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Abstract: The rotary double inverted pendulum system is characterized by one stable equi-
librium point and three unstable equilibrium points due to its kinematic properties. This
paper defines the transition control problem between these equilibrium points to extend the
conventional swing-up control problem and proposes an implementation method using a
laboratory-developed rotary double inverted pendulum. To minimize energy consumption
during the transition process while satisfying the boundary conditions of different equi-
librium points, a two-point boundary value optimal control problem is formulated. The
feedforward trajectory required for feedforward control is computed offline by solving this
problem. The direct collocation method is employed to convert the constrained continuous
optimal control problem into a nonlinear optimization problem. Furthermore, a time-
varying linear–quadratic (LQ) controller is utilized as a feedback controller to accurately
track the generated feedforward trajectory during real-time control, compensating for
uncertainties in the feedforward control process. The proposed transition control strategy
is experimentally implemented, and its effectiveness and practicality are validated through
the successful tracking of 12 transition trajectories.

Keywords: rotary double inverted pendulum; transition control; direct collocation; optimal
control

MSC: 70E60; 49M25; 34H05; 49M37; 64K10

1. Introduction
The inverted pendulum system has been extensively employed in control engineering

as a canonical example for verifying control theories and evaluating their practical applica-
bility. This system encompasses both nonlinear and non-minimum phase characteristics
alongside inherent instability, making it an invaluable educational platform for teaching
control theory principles. Furthermore, researchers utilize it as a testbed to validate ad-
vanced control strategies. Key research areas related to inverted pendulum systems include
swing-up control, which involves transitioning the pendulum from its initial downward
state to an upright position, and balance control, which stabilizes the system after the
swing-up process [1–6]. Swing-up control is significantly more challenging than balance
control, as it necessitates the design of controllers that account for the system’s nonlinearity,
instability, and inherent input–output constraints [7].

Unlike linear inverted pendulum systems, where the pendulum is constrained to
rotate within a single plane, in rotary inverted pendulum systems, the powered arm also
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rotates. This characteristic enables the pendulum to move within three-dimensional space,
introducing additional challenges to swing-up control. Various methods have been applied
to address the swing-up problem in rotary inverted pendulum systems, including self-
tuning techniques [8], PID controllers [9], and approaches utilizing sliding observers [10].
Recently, research has also solved this problem using AI-based controllers [11,12]. Addi-
tionally, experimental studies have investigated real-world implementations of swing-up
control for rotary inverted pendulums. For instance, Cherrat [13] implemented swing-up
PD and sliding mode control on a rotary inverted pendulum, while Jensen [14] introduced
an updated Furuta pendulum design that improves accessibility for control demonstrations.
These studies contribute to the experimental validation of swing-up control strategies in
rotary systems.

However, for rotary double inverted pendulums with increased pendulum stages,
most studies have implemented swing-up control primarily in simulation environ-
ments [15–18]. In the rare instances utilizing real systems, research is typically limited
to balance control following manually performed swing-up operations [19,20]. A com-
mon limitation of these studies is that either the researchers lacked a real rotary double
inverted pendulum capable of swing-up control or, even when such systems were avail-
able, successful swing-up control was not published. Ibrahim’s study [19], one of the few
works involving real systems, used a rotary double inverted pendulum manufactured by
Quanser [21], a company specializing in educational control system platforms. However,
this system has a structural limitation that restricts free rotation of the second pendulum.
Additionally, Sondarangallage [20] built a custom rotary double inverted pendulum al-
lowing free rotation of the arm and pendulum. Nonetheless, their study only addressed
balance control using sliding mode control in a follow-up paper, without exploring swing-
up control [22].

Based on our extensive experience studying inverted pendulums, we aim to address
the problem by directly constructing a real rotary inverted pendulum system, similar to
Sondarangallage’s approach, instead of purchasing commercially available rotary systems.
The key aim of this process is to ensure that the defining feature of rotary inverted pen-
dulums—unrestricted rotation of the arm—is guaranteed during the construction phase.
In rotary inverted pendulum systems without slip ring structures, wires transmitting ro-
tational information constrain the arm’s rotational displacement, leading to limitations.
To address this issue, the authors’ laboratory utilized a slip ring structure to resolve the
rotational displacement constraint and successfully implemented swing-up control by em-
ploying a Kalman filter [7]. Other researchers aiming to increase the number of pendulum
stages constructed linear double inverted pendulums, demonstrating the effectiveness
of the proposed structure through successful swing-up control [23]. Building upon this
experience, the authors intend to construct a rotary double inverted pendulum system and
implement swing-up control using the real system.

