Abstract
The treatment of aphasias—acquired language disorders—caused by stroke and other neurological conditions has benefitted from insights from neuroscience and neuropsychology. Hebbian mechanisms suggest that massed practice and exploitation of residual neurological capacities can aid neurorehabilitation of patients with poststroke aphasia, and progress in basic neuroscience research indicates that the language system of the human brain is functionally interwoven with perceptual and motor systems. Intensive speech and language therapies, including constraint-induced aphasia therapy, that activate both the linguistic and concordant motor circuits utilize the knowledge gained from these advances in neuroscience research and can lead to surprisingly rapid improvements in language performance, even in patients with chronic aphasia. Drug-based therapies alone and in conjunction with behavioral language therapies also increase language performance in patients with aphasia. Furthermore, noninvasive transcranial magnetic stimulation and electrical stimulation techniques that target neuronal activity within perilesional areas might help patients with aphasia to regain lost language functions. Intensive language–action therapies that lead to rapid improvements in language skills might provide a new opportunity for investigating fast plastic neuronal changes in the areas of the brain associated with language processing. Here, we review progress in basic neuroscience research and its translational impact on the neurorehabilitation of language disorders after stroke.
Key Points
-
Advances in neuroscience research have led to the development of novel treatments for poststroke aphasia
-
Intensive language–action therapy, pharmacological interventions and noninvasive brain stimulation can enhance language performance in patients with poststroke aphasia
-
Intensive language–action therapy can improve language performance of patients with aphasia several years after a stroke episode
-
Constraint-induced aphasia therapy is more effective than conventional speech–language therapy at treating chronic poststroke aphasia
-
Drug therapies targeting linguistic and cognitive disorders can augment functional improvements associated with intensive language–action therapy
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Engelter, S. T. et al. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke 37, 1379–1384 (2006).
Dickey, L. et al. Incidence and profile of inpatient stroke-induced aphasia in Ontario, Canada. Arch. Phys. Med. Rehabil. 91, 196–202 (2010).
Law, J. et al. Reconciling the perspective of practitioner and service user: findings from The Aphasia in Scotland study. Int. J. Lang. Commun. Disord. 45, 551–560 (2009).
Pedersen, P. M., Vinter, K. & Olsen, T. S. Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc. Dis. 17, 35–43 (2004).
Lazar, R. M. & Antoniello, D. Variability in recovery from aphasia. Curr. Neurol. Neurosci. 8, 497–502 (2008).
Lazar, R. M. et al. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke 41, 1485–1488 (2010).
Starkstein, S. E. & Robinson, R. G. Depression and aphasia. Aphasiology 2, 1–20 (1988).
Gonzalez Rothi, L. J. & Barrett, A. M. The changing view of neurorehabilitation: a new era of optimism. J. Int. Neuropsychol. Soc. 12, 812–815 (2006).
Taub, E., Uswatte, G. & Elbert, T. New treatments in neurorehabilitation founded on basic research. Nat. Rev. Neurosci. 3, 228–236 (2002).
Merzenich, M. M. et al. Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271, 77–81 (1996).
Astrup, J., Siesjo, B. K. & Symon, L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12, 723–725 (1981).
Hillis, A. E. Pharmacological, surgical, and neurovascular interventions to augment acute aphasia recovery. Am. J. Phys. Med. Rehab. 86, 426–434 (2007).
Cramer, S. C. Repairing the human brain after stroke. II. Restorative therapies. Ann. Neurol. 63, 549–560 (2008).
Cramer, S. C. & Riley, J. D. Neuroplasticity and brain repair after stroke. Curr. Opin. Neurol. 21, 76–82 (2008).
Hebb, D. O. The Organization of Behavior. A Neuropsychological Theory (John Wiley, New York, 1949).
Bi, G. Q. Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol. Cybern. 87, 319–332 (2002).
Tsumoto, T. Long-term potentiation and long-term depression in the neocortex. Prog. Neurobiol. 39, 209–228 (1992).
