Induced Phytomanagement of Multi-Metal Polluted Soil with Conocarpus erectus Supported by Biochar, Lignin, and Citric Acid
<p>The influences of biochar (BC), lignin (LN), and citric acid (CA) on shoot dry weight (SDW) (<b>a</b>) and root dry weight (RDW) (<b>b</b>) of <span class="html-italic">C. erectus</span> grown on shooting-range soil (SS). The standard errors are calculated from the triplicates of each treatment. The treatments exhibiting distinct alphabetic characters are statistically different from each other at <span class="html-italic">p</span> < 0.05, calculated by one-way ANOVA, followed by an LSD test.</p> "> Figure 2
<p>Influences on plant height (<b>A</b>), chlorophyll a (Chl-a) (<b>B</b>), chlorophyll b (Chl-b) (<b>C</b>), relative water content (RWC) (<b>D</b>), water uptake capacity (WUC) (<b>E</b>), protein (<b>F</b>), amino acids (<b>G</b>), ascorbic acid (AsA) (<b>H</b>), and total phenolics (<b>I</b>) of <span class="html-italic">C. erectus</span> grown on shooting-range soil (SS) amended with biochar (BC), lignin (LN), and citric acid (CA). The standard errors are calculated from the triplicates of each treatment. The treatments exhibiting distinct alphabetic characters are statistically different from each other at <span class="html-italic">p</span> < 0.05, calculated by a one-way ANOVA, followed by an LSD test.</p> "> Figure 3
<p>The concentrations of Pb, Cr, Cd, Ni, and Cu (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>) in <span class="html-italic">C. erectus</span> tissues and labile portions of Pb, Cr, Cd, Ni, and Cu (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>) in post-harvest shooting-range soil (SS) amended with biochar (BC), lignin (LN), and citric acid (CA). The standard errors are calculated from the triplicates of each treatment. The treatments exhibiting distinct alphabetic characters are statistically different from each other at <span class="html-italic">p</span> < 0.05, calculated by a one-way ANOVA, followed by an LSD test.</p> "> Figure 4
<p>The contents of Pb, Cr, Cd, Ni, and Cu (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>) in <span class="html-italic">C. erectus</span> tissues and total removal of Pb, Cr, Cd, Ni, and Cu (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>) by <span class="html-italic">C. erectus</span> from the shooting-range soil (SS) amended with biochar (BC), lignin (LN), and citric acid (CA). The standard errors are calculated from the triplicates of each treatment. The treatments exhibiting distinct alphabetic characters are statistically different from each other at <span class="html-italic">p</span> < 0.05, calculated by a one-way ANOVA, followed by an LSD test.</p> "> Figure 5
<p>The influences of biochar (BC), lignin (LN), and citric acid (CA) applications on Pb (<b>a</b>), Cr (<b>b</b>), Cd (<b>c</b>), Ni (<b>d</b>), and Cu (<b>e</b>) concentrations in the leachates collected at 1st (30 days), 2nd (60 days), 3rd (90 days), and 4th (120 days) sampling periods. The standard errors are calculated from the triplicates of each treatment. Dashed lines depict the critical limits of Pb, Cr, Cd, Ni, and Cu for safe water reuse and agricultural purposes [<a href="#B39-minerals-14-01149" class="html-bibr">39</a>,<a href="#B40-minerals-14-01149" class="html-bibr">40</a>].</p> "> Figure 6
<p>The influences of biochar (BC), lignin (LN), and citric acid (CA) on protease (<b>a</b>), chitinase (<b>b</b>), urease (<b>c</b>), acid phosphatase (<b>d</b>), and catalase (<b>e</b>) activities in shooting-range soil (SS) amended with biochar (BC), lignin (LN), and citric acid (CA). The standard errors are calculated from the triplicates of each treatment. The treatments exhibiting distinct alphabetic characters are statistically different from each other at <span class="html-italic">p</span> < 0.05, calculated using a one-way ANOVA, followed by an LSD test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. SS and Its Characteristics