In an inverted pendulum system with a single pendulum, the only swing-up problem
involves transitioning the pendulum from the stable equilibrium point where it hangs
downward to the unstable equilibrium point in the upright position. However, when
the system includes two pendulums, they can be arranged in configurations such as
Down–Down, Down–Up, Up–Down, and Up–Up. This introduces two additional unstable
equilibrium points, in addition to the stable Down–Down equilibrium point and the
unstable Up–Up equilibrium point. These configurations allow for the control problem
to be redefined to include the conventional swing-up problem as well as the transition
control problem, which involves moving between different equilibrium points. Among
the four equilibrium points generated by the two pendulums, there are 11 transition types
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alongside traditional swing-up. This paper experimentally implements all 12 transition
control problems, including swing-up control.

The transition control among the four equilibrium points of the rotary double inverted
pendulum can be designed by referencing the swing-up control strategies of linear inverted
pendulums. In 2007, Graichen introduced a two-degree-of-freedom control structure
that combined feedforward and feedback control to effectively address the swing-up
control problem of linear inverted pendulums, accounting for rail length constraints [24].
The fundamental concept of Graichen’s two-degree-of-freedom control structure involves
the dynamic equations of the multi-stage inverted pendulum to calculate the state and
control input trajectories offline, which guide the pendulum to the upright position. These
calculated trajectories are applied in a feedforward manner to induce the swing-up motion.
During the system’s operation, any discrepancies between the actual trajectory and the
calculated feedforward trajectory are corrected through feedback control, ensuring that
the pendulum closely follows the feedforward trajectory and achieves successful swing-
up. Building on this approach, this paper employs the direct collocation method [25] to
numerically solve the nonlinear optimal control problem to determine the feedforward
trajectory for the rotary double inverted pendulum. The feedback controller design is
similar to Graichen’s, utilizing an LQ control method optimized for time-varying systems.
In Graichen’s method [24], trajectories are generated through a combination of cosine
terms, limiting their flexibility. However, direct collocation generates trajectories by directly
solving the governing equations without assuming a specific functional form. Instead, it
simultaneously satisfies the dynamic equations and constraints to search for the optimal
solution, providing greater flexibility in trajectory design. As a result, using the direct
collocation method increases the likelihood of finding diverse trajectories required for
transition control and can effectively handle more complex dynamic conditions. These
advancements highlight the need for a more generalized transition control framework,
leading to the key contributions of this study, as summarized below.

Based on the limitations of existing swing-up control strategies and the transition
control challenges for rotary double inverted pendulums, this study makes the following
key contributions:

1. Development of a fully operational rotary double inverted pendulum for transition
control
This study introduces a physically constructed rotary double inverted pendulum
system designed to enable all 12 transition control types among four equilibrium
points. Unlike previous studies on balance control or swing-up control in simulations,
this system provides a real-world experimental platform for validating complex
transition control strategies.

2. Flexible feedforward trajectory generation via direct collocation
Unlike conventional methods that rely on predefined functional forms, such as a com-
bination of cosine terms for trajectory generation, this study employs the direct collo-
cation method to numerically solve the nonlinear optimal control problem. This ap-
proach enhances flexibility in trajectory design and enables simultaneous satisfaction
of dynamic constraints, making it highly adaptable to complex transition scenarios.

3. Experimental implementation and validation on a real-world system
A physically constructed rotary double inverted pendulum system is used to experi-
mentally implement 12 different transition control types, demonstrating the proposed
control strategy’s practicality and effectiveness.
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These contributions collectively advance transition control in underactuated robotic
systems, enabling more efficient and versatile control of rotary double inverted pendulums.

