Transition Control of a Rotary Double Inverted Pendulum Using Direct Collocation †
<p>A rotary double inverted pendulum constructed in the laboratory.</p> "> Figure 2
<p>Conceptual diagram of a rotary double inverted pendulum.</p> "> Figure 3
<p>Inertia tensors of the first and second pendulums.</p> "> Figure 4
<p>Double reduction structure of the rotary double inverted pendulum.</p> "> Figure 5
<p>The 2-DOF control structure for the double inverted pendulum.</p> "> Figure 6
<p>Four equilibrium points of a rotary double inverted pendulum.</p> "> Figure 7
<p>Twelve-step transition diagram of a double inverted pendulum.</p> "> Figure 8
<p>Feedforward transition trajectory from EP0 to EP3.</p> "> Figure 9
<p>Feedforward transition trajectories for control input.</p> "> Figure 10
<p>Time-varying LQ gain of feedforward transition trajectory from EP0 to EP3.</p> "> Figure 11
<p>Twelve-step transition trajectories of a rotary double inverted pendulum: model trajectory (solid line) and actual trajectory (dotted line).</p> "> Figure 12
<p>A YouTube video capture of the 12 transition controls of a rotary double inverted pendulum.</p> ">
Abstract
:1. Introduction
- Development of a fully operational rotary double inverted pendulum for transition controlThis study introduces a physically constructed rotary double inverted pendulum system designed to enable all 12 transition control types among four equilibrium points. Unlike previous studies on balance control or swing-up control in simulations, this system provides a real-world experimental platform for validating complex transition control strategies.
- Flexible feedforward trajectory generation via direct collocationUnlike conventional methods that rely on predefined functional forms, such as a combination of cosine terms for trajectory generation, this study employs the direct collocation method to numerically solve the nonlinear optimal control problem. This approach enhances flexibility in trajectory design and enables simultaneous satisfaction of dynamic constraints, making it highly adaptable to complex transition scenarios.
- Experimental implementation and validation on a real-world systemA physically constructed rotary double inverted pendulum system is used to experimentally implement 12 different transition control types, demonstrating the proposed control strategy’s practicality and effectiveness.
2. Structure and Mathematical Modeling of the Rotary Double Inverted Pendulum
2.1. Structure of the Rotary Double Inverted Pendulum
2.2. Mathematical Modeling of the Rotary Double Inverted Pendulum
2.3. Estimation of Physical Parameters of the Pendulum
3. Transition Control
3.1. Design of Transition Control
- The linear control is performed to ensure the system’s stability at the current equilibrium point.
- The transition control is carried out to move from the current equilibrium point to the next.
- The linear control is performed to maintain stability at the next equilibrium point.
3.2. Direct Collocation
4. Experimental Results
4.1. Experimental Setup
4.2. Experimental Data and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Äström, K.J.; Furuta, K. Swinging up a pendulum by energy control. Automatica 2000, 36, 287–295. [Google Scholar] [CrossRef]
- Huang, S.; Huang, C. Control of an inverted pendulum using grey prediction model. IEEE Trans. Ind. Appl. 2000, 36, 452–458. [Google Scholar] [CrossRef]
- Otani, Y.; Kurokami, T.; Inoue, A.; Hirashima, Y. A Swingup Control of an Inverted Pendulum with Cart Position Control. In Proceedings of the IFAC Conference on New Technologies for Computer Control (NTCC 2001), Hong Kong, China, 19–22 November 2001; pp. 395–400. [Google Scholar]