2.2. Additives for SS
2.2.1. HM Stabilizing Additives
2.2.2. HMs Mobilizing Additive
2.3. Soil Treatments and Pot Experiment
2.3.1. Setting of Plant Experiment
2.3.2. Citric Acid Application and Collection of Leachates
2.3.3. Termination of the Plant Experiment and Collection of Plant and Soil Samples
2.4. SS and Plant Analysis
2.4.1. HMs in SS, Leachates, Plant Parts, and Their Removal by the Plants
2.4.2. Soil Enzymes in SS
2.4.3. Plant Biophysical Parameters and Biochemical Compounds
2.4.4. Plant Antioxidants and Reactive Oxygen Species
2.5. Statistical Analysis
3. Results
3.1. Plant Growth, Biophysical and Biochemical Traits
3.2. Phytoavailable HMs in Soil, Their Plant Concentrations, and Removal from SS
3.3. HMs in Leachates
3.4. Antioxidants and ROS
3.5. Soil Enzymatic Activities
4. Discussion
4.1. Plant Biomass, Growth, and Affiliated Traits
4.2. Phytoavailability of HMs, Their Removal, and Leaching from SS
4.3. Antioxidant Defense in C. erectus
4.4. Enzymatic Activities in SS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mankė, J.; Praspaliauskas, M.; Pedišius, N.; Sujetovienė, G. Evaluation of phytoremediation efficiency of shooting range soil using the bioaccumulation potential and sensitivity of different plant species. Ecol. Eng. 2024, 198, 107134. [Google Scholar] [CrossRef]
- Ghani, M.I.; Ahanger, M.A.; Sial, T.A.; Haider, S.; Siddique, J.A.; Fan, R.; Liu, Y.; Esmat, F.A.; Kumar, M.; Yang, X.; et al. Almond shell-derived biochar decreased toxic metals bioavailability and uptake by tomato and enhanced the antioxidant system and microbial community. Sci. Total Environ. 2024, 929, 172632. [Google Scholar] [CrossRef]
- Cheng, Y.; Bu, X.; Ji, Z.; Wang, C.; Xiao, X.; Li, F.; Wu, Z.-H.; Wu, G.; Jia, P.; Li, J.-T. Application of biochar and compost improved soil properties and enhanced plant growth in a Pb–Zn mine tailings soil. Environ. Sci. Pollut. Res. 2023, 30, 32337–32347. [Google Scholar] [CrossRef]
- Silwamba, M.; Ito, M.; Tabelin, C.B.; Park, I.; Jeon, S.; Takada, M.; Kubo, Y.; Hokari, N.; Tsunekawa, M.; Hiroyoshi, N. Simultaneous extraction and recovery of lead using citrate and micro-scale zero-valent iron for decontamination of polluted shooting range soils. Environ. Adv. 2021, 5, 100115. [Google Scholar] [CrossRef]
- Zhu, Y.; Che, R.; Tu, B.; Miao, J.; Lu, X.; Li, J.; Zhu, Y.; Wang, F. Contamination and remediation of contaminated firing ranges—An overview. Front. Environ. Sci. 2024, 12, 1352603. [Google Scholar] [CrossRef]
- Česynaitė, J.; Praspaliauskas, M.; Sujetovienė, G. Bioaccumulation of trace metal (loid)s and toxic response of Lactuca sativa grown in shooting range soil. Toxicol. Environ. Chem. 2023, 105, 28–41. [Google Scholar] [CrossRef]
- Lewińska, K.; Karczewska, A. A release of toxic elements from military shooting range soils as affected by pH and treatment with compost. Geoderma 2019, 346, 1–10. [Google Scholar] [CrossRef]
- Mariussen, E.; Heier, L.S.; Teien, H.C.; Pettersen, M.N.; Holth, T.F.; Salbu, B.; Rosseland, B.O. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range. Ecotoxicol. Environ. Saf. 2017, 135, 327–336. [Google Scholar] [CrossRef]
- Maruyama, M.; Ushine, N.; Watanabe, Y.; Ishii, C.; Saito, K.; Sakai, H.; Kuritani, T.; Doya, R.; Ogasawara, K.; Ikaneka, Y.; et al. Current situation of lead (Pb) exposure in raptors and waterfowl in Japan and difference in sensitivity to in vitro lead exposure among avian species. Environ. Pollut. 2024, 349, 123907. [Google Scholar] [CrossRef]