Building on these contributions, this revised and expanded version of the paper
experimentally implements 12 transition control types using a physically constructed rotary
double inverted pendulum system, as outlined in the following sections [26]. Section 2
provides a detailed explanation of the structural characteristics of the rotary double inverted
pendulum and derives the system’s dynamic equations based on the Euler–Lagrange
formulation. In Section 3, the equilibrium points and transition control problems are defined
and a method to obtain feedforward trajectories using direct collocation to numerically solve
the nonlinear optimal control problem is proposed. Section 4 describes the experimental
implementation of 12 transition control problems using a two-degree-of-freedom controller
designed with time-varying LQ control. Finally, Section 5 analyzes the results to validate
the proposed method’s effectiveness.

2. Structure and Mathematical Modeling of the Rotary Double
Inverted Pendulum

The rotary double inverted pendulum proposed in this paper is shown in Figure 1. The
system uses an 80 W BLDC motor to provide power to the arm, with position and angular
velocity information measured by an E40H8-5000-3-N-5 encoder (Autonics, Mundelein, IL,
USA) with 20,000 CPR (Counts Per Revolution) resolution. The first pendulum is equipped
with an AMT102-V encoder (Same Sky, Lake Oswego, OR, USA) with an 8192 CPR resolu-
tion, while the second pendulum uses an AS5145B encoder (ams OSRAM, Premstaetten,
Austria) with a 4096 CPR resolution, both selected to meet the design requirements and
provide precise positional information. To ensure structural integrity and accurate dynamic
modeling, the rotary double inverted pendulum was designed and fabricated using Solid-
Works (Solidworks 2024), a 3D CAD modeling tool. During the design phase, the system
was meticulously modeled to maintain geometric symmetry, thereby minimizing structural
imbalances. This symmetry was preserved throughout the manufacturing process to ensure
the physical system adhered to the design specifications. Furthermore, each component’s
material properties and mass distribution were rigorously analyzed to precisely determine
the center of mass (CoM) positions, reducing discrepancies between the theoretical model
and the actual system. These considerations significantly improved consistency between
the mathematical model and the experimental implementation, ultimately enhancing the
accuracy of system identification and control performance. For real-time control and data
acquisition, we developed a rapid control prototyping (RCP) system in our research labo-
ratory [27]. This system is the primary interface for executing control algorithms on the
physical hardware while simultaneously acquiring real-time sensor feedback. To ensure
precise synchronization among sensing, computation, and actuation, the sampling rate
was set to 1 kHz, and MATLAB (Matlab 2022b)/Simulink (Simulink 10.6)-based real-time
processing tools were employed to maintain deterministic execution of the control loop.
This architecture effectively minimizes timing discrepancies and ensures stable real-time
performance throughout the experimental procedure. Figure 2 illustrates the mechanical
concept of the rotary double inverted pendulum.
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Figure 1. A rotary double inverted pendulum constructed in the laboratory.
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Figure 2. Conceptual diagram of a rotary double inverted pendulum.

2.1. Structure of the Rotary Double Inverted Pendulum

This paper uses the International System of Units (SI), and all variables and parameters
are defined accordingly. Here, θ represents the arm’s rotational displacement from its initial
position and u denotes its angular acceleration. CoM1 and CoM2 represent the centers of
mass of the first and second pendulums, respectively. The distances L1, R1, r1, r2, l1, and
l2 are illustrated in the side-view diagram of Figure 3. M1 and M2 denote the masses of
the first and second pendulums, respectively. α is the rotational displacement of the first
pendulum relative to the vertical ground normal, while β represents the relative rotational
displacement of the second pendulum with respect to the first pendulum. Furthermore,
c1 and c2 denote the rotational friction coefficients at the pivots of the first and second
pendulums, respectively. Figure 3 illustrates the inertia tensors I of the first and second
pendulums. Terms such as Ixx1 and Ixx2 represent the moments of inertia along the x-axis
for the first and second pendulums, respectively. Additionally, elements like Ixz1 and Ixz2

also represent components of the inertia tensor. Details of the gear reduction mechanism
are shown in Figure 4.
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Figure 3. Inertia tensors of the first and second pendulums.
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Figure 4. Double reduction structure of the rotary double inverted pendulum.