- Muskinja, N.; Tovornik, B. Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 2006, 53, 631–639. [Google Scholar] [CrossRef]
- Äström, K.J.; Aracil, J.; Gordillo, F. A family of smooth controllers for swinging up a pendulum. Automatica 2008, 44, 1841–1848. [Google Scholar] [CrossRef]
- Erwin, S.; Agung, S.W.; Elvandry, G.R. Fuzzy Swing Up Control and Optimal State Feedback Stabilization for Self-Erecting Inverted Pendulum. IEEE Access 2020, 8, 6496–6504. [Google Scholar]
- Oh, Y.; Lee, Y.S. Robust Swing-up Control of a Rotary Inverted Pendulum Subject to Input/Output Constraints. J. Inst. Control. Robot. Syst. 2018, 24, 423–430. [Google Scholar] [CrossRef]
- Ratiroch-Anant, P.; Anabuki, M.; Hirata, H. Self-tuning control for rotational inverted pendulum by: Eigenvalue approach. In Proceedings of the IEEE Region 10 Conference TENCON 2004, Chiang Mai, Thailand, 21–24 November 2004; pp. 542–545. [Google Scholar]
- Rahairi, M.R.; Selamat, H.; Zamzuri, H.; Ahmad, F. PID controller optimization for a rotational inverted pendulum using genetic algorithm. In Proceedings of the 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia, 19–21 April 2011; pp. 1–6. [Google Scholar]
- Thein, M.-W.L.; Misawa, E.A. Comparison of the sliding observer to several state estimators using a rotational inverted pendulum. In Proceedings of the 1995 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; pp. 3385–3390. [Google Scholar]
- Brown, D.; Strube, M. Design of a Neural Controller Using Reinforcement Learning to Control a Rotational Inverted Pendulum. In Proceedings of the 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 9–11 December 2020; pp. 1–5. [Google Scholar]
- Hernandez, R.; Garcia-Hernandez, R.; Jurado, F. Modeling, Simulation, and Control of a Rotary Inverted Pendulum: A Reinforcement Learning-Based Control Approach. Modelling 2024, 5, 1824–1852. [Google Scholar] [CrossRef]
- Cherrat, N.; Hamid, B.; Hichem, A.; Ratiba, F. Experimental Study of Swing-Up PD and Sliding Mode Control for Rotary Inverted Pendulum. In Proceedings of the 2024 3rd International Conference on Advanced Electrical Engineering (ICAEE), Sidi-Bel-Abbes, Algeria, 5–7 November 2024. [Google Scholar]
- Jensen, J.N.; Ishizaki, T. Furuta Pendulum Design Update for Accessible Control Demonstrations. IFAC-PapersOnLine 2023, 56, 7573–7578. [Google Scholar] [CrossRef]
- Liang, F.; Xin, X.; Li, Y. Swing-up and Balance Control of Rotary Double Inverted Pendulum. In Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering, Nanjing, China, 12–14 May 2023; pp. 65–70. [Google Scholar]
- Tran, N.; Nguyen, V.; Le, C.; Lai, A.; Nguyen, T.; Huynh, M.; Phan, V.; Tong, G.; Nguyen, L.; Ngo, T. LQR Control for Experimental Double Rotary Inverted Pendulum. J. Fuzzy Syst. Control. 2024, 2, 104–108. [Google Scholar]
- Singh, S.; Swarup, A. Control of Rotary Double Inverted Pendulum using Sliding Mode Controller. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 27 June 2021; pp. 1–6. [Google Scholar]
- Zied, B.H.; Mohammad, J.F.; Zafer, B. Development of a Fuzzy-LQR and Fuzzy-LQG stability control for a double link rotary inverted pendulum. J. Frankl. Inst. 2020, 357, 10529–10556. [Google Scholar]
- Ibrahim, M.M.; Ubaid, M.A.; Rachid, M.; Maamar, B. Stabilization of a double inverted rotary pendulum through fractional order integral control scheme. Int. J. Adv. Robot. Syst. 2019, 16, 4. [Google Scholar]
- Sondarangallage, D.A.; Manukid, P. Control of rotary double inverted pendulum system using mixed sensitivity H∞ controller. Int. J. Adv. Robot. Syst. 2019, 16, 2. [Google Scholar]
- Quanser Official Home Page. Available online: www.quanser.com (accessed on 8 January 2025).