Basso, A. How intensive/prolonged should be an intensive/prolonged treatment be? Aphasiology 19, 975–984 (2005).
Bakheit, A. M. et al. A prospective, randomized, parallel group, controlled study of the effect of intensity of speech and language therapy on early recovery from poststroke aphasia. Clin. Rehabil. 21, 885–894 (2007).
Pulvermüller, F., Hummel, F. & Härle, M. Walking or talking? Behavioral and neurophysiological correlates of action verb processing. Brain Lang. 78, 143–168 (2001).
Hauk, O., Johnsrude, I. & Pulvermüller, F. Somatotopic representation of action words in the motor and premotor cortex. Neuron 41, 301–307 (2004).
Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S. & Wiley, C. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain Lang. 107, 16–43 (2008).
Pulvermüller, F., Shtyrov, Y. & Ilmoniemi, R. J. Brain signatures of meaning access in action word recognition. J. Cog. Neurosci. 17, 884–892 (2005).
Pulvermüller, F., Hauk, O., Nikulin, V. V. & Ilmoniemi, R. J. Functional links between motor and language systems. Eur. J. Neurosci. 21, 793–797 (2005).
Glenberg, A. M. & Kaschak, M. P. Grounding language in action. Psychon. Bull. Rev. 9, 558–565 (2002).
Glenberg, A. M., Sato, M. & Cattaneo, L. Use-induced motor plasticity affects the processing of abstract and concrete language. Curr. Biol. 18, R290–R291 (2008).
Fischer, M. H. & Zwaan, R. A. Embodied language: a review of the role of the motor system in language comprehension. Q. J. Exp. Psychol. (Colchester) 61, 825–850 (2008).
Moscoso Del Prado Martin, F., Hauk, O. & Pulvermüller, F. Category specificity in the processing of color-related and form-related words: an ERP study. Neuroimage 29, 29–37 (2006).
Gonzalez, J. et al. Reading “cinnamon” activates olfactory brain regions. Neuroimage 32, 906–912 (2006).
Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J. & Hoenig, K. The sound of concepts: four markers for a link between auditory and conceptual brain systems. J. Neurosci. 28, 12224–12230 (2008).
Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).
Tranel, D., Damasio, H. & Damasio, A. R. A neural basis for the retrieval of conceptual knowledge. Neuropsychologia 35, 1319–1327 (1997).
Pulvermüller, F. & Fadiga, L. Active perception: sensorimotor circuits as a cortical basis for language. Nat. Rev. Neurosci. 11, 351–360 (2010).
Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S. & Hodges, J. R. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neuron disease-dementia-aphasia syndrome. Brain 124, 103–120 (2001).
Neininger, B. & Pulvermüller, F. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia 41, 53–70 (2003).
Pulvermüller, F. Brain mechanisms linking language and action. Nat. Rev. Neurosci. 6, 576–582 (2005).
Berman, A. J., Teodoru, D. & Taub, E. Conditioned behavior following sensory isolation in primates. Trans. Am. Neurol. Assoc. 89, 185–186 (1964).
Kolk, H. H. J. & Heeschen, C. Adaptation symptoms and impairment symptoms in Broca's aphasia. Aphasiology 4, 221–231 (1990).
Pulvermüller, F. & Berthier, M. L. Aphasia therapy on a neuroscience basis. Aphasiology 22, 563–599 (2008).
Aten, J. L., Caligiuri, M. P. & Holland, A. L. The efficacy of functional communication therapy for chronic aphasic patients. J. Speech Hear. Disord. 47, 93–96 (1982).
Davis, G. A. & Wilcox, M. J. Adult Aphasia Rehabilitation: Applied Pragmatics (College Hill Press, San Diego, 1985).
Pulvermüller, F. & Roth, V. M. Communicative aphasia treatment as a further development of PACE therapy. Aphasiology 5, 39–50 (1991).
Taub, E., Crago, J. E. & Uswatte, G. Constraint-induced movement therapy: a new approach to treatment in physical rehabilitation. Rehab. Psychol. 43, 152–170 (1998).