A BLDC motor is used as the drive component, and a double-reduction structure
employing a timing belt and timing pulley is implemented to minimize backlash. By
applying a 4:1 reduction ratio twice, a total reduction ratio of 16:1 is achieved, which
improves the encoder resolution and enables precise angular velocity control. This structure
is pivotal in enhancing the control performance of the rotary double inverted pendulum.
First, the reduction mechanism minimizes backlash, reducing nonlinear effects. The high
resolution of the encoder facilitates accurate dynamic modeling based on moments of
inertia, reducing the discrepancy between control inputs and actual system responses and
significantly improving model-based control consistency. Moreover, the dual-reduction
structure ensures a stable high-torque output, effectively controlling the instability that can
arise in nonlinear, multi-stage systems such as the rotary double inverted pendulum.

2.2. Mathematical Modeling of the Rotary Double Inverted Pendulum

The dynamic model of the rotary double inverted pendulum can be derived using the
Euler–Lagrange equation as follows:[

n1

n2

]
θ̈ +

[
m11 m12

m21 m22

][
α̈

β̈

]
+

[
d1

d2

]
= 0 (1)
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Each component of Equation (1) is defined as follows:

n1 = h1 cos(α) + h2 cos(α + β),

n2 = h2 cos(α + β),

m11 = h3 + h6 + 2h4 cos(β),

m12 = h6 + h4 cos(β),

m21 = h6 + h4 cos(β),

m22 = h6,

d1 = −h4 sin β(2α̇β̇ + β̇2)− h5 sin α − h7 sin(α + β) + c1α̇

− θ̇2{1
2

h8 sin(2α) + h4 sin(2α + β) +
1
2

h9 sin(2α + 2β)},

d2 = h4 sin β(α̇2)− h7 sin(α + β) + c2 β̇

− θ̇2{1
2

h9 sin(2α + 2β) +
1
2

h4(sin(2α + 2β)− sin β)}.

The terms h1 − h9 are defined as follows, where g represents the gravitational acceler-
ation of 9.81 [m/s2].

h1 = M1l1r1 + M2L1(R1 + r2)− Ixz1,
h2 = M2l2(R1 + r2)− Ixz2,
h3 = Ixx1 + M1l2

1 + M2L2
1,

h4 = M2L1l2,
h5 = g(M1l1 + M2L1),
h6 = Ixx2 + M2l2

2 ,
h7 = M2gl2,
h8 = M1l2

1 + M2L2
1 + Iyy1 − Izz1,

h9 = M2l2
2 + Iyy2 − Izz2.

At this point, Equation (1) can be rearranged as follows:[
α̈

β̈

]
= −

[
m11 m12

m21 m22

]−1{[
n1

n2

]
θ̈ +

[
d1

d2

]}
.

By solving this equation, we obtain

α̈ =
(−m22n1 + m12n2)θ̈ + (−m22d1 + m12d2)

Φ
,

β̈ =
(m21n1 − m11n2)θ̈ + (m21d1 − m11d2)

Φ
,

Φ = m11m22 − m12m21.

Here, the state vector is defined as x1 = θ, x2 = α, x3 = β, x4 = θ̇, x5 = α̇, x6 = β̇, and
x7 =

∫ t
0 θ(τ)dτ, and the angular acceleration θ̈ is represented as the control input u. The

final model equations of the double inverted pendulum can be expressed as the following
nonlinear state-space equations. Note that the last term of the state vector,

∫ t
0 θ(τ)dτ, is

added to eliminate the steady-state error of the arm’s position.
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ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7


︸ ︷︷ ︸

ẋ

=



x4

x5

x6

u
(−m22n1+m12n2)u+(−m22d1+m12d2)

Φ
(m21n1−m11n2)u+(m21d1−m11d2)

Φ
x1


︸ ︷︷ ︸

f (x,u)

(2)

The above-derived dynamic model is later used as the feedforward trajectory genera-
tion model when applying the direct collocation method.

2.3. Estimation of Physical Parameters of the Pendulum

To calculate the optimal state trajectory x∗ and control input trajectory u∗ required
for transition control, we must accurately estimate the system parameters. Accordingly,
parameters such as M1, M2, Ixx1, Ixx2, Iyy1, Iyy2, Izz1, Izz2, Ixz1, Ixz2, l1, l2, c1, c2, and L1, as
illustrated in Figures 2 and 3, must be precisely estimated. Among these, M1, M2, Ixx1,
Ixx2, l1, l2, c1, and c2 can be estimated using the parameter estimation method for the linear
double inverted pendulum described in [23]. This method involves driving the arm of
the rotary inverted pendulum in a specific manner and using the resulting state variable
trajectories when the pendulums are oscillated. However, the values of the parameters that
generate the measured state variable trajectories are not always unique. To better illustrate
this, let us remove the second pendulum from the rotary double inverted pendulum. Then,
the system reduces to a single inverted pendulum and its model equation can be expressed
as follows:

