 0.6 |
Belgium | 9 | 0.013 | 5 | 4 | 0.44 |
Mexico | 9 | 0.013 | 9 | 0 | 0 |
Singapore | 8 | 0.011 | 3 | 5 | 0.62 |
Rank | Authors | Citations | Sources | Articles | Keywords | Occurrences |
---|---|---|---|---|---|---|
Name | Name | Words | ||||
1 | Pfurtscheller G. | 975 | IEEE Transactions on Neural Systems and Rehabilitation Engineering | 27 | neurorehabilitation | 147 |
2 | Birbaumer N. | 875 | Frontiers in Human Neuroscience | 23 | EEG | 115 |
3 | Wolpaw J.R. | 501 | Frontiers in Neuroscience | 22 | stroke | 105 |
4 | Cohen L.G. | 450 | Journal of Neural Engineering | 20 | rehabilitation | 78 |
5 | Neuper C. | 438 | Journal of Neuroengineering and Rehabilitation | 19 | brain–computer interface | 74 |
6 | Mcfarland D.J. | 329 | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS | 18 | motor imagery | 64 |
7 | Guan C. | 326 | Frontiers in Neurology | 16 | electroencephalography | 53 |
8 | Farina D. | 286 | Neuroscience and Behavioral Physiology | 14 | BCI | 37 |
9 | Hallett M. | 284 | Neuroimage | 11 | brain–computer interface | 30 |
10 | Ang K.K. | 276 | Neurorehabilitation and Neural Repair | 11 | virtual reality | 28 |
11 | Blankertz B. | 275 | Clinical Neurophysiology | 10 | disorders of consciousness | 25 |
12 | Gharabaghi A. | 266 | IFMBE Proceedings | 10 | electroencephalography (EEG) | 25 |
13 | Scherer R. | 259 | Neurorehabilitation | 10 | electroencephalogram | 24 |
14 | Makeig S. | 237 | Restorative Neurology and Neuroscience | 10 | neurofeedback | 23 |
15 | Nitsche M.A. | 219 | Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 9 | neuroplasticity | 23 |
16 | Ramos-Murguialday A. | 218 | Sensors (Switzerland) | 8 | transcranial magnetic stimulation | 22 |
17 | Paulus W. | 215 | Annals of Physical and Rehabilitation Medicine | 7 | brain–computer interface (BCI) | 21 |
18 | Pascual Leone A. | 205 | Frontiers in Systems Neuroscience | 7 | brain–computer interface | 19 |
19 | Schalk G. | 191 | Neural Plasticity | 7 | brain–machine interface | 18 |
20 | Laureys S. | 189 | Biomedical Signal Processing and Control | 6 | minimally conscious state | 17 |
Node | Cluster | Betweenness | Closeness | Page Rank |
---|---|---|---|---|
brain–computer interface (BCI) | 1 | 2.19 | 0.01 | 0.01 |
electroencephalography (EEG) | 1 | 2.74 | 0.01 | 0.01 |
motor imagery (mi) | 1 | 0.00 | 0.01 | 0.01 |
BCI | 2 | 2.98 | 0.01 | 0.03 |
EEG | 2 | 215.55 | 0.01 | 0.08 |
fMRI | 2 | 0.42 | 0.01 | 0.01 |
p300 | 2 | 0.00 | 0.01 | 0.00 |
virtual reality | 2 | 5.73 | 0.01 | 0.02 |
brain–computer interface | 2 | 0.84 | 0.01 | 0.02 |
EMG | 2 | 0.00 | 0.01 | 0.01 |
neurorehabilitation | 2 | 0.00 | 0.01 | 0.01 |
cerebral palsy | 2 | 0.13 | 0.01 | 0.01 |
disorders of consciousness | 3 | 11.57 | 0.01 | 0.02 |