Miltner, W. H., Bauder, H., Sommer, M., Dettmers, C. & Taub, E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 30, 586–592 (1999).
Broida, H. Language therapy effects in long term aphasia. Arch. Phys. Med. Rehabil. 58, 248–253 (1977).
Basso, A., Capitani, E. & Vignolo, L. A. Influence of rehabilitation on language skills in aphasic patients. A controlled study. Arch. Neurol. 36, 190–196 (1979).
Lincoln, N. B. et al. Effectiveness of speech therapy for aphasic stroke patients: a randomized controlled trial. Lancet 1, 1197–1200 (1984).
Howard, D., Patterson, K., Franklin, S., Orchard-Lisle, V. & Morton, J. Treatment of word retrieval deficits in aphasia. A comparison of two therapy methods. Brain 108, 817–829 (1985).
Doesborgh, S. J. et al. Effects of semantic treatment on verbal communication and linguistic processing in aphasia after stroke: a randomized controlled trial. Stroke 35, 141–146 (2004).
Glogowska, M., Roulstone, S., Enderby, P. & Peters, T. J. Randomised controlled trial of community based speech and language therapy in preschool children. BMJ 321, 923–926 (2000).
Katz, R. C. & Wertz, R. T. The efficacy of computer-provided reading treatment for chronic aphasic adults. J. Speech Lang. Hear. Res. 40, 493–507 (1997).
Robey, R. R. A meta-analysis of clinical outcomes in the treatment of aphasia. J. Speech Lang. Hear. Res. 41, 172–187 (1998).
Holland, A. L., Fromm, D. S., DeRuyter, F. & Stein, M. Treatment efficacy: aphasia. J. Speech Hear. Res. 39, S27–S36 (1996).
Greener, J., Enderby, P., Whurr, R. & Grant, A. Treatment for aphasia following stroke: evidence for effectiveness. Int. J. Lang. Commun. Disord. 33 (Suppl.), 158–161 (1998).
Pulvermüller, F. & Schönle, P. W. Behavioral and neuronal changes during treatment of mixed-transcortical aphasia: a case study. Cognition 48, 139–161 (1993).
Basso, A. & Caporali, A. Aphasia therapy or the importance of being earnest. Aphasiology 15, 307–332 (2001).
Pulvermüller, F. et al. Constraint-induced therapy of chronic aphasia following stroke. Stroke 32, 1621–1626 (2001).
Meinzer, M. et al. Intensive training enhances brain plasticity in chronic aphasia. BMC Biol. 2, 20 (2004).
Meinzer, M., Djundja, D., Barthel, G., Elbert, T. & Rockstroh, B. Long-term stability of improved language functions in chronic aphasia after constraint-induced aphasia therapy. Stroke 36, 1462–1466 (2005).
Pulvermüller, F., Hauk, O., Zohsel, K., Neininger, B. & Mohr, B. Therapy-related reorganization of language in both hemispheres of patients with chronic aphasia. Neuroimage 28, 481–489 (2005).
Maher, L. M. et al. A pilot study of use-dependent learning in the context of constraint induced language therapy. J. Int. Neuropsychol. Soc. 12, 843–852 (2006).
Breier, J. I., Maher, L. M., Novak, B. & Papanicolaou, A. C. Functional imaging before and after constraint-induced language therapy for aphasia using magnetoencephalography. Neurocase 12, 322–331 (2006).
Meinzer, M., Streiftau, S. & Rockstroh, B. Intensive language training in the rehabilitation of chronic aphasia: efficient training by laypersons. J. Int. Neuropsychol. Soc. 13, 846–853 (2007).
Breier, J. I., Maher, L. M., Schmadeke, S., Hasan, K. M. & Papanicolaou, A. C. Changes in language-specific brain activation after therapy for aphasia using magnetoencephalography: a case study. Neurocase 13, 169–177 (2007).
Meinzer, M. et al. Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage 39, 2038–2046 (2008).
Richter, M., Miltner, W. H. & Straube, T. Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain 131, 1391–1401 (2008).