θ̈1 = ζ1 sin θ1 − ζ2θ̇1 −
ζ1

g
cos θ1u. (3)

Here, ζ1 and ζ2 are defined as follows:

ζ1 =
mgl1

Ixx1 + m1l2
1

, ζ2 =
c1

Ixx1 + m1l2
1

. (4)

Because ζ1 and ζ2 are functions of four parameters (Ixx1, l1, m1, and c1), the combina-
tions of Ixx1, l1, m1, and c1 that produce the same ζ1 and ζ2 are not unique. However, if two
of these parameters are fixed, a unique solution can be obtained to estimate the remain-
ing parameters. Therefore, among the four parameters, m1 and l1 (which can be directly
measured) are determined using a scale and a length-measuring device, respectively. The
remaining parameters, Ixx1 and c1, are estimated using experimental data. The parameters
of the second pendulum are estimated using the same approach as the first pendulum.
The inertia tensor can be estimated by using the method described in [7] or 3D modeling
software to calculate the values. The parameters of the rotary double inverted pendulum
obtained through this estimation and measurement are summarized as follows:

The transition control between the pendulum’s equilibrium points is performed using
a 2-DOF control technique combining nonlinear feedforward control and feedback control,
as proposed in [24]. Figure 5 illustrates the 2-DOF control structure. The precomputed
ideal angular acceleration trajectory u∗(t) is combined with the correction input ∆u(t),
which is calculated based on the error ∆x(t) = x∗(t)− x(t) between the predicted and
actual state variables of the inverted pendulum system. This generates the actual angular
acceleration input u(t) = u∗(t) + ∆u(t). This control approach ensures smooth transitions
between equilibrium points and improves the control system’s robustness by compensating
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for possible errors between the planned trajectory and the actual motion. In this paper, the
feedforward trajectory is generated by considering the dynamic constraints and setting up
a nonlinear optimal control problem that numerically minimizes the desired cost function
while satisfying various constraints. The direct collocation method is used to numerically
solve this problem [25]. This method effectively estimates the control inputs and state
variable paths of continuous dynamic systems and is a proven technique for obtaining the
optimal trajectory to achieve control objectives.

*
x uD u

*
u

xxD

Figure 5. The 2-DOF control structure for the double inverted pendulum.

3. Transition Control
3.1. Design of Transition Control

The four equilibrium points of the rotary double inverted pendulum, determined by
the states of the first and second pendulum segments, are illustrated in Figure 6. In this
paper, the equilibrium points are defined by assigning the states “Up” and “Down” to
1 and 0, respectively, and representing them as binary numbers. Starting with the first
pendulum segment, the equilibrium point where both the first and second segments are
facing downward (Down–Down) corresponds to the binary number 00 and is labeled as
EP0, while the equilibrium point corresponding to the Up–Down state is represented as
10 and labeled as EP2. This naming convention offers the advantage of assigning equilib-
rium points systematically according to the same binary rule, even when the number of
pendulum segments increases. It also facilitates intuitive understanding of the pendulum’s
equilibrium states. Henceforth, in this paper, the equilibrium points of the pendulum are
denoted as EP0 (Down–Down), EP1 (Down–Up), EP2 (Up–Down), and EP3 (Up–Up).

EP0 EP1 EP2 EP3

Figure 6. Four equilibrium points of a rotary double inverted pendulum.

Transition control is a complex problem that must satisfy both the stability of each
equilibrium point and the transition process between them. To address this, the transition
control follows three key steps. Each step is designed to ensure stability during the
transition process, perform the transition operation, and maintain final stability.
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1. The linear control is performed to ensure the system’s stability at the current equilib-
rium point.

2. The transition control is carried out to move from the current equilibrium point to
the next.

3. The linear control is performed to maintain stability at the next equilibrium point.

This structure is similar in principle to the swing-up problem, which involves moving
the pendulum from the initial state (EP0) to the upright state (EP3). Therefore, the transition
process must satisfy both stability and transition requirements at each step. In particular,
the double inverted pendulum system has 12 distinct transition trajectories, making it
essential to design and conduct experiments that satisfy the characteristics and conditions
of each trajectory. The 12 transition trajectory paths proposed in this paper are constructed
as shown in Figure 7.

