Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power
<p>Graphical abstract of the proposed methodology.</p> "> Figure 2
<p>MMFO vs. MFO convergence characteristics curve for case 1.</p> "> Figure 3
<p>MMFO vs. MFO comparison during total fuel cost minimization for 3 thermal generating units: (<b>a</b>) CDF, (<b>b</b>) boxplot illustration, (<b>c</b>) histogram, (<b>d</b>) probability plot for normal distribution, and (<b>e</b>) quantile–quantile plot.</p> "> Figure 4
<p>Convergence characteristic of MMFO vs. MFO for 13-unit system.</p> "> Figure 5
<p>MMFO vs. MFO comparison during total fuel cost minimization for 13 thermal generating units: (<b>a</b>) CDF, (<b>b</b>) boxplot illustration, (<b>c</b>) histogram, (<b>d</b>) probability plot for normal distribution, and (<b>e</b>) quantile–quantile plot.</p> "> Figure 6
<p>MMFO convergence graphs for IEEE six-generator system with different scaling.</p> "> Figure 7
<p>Convergence characteristic of MMFO vs. MFO for 40-unit system with wind power.</p> "> Figure 8
<p>MMFO vs. MFO statistical analysis during total fuel cost minimization for 37 thermal generating units and 3 wind power: (<b>a</b>) CDF, (<b>b</b>) boxplot illustration, (<b>c</b>) histogram, (<b>d</b>) probability plot for normal distribution, and (<b>e</b>) quantile–quantile plot.</p> ">
Abstract
:1. Introduction
- A novel metaheuristic optimization algorithm referred to as MMFO that aims to improve the exploration capacity of the traditional MFO to the ELD problem.
- The proposed MMFO is successfully applied to four well-known IEEE ELD test systems as well as on 11 benchmark functions to verify the MMFO.
- The proposed approach is validated in independent runs using various statistical illustrations, including minimal fitness value quantile plots, boxplots, histograms, standard normal plots, and cumulative distribution function plots for each distinct case study for accuracy, robustness, and stability.
2. Mathematical Modeling of Problem Formulation
2.1. Objective Function
2.1.1. Characteristics of a Smooth Cost Function
2.1.2. Characteristics of Non-Smooth Cost Functions
2.1.3. Characteristics of Non-Smooth Emission Functions
2.1.4. Wind Power Generation Availability Cost Function
2.2. Constraint Functions
2.2.1. Constraint on Power Balance
2.2.2. Constraints on Generation Limits
2.2.3. Ramp Rate Limit Constraints
3. Design Methodology Using MMFO
3.1. Moth Flame Optimization
3.1.1. Initialize Parameters
3.1.2. The Moth’s Location Updating
3.2. Modified Moth Flame Optimizer
Archimedean Spiral Motion
Algorithm 1: Pseudocode of MMFO |
Number of moths (N); Maximum number of iterations (MaxIter); Search space bounds (LB, UB); Moths’ positions (M) randomly within the search space; Number of flames (F), initially equal to N.
Set the initial positions of flames (F) as the top N moths’ positions.
For each moth Mi, evaluate the fitness using the objective function.
Rank moths from best to worst based on fitness values. The best moths are selected as flames (F).
|
4. Results and Discussion
4.1. Case 1. Three Thermal Generating Units with a Load Demand of 850 MW
4.2. Case 2. Thirteen Thermal Generating Units with 1800 MW Load Demands
4.3. Case 3. Six Generating Units with 1000 MW Load Demand with Emission
4.4. Case 4. Thirty-Seven Thermal Generating Units and Three Wind Power Units with Demand of 10,500 MW
5. Comparative and Statistical Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arul, R.; Ravi, G.; Velusami, S. An improved harmony search algorithm to solve economic load dispatch problems with generator constraints. Electr. Eng. 2014, 96, 55–63. [Google Scholar] [CrossRef]
- Yu, J.; Kim, C.-H.; Rhee, S.-B. Clustering cuckoo search optimization for economic load dispatch problem. Neural Comput. Appl. 2020, 32, 16951–16969. [Google Scholar] [CrossRef]
- Walters, D.C.; Sheble, G.B. Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Syst. 1993, 8, 1325–1332. [Google Scholar] [CrossRef]
- Ismaeel, A.A.; Houssein, E.H.; Khafaga, D.S.; Abdullah Aldakheel, E.; AbdElrazek, A.S.; Said, M. Performance of osprey optimization algorithm for solving economic load dispatch problem. Mathematics 2023, 11, 4107. [Google Scholar] [CrossRef]