Szaflarski, J. P. et al. Constraint-induced aphasia therapy stimulates language recovery in patients with chronic aphasia after ischemic stroke. Med. Sci. Monit. 14, CR243–CR250 (2008).
Barthel, G., Meinzer, M., Djundja, D. & Rockstroh, B. Intensive language therapy in chronic aphasia: which aspects contribute most? Aphasiology 22, 408–421 (2008).
Breier, J. I. et al. Behavioral and neurophysiologic response to therapy for chronic aphasia. Arch. Phys. Med. Rehabil. 90, 2026–2033 (2009).
Berthier, M. L. et al. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann. Neurol. 65, 577–585 (2009).
Goral, M. & Kempler, D. Training verb production in communicative context: evidence from a person with chronic non-fluent aphasia. Aphasiology 23, 1383–1397 (2009).
Faroqi-Shah, Y. & Virion, C. R. Constraint-induced language therapy for agrammatism: role of grammatical constraints. Aphasiology 23, 977–988 (2009).
Kirmess, M. & Maher, L. M. Constraint induced language therapy in early aphasia rehabilitation. Aphasiology 24, 725–736 (2010).
Bhogal, S. K., Teasell, R. & Speechley, M. Intensity of aphasia therapy, impact on recovery. Stroke 34, 987–993 (2003).
Cherney, L. R. et al. Evidence-based systematic review: effects of intensity of treatment and constraint-induced language therapy for individual with stroke-induced aphasia. J. Speech Lang. Hear. Res. 51, 1282–1299 (2008).
Kelly, H., Brady, M. C. & Enderby, P. Speech and language therapy for aphasia following stroke. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD000425. doi: 10.1002/14651858.CD000425.pub2 (2010).
Cramer, S. C., Shah, R., Juranek, J., Crafton, K. R. & Le, V. Activity in the peri-infarct rim in relation to recovery from stroke. Stroke 37, 111–115 (2006).
Hansen, A. J. & Zeuthen, T. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113, 437–445 (1981).
Kamada, K. et al. Functional and metabolic analysis of cerebral ischemia using magnetoencephalography and proton magnetic resonance spectroscopy. Ann. Neurol. 42, 554–563 (1997).
Lewine, J. D. et al. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J. Head Trauma Rehabil. 22, 141–155 (2007).
Witte, O. W., Bidmon, H. J., Schiene, K., Redecker, C. & Hagemann, G. Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 20, 1149–1165 (2000).
Albert, M. L., Bachman, D. & Morgan, A. & Helm-Estabrooks, N. Pharmacotherapy for aphasia. Neurology 38, 877–879 (1988).
Bakheit, A. M. Drug treatment of poststroke aphasia. Expert Rev. Neurother. 4, 211–217 (2004).
Klein, R. B. & Albert, M. L. Can drug therapies improve language functions of individual with aphasia? A review of the evidence. Semin. Speech Lang. 25, 193–204 (2004).
McNamara, P. & Albert, M. L. Neuropharmacology of verbal perseveration. Semin. Speech Lang. 25, 309–321 (2004).
Berthier, M. L. Poststroke aphasia: epidemiology, pathophysiology and treatment. Drugs Aging 22, 163–182 (2005).
de Boissezon, X., Peran, P., de Boysson, C. & Démonet, J. F. Pharmacotherapy of aphasia: myth or reality? Brain Lang. 102, 114–125 (2007).
Crinion, J. T. & Leff, A. P. Recovery and treatment of aphasia after stroke: functional imaging studies. Curr. Opin. Neurol. 20, 667–673 (2007).
Liepert, J. Pharmacotherapy in restorative neurology. Curr. Opin. Neurol. 21, 639–643 (2008).
Small, S. L. & Llano, D. A. Biological approaches to aphasia treatment. Curr. Neurol. Neurosci. Rep. 9, 443–450 (2009).
Floel, A. & Cohen, L. G. Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol. Dis. 37, 243–251 (2010).