Figure 7. Twelve-step transition diagram of a double inverted pendulum.

3.2. Direct Collocation

The direct collocation method is an iterative numerical solution technique imple-
mented using a nonlinear optimization solver. In this method, the shape of the initial
trajectory provided by the designer can influence both the numerical solutions’ compu-
tation time and the resulting trajectory shape. By considering these characteristics, the
designer can select an appropriate initial trajectory and apply direct collocation to derive
a trajectory suitable for a specific transition control problem. In this paper, the initial
trajectory is designed using the simplest form of a straight-line trajectory that connects the
start and end boundary conditions. Additionally, a cost function is designed to satisfy all
the specified constraints and boundary conditions, thereby formulating a general nonlinear
optimal control problem. Equation (5) represents the optimal control problem formulated
to compute the optimal trajectory.

Minimize
u(t) J(x(t), u(t))

subject to input/output constraint,
dynamic equations,

boundary conditions.

(5)

In the above equation, J(x(t), u(t)) represents the cost function and is defined as an
optimal control problem that satisfies the constraints established using the actual system
model parameters listed in Table 1. The cost function can be used to minimize time or opti-
mize the cost over a given time period. The constraints and limitations applied to the cost
function include the dynamic equations of the rotary double inverted pendulum (2) and,
as shown in (6), restrictions on the maximum arm rotation during the control process, as
well as limitations on the arm’s maximum angular velocity and input angular acceleration
within the actuator’s linear operating range. These conditions are crucial in ensuring the
operational feasibility and stability of the control system.∣∣x∗1 ∣∣ ≤ θlimit, |x4

∗| ≤ θ̇limit, |u∗| ≤ ulimit. (6)
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The specified limits are all defined as positive values, with θlimit > 0, θ̇limit > 0, and
ulimit > 0 representing the maximum allowable values for the arm’s output displacement,
output angular velocity, and input angular acceleration, respectively. These limits reflect
the actual operational constraints of the rotary double inverted pendulum used in the
experiments, and the corresponding constraints are explicitly detailed in Table 2.

To satisfy various constraints in the 12 distinct transition control processes, additional
constraints can also be applied to the pendulum’s rotational angles α and β, as well as their
angular velocities α̇ and β̇. Furthermore, at the start time (t = 0) and end time (t = T) of
the transition control, the boundary conditions corresponding to the equilibrium points for
a specific transition must be satisfied. For instance, the starting and ending points differ
depending on the transition number, and this situation is shown in Table 3.

Table 1. Summary of the parameters for the rotary double inverted pendulum.

Parameter Value

M1 0.187 kg
M2 0.132 kg
Ixx1 1.0415 × 10−3 kgm2

Ixx2 8.8210 × 10−4 kgm2

Iyy1 4.3569 × 10−3 kgm2

Iyy2 4.9793 × 10−3 kgm2

Izz1 3.3179 × 10−3 kgm2

Izz2 4.8178 × 10−3 kgm2

Ixz1 3.7770 × 10−4 kgm2

Ixz2 1.9823 × 10−4 kgm2

l1 0.072 m
l2 0.133 m
c1 2.4100 × 10−6

c2 1.0900 × 10−6

L1 0.1645 m
R1 0.1625 m
r1 0.1597 m
r2 0.0209 m

Table 2. Constraints for the experiment.

Transition Number θlimit[rad] θ̇limit[rad/s] ulimit[rad/s2]

1 1.7 7.0 50
2 1.5 7.0 50
3 1.5 7.0 60
4 1.5 12 70
5 1.5 7.0 50
6 1.5 7.0 50
7 1.5 7.0 70
8 1.5 7.0 50
9 1.5 7.0 50

10 1.5 7.0 50
11 1.5 7.0 50
12 1.5 8.0 50
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Table 3. Boundary condition for 12 trajectories.