- Sondarangallage, D.A.; Manukid, P. Control of rotary double inverted pendulum system using LQR sliding surface based sliding mode controller. J. Control Decis. 2022, 9, 89–101. [Google Scholar]
- Ju, D.; Choi, C.; Jeong, J.; Lee, Y.S. Design and parameter estimation of a double inverted pendulum for model-based swing-up control. J. Inst. Control. Robot. Syst. 2022, 28, 793–803. [Google Scholar] [CrossRef]
- Graichen, K.; Treuer, M.; Zeitz, M. Swing-up of the double pendulum on a cart by feedforward and feedback control with experimental validation. Automatica 2007, 43, 63–71. [Google Scholar] [CrossRef]
- Kelly, M. An introduction to trajectory optimization: How to do your own direct collcation. SIAM Rev. 2017, 59, 849–904. [Google Scholar] [CrossRef]
- Ju, D.; Lee, T.; Lee, Y.S. Implementation of 12 Transition Controls for Rotary Double Inverted Pendulum Using Direct Collocation. In Proceedings of the ICINCO 2024, Portu, Portugal, 18–20 November 2024. [Google Scholar]
- Lee, Y.S.; Jo, B.; Han, S. A light-weight rapid control prototyping system based on open source hardware. IEEE Access 2017, 5, 11118–11130. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
0.187 kg | |
0.132 kg | |
1.0415 kgm2 | |
8.8210 kgm2 | |
4.3569 kgm2 | |
4.9793 kgm2 | |
3.3179 kgm2 | |
4.8178 kgm2 | |
3.7770 kgm2 | |
1.9823 kgm2 | |
0.072 m | |
0.133 m | |
2.4100 | |
1.0900 | |
0.1645 m | |
0.1625 m | |
0.1597 m | |
0.0209 m |
Transition Number | |||
---|---|---|---|
1 | 1.7 | 7.0 | 50 |
2 | 1.5 | 7.0 | 50 |
3 | 1.5 | 7.0 | 60 |
4 | 1.5 | 12 | 70 |
5 | 1.5 | 7.0 | 50 |
6 | 1.5 | 7.0 | 50 |
7 | 1.5 | 7.0 | 70 |
8 | 1.5 | 7.0 | 50 |
9 | 1.5 | 7.0 | 50 |
10 | 1.5 | 7.0 | 50 |
11 | 1.5 | 7.0 | 50 |
12 | 1.5 | 8.0 | 50 |
Transition Number | ||
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 |
Starting EP | Destination EP | T [s] |
---|---|---|
EP0 | EP1 | 2.000 |
EP2 | 3.000 | |
EP3 | 2.500 | |
EP1 | EP0 | 1.800 |
EP2 | 2.500 | |
EP3 | 2.500 | |
EP2 | EP0 | 2.500 |
EP1 | 2.000 | |
EP3 | 2.921 | |
EP3 | EP0 | 2.500 |
EP1 | 2.000 | |
EP2 | 2.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, D.; Lee, T.; Lee, Y.S. Transition Control of a Rotary Double Inverted Pendulum Using Direct Collocation. Mathematics 2025, 13, 640. https://doi.org/10.3390/math13040640
Ju D, Lee T, Lee YS. Transition Control of a Rotary Double Inverted Pendulum Using Direct Collocation. Mathematics. 2025; 13(4):640. https://doi.org/10.3390/math13040640
Chicago/Turabian StyleJu, Doyoon, Taegun Lee, and Young Sam Lee. 2025. "Transition Control of a Rotary Double Inverted Pendulum Using Direct Collocation" Mathematics 13, no. 4: 640. https://doi.org/10.3390/math13040640
APA StyleJu, D., Lee, T., & Lee, Y. S. (2025). Transition Control of a Rotary Double Inverted Pendulum Using Direct Collocation. Mathematics, 13(4), 640. https://doi.org/10.3390/math13040640