- Johnsen, I.V.; Aaneby, J. Accumulation of copper and lead in ruminants grazing on a contaminated shooting range in Nordland County, Norway. Environ. Sci. Pollut. Res. 2024, 31, 11026–11036. [Google Scholar] [CrossRef]
- Alasmary, Z.; Hettiarachchi, G.M.; Roozeboom, K.L.; Davis, L.C.; Erickson, L.E.; Pidlisnyuk, V.; Stefanovska, T.; Trögl, J. Phytostabilization of a contaminated military site using Miscanthus and soil amendments. J. Environ. Qual. 2021, 50, 1220–1232. [Google Scholar] [CrossRef]
- Kicińska, A.; Wikar, J. The effect of fertilizing soils degraded by the metallurgical industry on the content of elements in Lactuca sativa L. Sci. Rep. 2021, 11, 4072. [Google Scholar] [CrossRef]
- Egendorf, S.P.; Groffman, P.; Moore, G.; Cheng, Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: A critical review. Int. J. Phytoremediation 2020, 22, 916–930. [Google Scholar] [CrossRef]
- Khan, A.A.; Wang, T.; Nisa, Z.U.; Alnusairi, G.S.; Shi, F. Insights into cadmium-induced morphophysiological disorders in Althea rosea Cavan and its phytoremediation through the exogeneous citric acid. Agronomy 2022, 12, 2776. [Google Scholar] [CrossRef]
- Virk, Z.A.; Al Farraj, D.A.; Iqbal, M.; Lewińska, K.; Hussain, S. Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry. Sustainability 2022, 14, 6975. [Google Scholar] [CrossRef]
- Manzoor, M.; Shafiq, M.; Gul, I.; Kamboh, U.R.; Guan, D.X.; Alazba, A.A.; Tomforde, S.; Arshad, M. Enhanced lead phytoextraction and soil health restoration through exogenous supply of organic ligands: Geochemical modeling. J. Environ. Manag. 2023, 348, 119435. [Google Scholar] [CrossRef]
- Gul, I.; Manzoor, M.; Hashmi, I.; Bhatti, M.F.; Kallerhoff, J.; Arshad, M. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). J. Environ. Manag. 2019, 249, 109408. [Google Scholar] [CrossRef]
- Li, T.; Lü, S.; Zhang, S.; Gao, C.; Liu, M. Lignin-based multifunctional fertilizer for immobilization of Pb(II) in contaminated soil. J. Taiwan Inst. Chem. Eng. 2018, 91, 643–652. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef]
- Rehman, S.; Azam, F.; Rehman, S.; Rehman, T.U.; Mehmood, A.; Gohar, A.; Samad, A. A review on botanical, phytochemical and pharmacological reports of Conocarpus erectus. Pak. J. Agric. Res. 2019, 32, 212–217. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Hussain, S.; Abbas, F.; Iqbal, M. The potential of an energy crop “Conocarpus erectus” for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. Ecotoxicol. Environ. Saf. 2019, 173, 273–284. [Google Scholar] [CrossRef]
- Naeem, I.; Masood, N.; Turan, V.; Iqbal, M. Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea L. Ecotoxicol. Environ. Saf. 2021, 208, 111723. [Google Scholar] [CrossRef]
- Khan, M.A.; Ramzani, P.M.A.; Zubair, M.; Rasool, B.; Khan, M.K.; Ahmed, A.; Khan, S.A.; Turan, V.; Iqbal, M. Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci. Total Environ. 2020, 710, 136294. [Google Scholar] [CrossRef]
- Jones, J.B., Jr.; Case, V.W. Sampling, Handling and Analyzing Plant Tissue Samples. In Soil Testing and Plant Analysis, 3rd ed.; SSSA Book Series; Westerman, R.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Xu, G.H.; Zheng, H.Y. Handbook of Analysis of Soil Microorganism; Agriculture Press: Beijing, China, 1986; pp. 249–291. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis, Part 2; Albert, L., Ed.; Chemical and Microbiological Properties Soil Science Society of America: Madison, WI, USA, 1982; pp. 903–943. [Google Scholar]
- Guan, S.Y. Research Methods on Soil Enzymes; China Agricultural: Beijing, China, 1986; pp. 182–266. [Google Scholar]