Transition Number x∗(0) x∗(T)

1
[

0,−π, 0, 0, 0, 0, 0
] [

0,−π,−π, 0, 0, 0, 0
]

2
[

0,−π,−π, 0, 0, 0, 0
] [

0, 0,−π, 0, 0, 0, 0
]

3
[

0, 0,−π, 0, 0, 0, 0
] [

0, 2π, 0, 0, 0, 0, 0
]

4
[

0, 0, 0, 0, 0, 0, 0
] [

0, 0,−π, 0, 0, 0, 0
]

5
[

0, 0,−π, 0, 0, 0, 0
] [

0,−π,−π, 0, 0, 0, 0
]

6
[

0,−π,−π, 0, 0, 0, 0
] [

0, 0, 0, 0, 0, 0, 0
]

7
[

0, 0, 0, 0, 0, 0, 0
] [

0,−π,−π, 0, 0, 0, 0
]

8
[

0,−π,−π, 0, 0, 0, 0
] [

0,−π, 0, 0, 0, 0, 0
]

9
[

0,−π, 0, 0, 0, 0, 0
] [

0, 0,−π, 0, 0, 0, 0
]

10
[

0, 0,−π, 0, 0, 0, 0
] [

0,−π, 0, 0, 0, 0, 0
]

11
[

0,−π, 0, 0, 0, 0, 0
] [

0, 0, 0, 0, 0, 0, 0
]

12
[

0, 0, 0, 0, 0, 0, 0
] [

0,−π, 0, 0, 0, 0, 0
]

The transition trajectories obtained using the direct collocation method are shown in
Figures 8 and 9. Figure 8 illustrates the representative swing-up trajectory transitioning
from EP0 to EP3, corresponding to transition 11. Figure 9 represents the control input
trajectories used in all transitions. In the control input trajectories for transitions 4–7,
the trajectories satisfy the prescribed constraints and boundary conditions during the
transition process.
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Figure 8. Feedforward transition trajectory from EP0 to EP3.
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Transition 7: EP3 to EP1
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Transition 11 : EP0 to EP3
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Figure 9. Feedforward transition trajectories for control input.

4. Experimental Results
4.1. Experimental Setup

The design of the feedback controller for trajectory tracking follows a similar approach
to that of Graichen [24], as mentioned in the introduction, but with the distinction that
this study applies the optimal LQ control technique for time-varying systems across the
entire process. In Graichen’s research, the control system was shown to lose controllability
due to high compensation values in regions where the gain coefficients increased sharply,
leading to the decision to discontinue feedback in specific intervals. However, in this study,
a consistent control strategy is maintained by utilizing the calculated time-varying LQ
control gains throughout all intervals during transition control. This time-varying LQ
controller utilizes a linearized dynamic system based on the swing-up trajectory of the
double inverted pendulum system. The state equation, which varies over time and is
used in this process, is modeled as a time-varying form of A and B values, as shown in
Equation (7).

A(t) =
∂ f
∂x

∣∣∣∣
x∗(t),u∗(t)

, B(t) =
∂ f
∂u

∣∣∣∣
x∗(t),u∗(t)

. (7)

Here, x∗(t) and u∗(t) represent the feedforward trajectories for states and inputs
obtained using the direct collocation method. The difference between the computed
feedforward trajectory and the actual state variable values is calculated as ∆x(t) = x∗(t)−
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x(t), and the correction input ∆u(t), generated to compensate for this error, is defined by
Equation (8):

∆u(t) = −K(t)∆x(t). (8)

At this point, the time-varying state equation can be expressed as Equation (9):

∆ẋ(t) = A(t)∆x(t) + B(t)∆u(t). (9)

The cost function is defined as follows:

J = ∆xT(T)HTr∆x(T) +
∫ T

0 ∆x(t)TQTr∆x(t) + ∆u(t)T RTr∆u(t) dt. (10)

Here, the subscript Tr indicates the design variables for the transition process. In
Equation (10), the variables with this subscript satisfy HTr ≥ 0, QTr ≥ 0, and RTr > 0.
The matrix HTr represents the weight on the terminal state, QTr represents the weight on
the system state, and RTr represents the weight on the control input. These weights are
determined through experimental processes and are set to the following values:

QTr = diag(1, 300, 500, 1, 1, 1, 1),
RTr = 1.