Gundersen, V. Co-localization of excitatory and inhibitory transmitters in the brain. Acta Neurol. Scand. Suppl. 188, 29–33 (2008).
Mesulam, M. M. The cholinergic innervation of the human cerebral cortex. Prog. Brain Res. 145, 68–78 (2004).
Goldman-Rakic, P. S., Lidow, M. S. & Gallager, D. W. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci. 10, 2125–2138 (1990).
Luria, A., Naydyn, V. L., Tsvetkova, L. S. & Vinarskaya, E. N. Restoration of higher cortical function following local brain damage. In Handbook of Clinical Neurology (eds Vinken, P. J. & Bruyn, G. W.) 368–433 (North-Holland Publishing Company, Amsterdam, 1969).
Winblad, B. Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev. 11, 169–182 (2005).
Huber, W. The role of piracetam in the treatment of acute and chronic aphasia. Pharmacopsychiatry 32 (Suppl. 1), 38–43 (1999).
Kessler, J., Thiel, A., Karbe, H. & Heiss, W. D. Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31, 2112–2116 (2000).
Grenner, J., Enderby, P. & Whurr, R. Pharmacological treatment for aphasia following stroke. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD000424. doi: 10.1002/14651858.CD000424 (2001).
Walker-Batson, D. et al. A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32, 2093–2098 (2001).
Seniów, J., Litwin, M., Litwin, T., Lesniak, M. & Czlonkowska, A. New approach to the rehabilitation of post-stroke focal cognitive syndrome: effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J. Neurol. Sci. 283, 214–218 (2009).
Barrett, A. M. & Eslinger, P. J. Amantadine for adynamic speech: possible benefit for aphasia. Am. J. Phys. Med. Rehabil. 86, 605–612 (2007).
Leiguarda, R., Merello, M., Sabe, L. & Starkstein, S. Bromocriptine-induced dystonia in patients with aphasia and hemiparesis. Neurology 43, 2319–2322 (1993).
Barbay, S. & Nudo, R. J. The effects of amphetamine on recovery of function in animal models of cerebral injury: a critical appraisal. NeuroRehabilitation 25, 5–17 (2009).
Goldstein, L. B. Amphetamine trials and tribulations. Stroke 40, S133–S135 (2009).
Martinsson, L., Wahlgreen, N. G. & Hardemark, H. G. Amphetamines for improving recovery after stroke. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD002090. doi: 10.1002/14651858.CD002090 (2003).
Raymer, A. M. Treatment of adynamia in aphasia. Front. Biosci. 8, s845–s851 (2003).
Sabe, L., Leiguarda, R. & Starkstein, S. An open-label trial of bromocriptine in nonfluent aphasia. Neurology 42, 1637–1638 (1992).
Gupta, S. & Mlcoch, A. Bromocriptine treatment of nonfluent aphasia. Arch. Phys. Med. Rehabil. 73, 373–376 (1992).
Sabe, L., Salvarezza, F., García Cuerva, A., Leiguarda, R. & Starkstein, S. A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology 45, 2272–2274 (1995).
Ozeren, A., Sarica, Y., Mavi, H. & Demirkiran, M. Bromocriptine is ineffective in the treatment of chronic nonfluent aphasia. Acta Neurol. Belg. 95, 235–238 (1995).
Gupta, S. R., Mlcoch, A. G., Scolaro, C. & Moritz, T. Bromocriptine treatment of nonfluent aphasia. Neurology 45, 2170–2173 (1995).
Ashtary, F., Janghorbani, M., Chitsaz, A., Reisi, M. & Bahrami, A. A randomized, double blind trial of bromocriptine efficacy in nonfluent aphasia after stroke. Neurology 66, 914–916 (2006).
Bragoni, M. et al. Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke. Neurol. Sci. 21, 19–22 (2000).
Walker-Batson, D. et al. A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32, 2093–2098 (2001) .
Whiting, E., Chenery, H. J., Chalk, J. & Copland, D. A. Dexamphetamine boosts naming treatment effects in chronic aphasias. J. Int. Neuropsychol. Soc. 13, 972–979 (2007).