- Hayano, K. A method for determination of β-glucosidase activity in soil. Soil Sci. Plant Nutr. 1973, 19, 103–108. [Google Scholar] [CrossRef]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Huang, C.; He, W.; Guo, J.; Chang, X.; Su, P.; Zhang, L. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J. Exp. Bot. 2005, 56, 3041–3049. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 2011, 5, 353–365. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Van Slyke, D.D.; Lemish, S. The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J. Biol. Chem. 1943, 150, 231–250. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Packer, L., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Steel, R.G.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co. Inc.: New York, NY, USA, 1997; p. 672. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization: Rome, Italy, 1989; p. 174. [Google Scholar]
- USEPA. Guidelines for Water Reuse 600/R-12/618; Environmental Protection Agency: Washington, DC, USA, 2012; p. 643. [Google Scholar]
- He, L.; Yu, Y.; Lin, J.; Hong, Z.; Dai, Z.; Liu, X.; Tang, C.; Xu, J. Alkaline lignin does not immobilize cadmium in soils but decreases cadmium accumulation in the edible part of lettuce (Lactuca sativa L.). Environ. Pollut. 2022, 310, 119879. [Google Scholar] [CrossRef]
- Song, X.; Razavi, B.S.; Ludwig, B.; Zamanian, K.; Zang, H.; Kuzyakov, Y.; Gunina, A. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Sci. Total Environ. 2020, 735, 139393. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Hassan, M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Ind. Crops Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Lakzian, A.; Halajnia, A.; Razavi, B.S. Optimization of EDTA and citric acid for risk assessment in the remediation of lead contaminated soil. Rhizosphere 2021, 17, 100277. [Google Scholar] [CrossRef]
- Hussain, A.; Kamran, M.A.; Javed, M.T.; Hayat, K.; Farooq, M.A.; Ali, N.; Manghwar, F.J.; Chaudhary, H.J. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ. Exp. Bot. 2019, 159, 23–33. [Google Scholar] [CrossRef]
- Nazari, S.; Rahimi, G.; Nezhad, A.K.J. Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. J. Environ. Chem. Eng. 2019, 7, 103064. [Google Scholar] [CrossRef]
- Al Mahmud, J.; Hasanuzzaman, M.; Nahar, K.; Bhuyan, M.B.; Fujita, M. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol. Environ. Saf. 2018, 147, 990–1001. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Khan, M.A.; Luo, W.; Xiang, Z.; Xu, W.; Zhong, B.; Ma, J.; Yr, Z.; Zhu, Y.; et al. Effect of plant extracts and citric acid on phytoremediation of metal-contaminated soil. Ecotoxicol. Environ. Saf. 2021, 211, 111902. [Google Scholar] [CrossRef]
- Farhad, M.; Noor, M.; Yasin, M.Z.; Nizamani, M.H.; Turan, V.; Iqbal, M. Interactive suitability of rice stubble biochar and arbuscular mycorrhizal fungi for improving wastewater-polluted soil health and reducing heavy metals in peas. Sustainability 2024, 16, 634. [Google Scholar] [CrossRef]
- Wu, P.; Cui, P.; Fang, G.; Gao, J.; Zhou, D.; Wang, Y. Sorption mechanism of zinc on reed, lignin, and reed-and lignin-derived biochars: Kinetics, equilibrium, and spectroscopic studies. J. Soils Sediments 2018, 18, 2535–2543. [Google Scholar] [CrossRef]
- Sanga, V.F.; Fabian, C.; Kimbokota, F. Heavy metal pollution in leachates and its impacts on the quality of groundwater resources around Iringa municipal solid waste dumpsite. Environ. Sci. Pollut. Res. 2023, 30, 8110–8122. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, N.; Qu, X.; Joshee, N.; Liu, S. The effect of hot water pretreatment on the heavy metal adsorption capacity of acid insoluble lignin from Paulownia elongata. J. Chem. Technol. Biotechnol. 2018, 93, 1105–1112. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, M.; Wang, Z.; Li, Z. Application of Lignin and Its Derivatives as Slow/Controlled Release Materials in Agricultural Fields. Pap. Biomater. 2018, 3, 53–62. [Google Scholar] [CrossRef]