(11)

In addition, the time-varying gain K(t) must be calculated by solving the differential
Riccati equation:

Ṗ(t) = −A(t)T P(t)− P(t)A(t) + P(t)B(t)R−1
Tr BT(t)P(t)− QTr,

P(T) = HTr.
(12)

Finally, the time-varying gain K(t) can be computed using Equation (13). For example,
the LQ control gain K(t) applied in Figure 8 can be observed in Figure 10.

K(t) = R−1
Tr BT(t)P(t). (13)
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Figure 10. Time-varying LQ gain of feedforward transition trajectory from EP0 to EP3.

4.2. Experimental Data and Analysis

To conduct the experiments, 12 transition control types are implemented by combining
the swing-up trajectory obtained using the direct collocation method presented in Section 3
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with the feedback controller designed using LQ control. The transition sequences are
structured according to Figure 7, and each transition sequence between equilibrium points
is designed to be traversed only once. The duration of one cycle, which includes a state
transition and linear control at an equilibrium point, is set to 5 s. The time required for state
transitions varies from 1.8 s to 3 s, as shown in Table 4. During the time following each
transition, linear control at the corresponding equilibrium point is performed to stabilize
the system until the next transition control begins.

The first transition begins at the 5 s mark, and Figure 11 illustrates all transition
control results sequentially. Solid lines represent the simulation model trajectories, and
dotted lines show the measured closed-loop trajectory with compensation applied. Due
to the compensation effect of closed-loop control, the arm’s rotation angle θ and angular
velocity θ̇ exhibit significant differences immediately after the transition; however, through
linear control at the equilibrium point, the θ value is gradually adjusted to approach
zero. Additionally, the graphs for α and β, the most critical variables in transition control,
demonstrate very precise tracking of the predicted trajectories. To further illustrate the
experimental validation of the proposed method, a video of the experiments has been
uploaded to YouTube. Figure 12 presents a screenshot of the video, and the full video can
be accessed at the following link: https://youtu.be/J8vRJtQ-t3I, accessed on 15 January
2025. (video title: “12 transition controls of a rotary double inverted pendulum (with
double reduction timing pulleys)”; channel name: Embedded Control Lab). This video
visually demonstrates the transition control process, serving as a supplementary resource
to the experimental results discussed in this section.

0 10 20 30 40 50 60 70
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0

2

0 10 20 30 40 50 60 70
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5

0 10 20 30 40 50 60 70

-10
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simulation

true data
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Time
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0

5

Figure 11. Twelve-step transition trajectories of a rotary double inverted pendulum: model trajectory
(solid line) and actual trajectory (dotted line).

https://youtu.be/J8vRJtQ-t3I
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Figure 12. A YouTube video capture of the 12 transition controls of a rotary double inverted pendulum.

Table 4. Transition timing parameters used in the experiment.

Starting EP Destination EP T [s]

EP0 EP1 2.000
EP2 3.000
EP3 2.500

EP1 EP0 1.800
EP2 2.500
EP3 2.500

EP2 EP0 2.500
EP1 2.000
EP3 2.921

EP3 EP0 2.500
EP1 2.000
EP2 2.000

5. Conclusions
This study establishes an experimental environment using a lab-built rotary double

inverted pendulum system and investigates 12 transition control problems, including
swing-up control. For segmental transition control, the direct collocation method was
introduced to generate feedforward trajectories, and a two-degree-of-freedom controller
incorporating the designed time-varying LQ control implemented the 12 transition control
paths. Finally, the proposed method’s efficiency and feasibility were demonstrated by
sequentially controlling the 12 paths, which enables transitions among the four equilibrium
points of the double inverted pendulum, over 60 s, with each path executed within 5 s.

The main contributions of this study are as follows: Firstly, it extends the conventional
swing-up problem by defining and experimentally implementing transition control prob-
lems between equilibrium points. Secondly, it effectively addresses complex transition
control problems by utilizing a two-degree-of-freedom control structure that integrates
feedforward trajectory generation via the direct collocation method and time-varying LQ
control. Lastly, the proposed method’s practicality is validated through experimental tests
using a lab-built rotary double inverted pendulum system.

Building upon these contributions, future research could incorporate AI (artificial
intelligence)-based techniques, such as reinforcement learning, to develop adaptive and
robust control systems. By advancing the proposed approach and exploring its applicability
to multidimensional and multi-actuator systems, this strategy could evolve into a universal
control method for complex dynamic systems, further expanding its potential impact.
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