- Ramalingam, R.; Karunanidy, D.; Alshamrani, S.S.; Rashid, M.; Mathumohan, S.; Dumka, A. Oppositional Pigeon-Inspired Optimizer for Solving the Non-Convex Economic Load Dispatch Problem in Power Systems. Mathematics 2022, 10, 3315. [Google Scholar] [CrossRef]
- Said, M.; El-Rifaie, A.M.; Tolba, M.A.; Houssein, E.H.; Deb, S. An efficient chameleon swarm algorithm for economic load dispatch problem. Mathematics 2021, 9, 2770. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, Z.; Wang, J. Economic dispatch for smart buildings with load demand of high volatility based on quasi-quadratic online adaptive dynamic programming. Mathematics 2022, 10, 4701. [Google Scholar] [CrossRef]
- Hsieh, Y.-Z.; Su, M.-C. A Q-learning-based swarm optimization algorithm for economic dispatch problem. Neural Comput. Appl. 2016, 27, 2333–2350. [Google Scholar] [CrossRef]
- Jain, N.K.; Nangia, U.; Jain, A. PSO for Multiobjective Economic Load Dispatch (MELD) for Minimizing Generation Cost and Transmission Losses. J. Inst. Eng. Ser. B 2016, 97, 185–191. [Google Scholar] [CrossRef]
- Jain, N.K.; Nangia, U.; Jain, J. Economic Load Dispatch Using Adaptive Social Acceleration Constant Based Particle Swarm Optimization. J. Inst. Eng. Ser. B 2018, 99, 431–439. [Google Scholar] [CrossRef]
- Jayabarathi, T.; Bahl, P.; Ohri, H.; Yazdani, A.; Ramesh, V. A hybrid BFA-PSO algorithm for economic dispatch with valve-point effects. Front. Energy 2012, 6, 155–163. [Google Scholar] [CrossRef]
- Jayabarathi, T.; Yazdani, A.; Ramesh, V. Application of the invasive weed optimization algorithm to economic dispatch problems. Front. Energy 2012, 6, 255–259. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Bath, S.K.; Dhillon, J.S. Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Comput. Appl. 2016, 27, 1301–1316. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Bhadoria, A.; Bath, S.K. Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer. Neural Comput. Appl. 2016, 28, 2181–2192. [Google Scholar] [CrossRef]
- Labbi, Y.; Ben Attous, D. A hybrid particle swarm optimization and pattern search method to solve the economic load dispatch problem. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 435–443. [Google Scholar] [CrossRef]
- Labbi, Y.; Ben Attous, D. A Hybrid Big Bang–Big Crunch optimization algorithm for solving the different economic load dispatch problems. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 275–286. [Google Scholar] [CrossRef]
- Labbi, Y.; Ben Attous, D.; Mahdad, B. Artificial bee colony optimization for economic dispatch with valve point effect. Front. Energy 2017, 8, 449–458. [Google Scholar] [CrossRef]
- Mahdad, B.; Srairi, K. Solving practical economic dispatch using hybrid GA–DE–PS method. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 391–398. [Google Scholar] [CrossRef]
- Murali, K.; Jayabarathi, T. Solution to economic dispatch problem with valve-point loading effect by using catfish PSO algorithm. Front. Energy 2014, 8, 290–296. [Google Scholar] [CrossRef]
- Nascimento, M.H.R.; Nunes, M.V.A.; Rodríguez, J.L.M.; Leite, J.C. A new solution to the economical load dispatch of power plants and optimization using differential evolution. Electr. Eng. 2017, 99, 561–571. [Google Scholar] [CrossRef]
- Pattanaik, J.K.; Basu, M.; Dash, D.P. Dynamic economic dispatch: A comparative study for differential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing. J. Electr. Syst. Inf. Technol. 2019, 6, 1. [Google Scholar] [CrossRef]
- Prakash, T.; Singh, V.P.; Singh, S.P.; Mohanty, S.R. Economic load dispatch problem: Quasi-oppositional self-learning TLBO algorithm. Energy Syst. 2018, 9, 415–438. [Google Scholar] [CrossRef]
- Yu, X.; Yu, X.; Lu, Y.; Sheng, J. Economic and emission dispatch using ensemble multi-objective differential evolution algorithm. Sustainability 2018, 10, 418. [Google Scholar] [CrossRef]
- Jiang, S.; Ji, Z.; Wang, Y. A novel gravitational acceleration enhanced particle swarm optimization algorithm for wind–thermal economic emission dispatch problem considering wind power availability. Int. J. Electr. Power Energy Syst. 2015, 73, 1035–1050. [Google Scholar] [CrossRef]