traumatic brain injury | 3 | 3.13 | 0.01 | 0.01 |
minimally conscious state | 3 | 4.93 | 0.01 | 0.02 |
vegetative state | 3 | 7.70 | 0.01 | 0.02 |
outcome | 3 | 0.63 | 0.01 | 0.01 |
prognosis | 3 | 0.00 | 0.01 | 0.01 |
coma | 3 | 0.38 | 0.01 | 0.01 |
unresponsive wakefulness syndrome | 3 | 0.00 | 0.01 | 0.01 |
neurorehabilitation | 4 | 513.51 | 0.02 | 0.13 |
brain–machine interface | 4 | 0.49 | 0.01 | 0.01 |
brain–computer interface | 4 | 42.45 | 0.01 | 0.04 |
electroencephalography | 4 | 17.28 | 0.01 | 0.06 |
transcranial magnetic stimulation | 4 | 1.38 | 0.01 | 0.01 |
electroencephalogram (EEG) | 4 | 0.13 | 0.01 | 0.01 |
motor imagery | 4 | 27.94 | 0.01 | 0.05 |
neurofeedback | 4 | 2.39 | 0.01 | 0.02 |
event-related desynchronization | 4 | 0.00 | 0.01 | 0.01 |
motor learning | 4 | 0.16 | 0.01 | 0.01 |
functional near-infrared spectroscopy | 4 | 0.02 | 0.01 | 0.01 |
electroencephalogram | 4 | 0.89 | 0.01 | 0.01 |
spinal cord injury | 4 | 0.24 | 0.01 | 0.01 |
brain-robot interface | 4 | 0.00 | 0.01 | 0.01 |
functional connectivity | 4 | 0.08 | 0.01 | 0.01 |
brain–computer interfaces | 4 | 0.00 | 0.01 | 0.01 |
functional electrical stimulation | 4 | 0.91 | 0.01 | 0.01 |
neuromodulation | 4 | 0.00 | 0.01 | 0.01 |
stroke | 5 | 132.77 | 0.01 | 0.09 |
rehabilitation | 5 | 78.27 | 0.01 | 0.05 |
multiple sclerosis | 5 | 0.00 | 0.01 | 0.00 |
neuroplasticity | 5 | 1.04 | 0.01 | 0.01 |
plasticity | 5 | 0.83 | 0.01 | 0.01 |
motor cortex | 5 | 0.04 | 0.01 | 0.01 |
noninvasive brain stimulation | 5 | 0.43 | 0.01 | 0.01 |
TDCS | 5 | 0.64 | 0.01 | 0.01 |
transcranial direct current stimulation | 5 | 1.60 | 0.01 | 0.01 |
motor control | 5 | 0.00 | 0.01 | 0.00 |
exoskeleton | 5 | 0.47 | 0.01 | 0.02 |
brain–computer interface | 5 | 0.12 | 0.01 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiamalou, A.; Dardiotis, E.; Paterakis, K.; Fotakopoulos, G.; Liampas, I.; Sgantzos, M.; Siokas, V.; Brotis, A.G. EEG in Neurorehabilitation: A Bibliometric Analysis and Content Review. Neurol. Int. 2022, 14, 1046-1061. https://doi.org/10.3390/neurolint14040084
Tsiamalou A, Dardiotis E, Paterakis K, Fotakopoulos G, Liampas I, Sgantzos M, Siokas V, Brotis AG. EEG in Neurorehabilitation: A Bibliometric Analysis and Content Review. Neurology International. 2022; 14(4):1046-1061. https://doi.org/10.3390/neurolint14040084
Chicago/Turabian StyleTsiamalou, Athanasia, Efthimios Dardiotis, Konstantinos Paterakis, George Fotakopoulos, Ioannis Liampas, Markos Sgantzos, Vasileios Siokas, and Alexandros G. Brotis. 2022. "EEG in Neurorehabilitation: A Bibliometric Analysis and Content Review" Neurology International 14, no. 4: 1046-1061. https://doi.org/10.3390/neurolint14040084