Beversdorf, D. Q. et al. Effect of propranolol on naming in chronic Broca's aphasia with anomia. Neurocase 13, 256–259 (2007).
Tanaka, Y. & Bachman, D. L. Pharmacotherapy of aphasia. In Neurobehavior of Language and Cognition: Studies of Normal Aging and Brain Damage (eds Connor, L. S. & Obler, L. K.) 159–162 (SpringerLink, Berlin, 2007).
Tsikunov, S. G. & Belokoskova, S. G. Psychophysiological analysis of the influence of vasopressin on speech in patients with post-stroke aphasias. Span. J. Psychol. 10, 178–188 (2007).
Ferris, S. et al. Treatment effects of memantine on language in moderate to severe Alzheimer's disease patients. Alzheimers Dement. 5, 375–379 (2009).
Román, G. C. et al. Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia: differential affects by hippocampal size. Stroke 41, 1213–1221 (2010).
Berthier, M. L. et al. Open-label study of donepezil in post-stroke aphasia. Neurology 60, 1118–1119 (2003).
Berthier, M. L., Moreno-Torres, I. & Hinojosa, J. Beneficial effects of donepezil and modality-specific language therapy on chronic conduction aphasia [abstract P06.014]. Neurology 62 (Suppl. 5), A462 (2004).
Berthier, M. L. et al. A randomized controlled trial of donepezil in poststroke aphasia. Neurology 67, 1687–1689 (2006).
Kavirajan, H. & Schneider, L. S. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 6, 782–792 (2007).
Tanaka, Y., Miyazaki, M. & Albert, M. L. Effect of increased cholinergic activity on naming in aphasia. Lancet 350, 116–117 (1997).
Kabasawa, H. et al. Effects of bifemelane hydrochloride on cerebral circulation and metabolism in patients with aphasia. Clin. Ther. 16, 471–482 (1994).
Jacobs, D. H. et al. Physostigmine pharmacotherapy for anomia. Neurocase 2, 83–91 (1996).
Benke, T., Köylü, B., Delazer, M., Trinka, E. & Kemmler, G. Cholinergic treatment of amnesia following basal forebrain lesion due to aneurysm rupture—an open-label pilot study. Eur. J. Neurol. 12, 791–796 (2005).
Pashek, G. V. & Bachman, D. L. Cognitive, linguistic, and motor speech effects of donepezil hydrochloride in a patient with stroke-related aphasia and apraxia of speech. Brain Lang. 87, 179–180 (2003).
Berthier, M. L. & Green, C. Donepezil improves speed and accuracy of information processing in chronic post-stroke aphasia [abstract P01.012]. Neurology 68 (Suppl. 1), A10 (2007).
Berthier, M. L. et al. Beneficial effect of donepezil on sensorimotor function after stroke. Am. J. Phys. Med. Rehabil. 82, 725–729 (2003).
Nadeau, S. E. et al. Donepezil as an adjuvant to constraint-induced therapy for upper-limb dysfunction after stroke: an exploratory randomized clinical trial. J. Rehabil. Res. Dev. 41, 525–534 (2004).
Chen, Y. et al. The efficacy of donepezil for post-stroke aphasia: a pilot case control study. Zhonghua Nei Ke Za Zhi 49, 115–118 (2010).
Martin, P. I. et al. Research with transcranial magnetic stimulation in the treatment of aphasia. Curr. Neurol. Neurosci. Rep. 9, 451–458 (2009).
Baker, J., Rorden, C. & Fridriksson, J. Using transcranial direct current stimulation (tDCS) to treat stroke patients with aphasia. Stroke 41, 1229–1236 (2010).
Naeser, M. A. et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang. 93, 95–105 (2005).
Winhuisen, L. et al. The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke 38, 1286–1292 (2007).
Winhuisen, L. et al. Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36, 1759–1763 (2005).
Floel, A., Rosser, N., Michka, O., Knecht, S. & Breitenstein, C. Noninvasive brain stimulation improves language learning. J. Cogn. Neurosci. 20, 1415–1422 (2008).