- Shi, X.; Wang, S.; He, W.; Wang, Y. Lead accumulation and biochemical responses in Rhus chinensis Mill to the addition of organic acids in lead contaminated soils. RSC Adv. 2023, 13, 4211–4221. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Mao, L.; Tang, D.; Feng, H.; Gao, Y.; Zhou, P.; Xu, L.; Wang, L. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination. Environ. Sci. Pollut. Res. 2015, 22, 19860–19869. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Li, X.; Luan, M.; Wang, X.; Zhao, Y.; Zhou, X.; Du, G.; Wang, P.; Ye, C.; et al. Changes in microbial composition explain the contrasting responses of glucose and lignin decomposition to soil acidification in an alpine grassland. Sci. Total Environ. 2024, 930, 172671. [Google Scholar] [CrossRef]
- Pandey, B.; Suthar, S.; Chand, N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere 2022, 307, 135889. [Google Scholar] [CrossRef]
Treatments | Abbreviations | Amount Added in Soil | |
---|---|---|---|
Biochar/Lignin | Citric Acid | ||
(% of Soil) | (mmol kg−1 Soil) | ||
Shooting-range soil | CK | 0/0 | 0 |
Shooting-range soil + biochar | BC | 5/0 | 0 |
Shooting-range soil + lignin | LN | 0/5 | 0 |
Shooting-range soil + biochar + lignin | BC+LN | 2.5/2.5 | 0 |
Shooting-range soil + citric acid | CA | 0/0 | 5 |
Shooting-range soil + biochar + citric acid | BC+CA | 5/0 | 5 |
Shooting-range soil + lignin + citric acid | LN+CA | 0/5 | 5 |
Shooting-range soil + biochar + lignin + citric acid | BC+LN+CA | 2.5/2.5 | 5 |
Treatments | Antioxidant Enzymes | Reactive Oxygen Species | ||||
---|---|---|---|---|---|---|
CAT | APX | SOD | H2O2 | MDA | O2•− | |
(μmol min−1 mg−1 Protein) | (U min−1 mg−1 Protein) | (nmol g−1 FW) | (nmol min−1 g−1 FW) | |||
CK | 28.8 ± 0.9 ef | 0.27 ± 0.01 de | 41.6 ± 1.4 de | 86.4 ± 2.9 a | 83.3 ± 2.8 a | 75.8 ± 2.5 a |
BC | 42.7 ± 1.4 ab | 0.50 ± 0.02 a | 58.7 ± 1.9 a | 48.0 ± 1.6 d | 43.7 ± 1.5 d | 41.6 ± 1.4 d |
LN | 35.2 ± 1.2 d | 0.37 ± 0.01 c | 47.0 ± 1.6 c | 69.4 ± 2.3 b | 56.6 ± 1.9 b | 57.6 ± 1.9 b |
BC+LN | 39.5 ± 1.3 bc | 0.42 ± 0.02 b | 52.3 ± 1.8 b | 60.8 ± 2.0 c | 50.1 ± 1.7 c | 52.3 ± 1.8 bc |
CA | 26.7 ± 0.9 f | 0.25 ± 0.01 e | 38.4 ± 1.3 e | 90.7 ± 3.0 a | 85.4 ± 2.9 a | 79.0 ± 2.7 a |
BC+CA | 37.4 ± 1.3 cd | 0.40 ± 0.02 bc | 43.7 ± 1.5 cd | 58.7 ± 1.9 c | 47.0 ± 1.6 cd | 49.1 ± 1.6 c |
LN+CA | 30.9 ± 1.0 e | 0.31 ± 0.01 d | 40.2 ± 1.3 de | 65.1 ± 2.2 bc | 52.3 ± 1.8 bc | 53.4 ± 1.8 bc |
BC+LN+CA | 44.8 ± 1.5 a | 0.53 ± 0.02 a | 61.8 ± 2.1 a | 44.8 ± 1.5 d | 41.6 ± 1.4 d | 38.4 ± 1.3 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauqeer, H.M.; Lewińska, K.; Umar, M.; Mahmood, F.; Shahzad, T.; Sagheer, F.; Sajid, H.; Chaudhary, I.; Iqbal, M. Induced Phytomanagement of Multi-Metal Polluted Soil with Conocarpus erectus Supported by Biochar, Lignin, and Citric Acid. Minerals 2024, 14, 1149. https://doi.org/10.3390/min14111149
Tauqeer HM, Lewińska K, Umar M, Mahmood F, Shahzad T, Sagheer F, Sajid H, Chaudhary I, Iqbal M. Induced Phytomanagement of Multi-Metal Polluted Soil with Conocarpus erectus Supported by Biochar, Lignin, and Citric Acid. Minerals. 2024; 14(11):1149. https://doi.org/10.3390/min14111149
Chicago/Turabian StyleTauqeer, Hafiz Muhammad, Karolina Lewińska, Muhammad Umar, Faisal Mahmood, Tanvir Shahzad, Faiqa Sagheer, Hina Sajid, Iqra Chaudhary, and Muhammad Iqbal. 2024. "Induced Phytomanagement of Multi-Metal Polluted Soil with Conocarpus erectus Supported by Biochar, Lignin, and Citric Acid" Minerals 14, no. 11: 1149. https://doi.org/10.3390/min14111149
APA StyleTauqeer, H. M., Lewińska, K., Umar, M., Mahmood, F., Shahzad, T., Sagheer, F., Sajid, H., Chaudhary, I., & Iqbal, M. (2024). Induced Phytomanagement of Multi-Metal Polluted Soil with Conocarpus erectus Supported by Biochar, Lignin, and Citric Acid. Minerals, 14(11), 1149. https://doi.org/10.3390/min14111149