Liuzzi, G. et al. The involvement of the left motor cortex in learning of a novel action word lexicon. Curr. Biol. 20, 1745–1751 (2010).
Monti, A. et al. Improved naming after transcranial direct current stimulation in aphasia. J. Neurol. Neurosurg. Psychiatry 79, 451–453 (2008).
Miniussi, C. et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 1, 326–336 (2008).
Crosson, B. et al. Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia. J. Cogn. Neurosci. 17, 392–406 (2005).
Cherney, L. R. & Small, S. L. Task-dependent changes in brain activation following therapy for nonfluent aphasia: discussion of two individual cases. J. Int. Neuropsychol. Soc. 6, 828–842 (2006).
Fridriksson, J. et al. Neural correlates of phonological and semantic-based anomia treatment in aphasia. Neuropsychologia 45, 1812–1822 (2007).
Raboyeau, G. et al. Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment? Neurology 70, 290–298 (2008).
Menke, R. et al. Imaging short- and long-term training success in chronic aphasia. BMC Neurosci. 10, 118 (2009).
Meinzer, M. et al. Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia. Neuroimage 53, 283–290 (2010).
Price, C. J., Seghier, M. L. & Leff, A. P. Predicting language outcome and recovery after stroke: the PLORAS system. Nat. Rev. Neurol. 6, 202–210 (2010).
Saur, D. et al. Dynamics of language reorganization after stroke. Brain 129, 1371–1384 (2006).
Green Heredia, C., Sage, K., Lambon Ralph, M. A. & Berthier, M. L. Relearning and retention of verbal labels in a case of semantic dementia. Aphasiology 23, 192–209 (2009).
Pulvermüller, F., Kherif, F., Hauk, O., Mohr, B. & Nimmo-Smith, I. Cortical cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Hum. Brain Mapping 30, 3837–3850 (2009).
Robbins, T. W. & Arnsten, A. F. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci. 32, 267–287 (2009).
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Rev. 48, 98–111 (2005).
Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231 (2004).
Gotts, S. J., della Rocchetta, A. I. & Cipolotti, L. Mechanisms underlying perseveration in aphasia: evidence from a single case study. Neuropsychologia 40, 1930–1947 (2002).
Gauthier, L. V. et al. Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke 39, 1520–1525 (2008).
Acknowledgements
The study was supported by the Ministerio de Educación y Ciencia, Spain (grant SEJ2007-67,793) and the Medical Research Council, UK (grants U1055.04.003.00001.01 and MC_US_A060_0034).
C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.
Author information
Authors and Affiliations
Contributions
M. L. Berthier and F. Pulvermüller researched the data and wrote the article, and provided substantial contributions to discussions of the content, reviewing and editing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
M. L. Berthier has received honoraria from Eisai, Eli Lilly, GlaxoSmithKline, Janssen, Merz, Novartis and Pfizer for consulting, and received honoraria from Janssen, Lundbeck, Merz and Pfizer for lectures. He has also received research funding from Eisai, Merz and Pfizer. F. Pulvermüller has received research funding from GlaxoSmithKline.
Supplementary information
Supplementary Table 1
Studies of constraint-induced aphasia therapy in poststroke aphasia (DOC 133 kb)
Rights and permissions
About this article
Cite this article
Berthier, M., Pulvermüller, F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat Rev Neurol 7, 86–97 (2011). https://doi.org/10.1038/nrneurol.2010.201
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2010.201
This article is cited by
-
Supporting Post-Stroke Language and Cognition with Pharmacotherapy: Tools for Each Phase of Care
Current Neurology and Neuroscience Reports (2023)
-
Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System
CNS Drugs (2023)
-
Simulating lesion-dependent functional recovery mechanisms
Scientific Reports (2021)
-
Multisensory cueing facilitates naming in aphasia
Journal of NeuroEngineering and Rehabilitation (2020)
-
The neural and neurocomputational bases of recovery from post-stroke aphasia
Nature Reviews Neurology (2020)