- Pandit, M.; Chaudhary, V.; Dubey, H.M.; Panigrahi, B. Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection. Int. J. Electr. Power Energy Syst. 2015, 73, 259–272. [Google Scholar] [CrossRef]
- Morshed, M.J.; Asgharpour, A. Hybrid imperialist competitive-sequential quadratic programming (HIC-SQP) algorithm for solving economic load dispatch with incorporating stochastic wind power: A comparative study on heuristic optimization techniques. Energy Convers. Manag. 2014, 84, 30–40. [Google Scholar] [CrossRef]
- Hagh, M.T.; Kalajahi, S.M.S.; Ghorbani, N. Solution to economic emission dispatch problem including wind farms using Exchange Market Algorithm Method. Appl. Soft Comput. 2020, 88, 106044. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Chang, C.C.W.; Ding, T.J.; Han, W.; Chai, C.C.; Yam, C.M.; Yian, H.C.; Xin, L.H. Moth flame optimization for the maximum power point tracking scheme of photovoltaic system under partial shading conditions. Energy Rep. 2023, 9, 374–379. [Google Scholar] [CrossRef]
- Wadood, A.; Park, H. A Novel Application of Fractional Order Derivative Moth Flame Optimization Algorithm for Solving the Problem of Optimal Coordination of Directional Overcurrent Relays. Fractal Fract. 2024, 8, 251. [Google Scholar] [CrossRef]
- Wadood, A.; Ahmed, E.; Rhee, S.B.; Sattar Khan, B. A Fractional-Order Archimedean Spiral Moth–Flame Optimization Strategy to Solve Optimal Power Flows. Fractal Fract. 2024, 8, 225. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Zamani, H.; Fatahi, A.; Mirjalili, S. MFO-SFR: An enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategy. Mathematics 2023, 11, 862. [Google Scholar] [CrossRef]
- Khan, B.S.; Raja, M.A.Z.; Qamar, A.; Chaudhary, N.I. Design of moth flame optimization heuristics for integrated power plant system containing stochastic wind. Appl. Soft Comput. 2021, 104, 107193. [Google Scholar] [CrossRef]
- Hammer, Ø. The Perfect Shape: Spiral Stories; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Guo, M.; Wang, J.S.; Zhu, L.; Guo, S.S.; Xie, W. Improved ant lion optimizer based on spiral complex path searching patterns. IEEE Access 2020, 8, 22094–22126. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.; Gong, D.W.; Yue, C. Problem Definitions and Evaluation Criteria for the CEC 2019 Special Session on Multimodal Multiobjective Optimization; Computational Intelligence Laboratory, Zhengzhou University: Zhengzhou, China, 2019; pp. 353–370. [Google Scholar]
- Tsai, M.-T.; Gow, H.-J.; Lin, W.-M. A novel stochastic search method for the solution of economic dispatch problems with non-convex fuel cost functions. Int. J. Electr. Power Energy Syst. 2011, 33, 1070–1076. [Google Scholar] [CrossRef]
- Alsumait, J.S.; Sykulski, J.K.; Al-Othman, A.K. A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems. Appl. Energy 2010, 87, 1773–1781. [Google Scholar] [CrossRef]
- Duman, S.; Güvenç, U.; Yörükeren, N. Gravitational search algorithm for economic dispatch with valve-point effects. Int. Rev. Electr. Eng. 2010, 5, 2890–2895. [Google Scholar]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 2003, 7, 83–94. [Google Scholar] [CrossRef]
- Cai, J.; Li, Q.; Li, L.; Peng, H.; Yang, Y. A hybrid CPSO–SQP method for economic dispatch considering the valve-point effects. Energy Convers. Manag. 2012, 53, 175–181. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A. Island bat algorithm for optimization. Expert Syst. Appl. 2018, 107, 126–145. [Google Scholar] [CrossRef]
- Basetti, V.; Rangarajan, S.S.; Shiva, C.K.; Pulluri, H.; Kumar, R.; Collins, R.E.; Senjyu, T. Economic emission load dispatch problem with valve-point loading using a novel quasi-oppositional-based political optimizer. Electronics 2021, 10, 2596. [Google Scholar] [CrossRef]
- Lin, W.-M.; Gow, H.-J.; Tsai, M.-T. Combining of Direct Search and Signal-to-Noise Ratio for economic dispatch optimization. Energy Convers. Manag. 2011, 52, 487–493. [Google Scholar] [CrossRef]
- Wadood, A.; Sattar Khan, B.; Albalawi, H.; Alatwi, A.M. Design of the Novel Fractional Order Hybrid Whale Optimizer for Thermal Wind Power Generation Systems with Integration of Chaos Infused Wind Power. Fractal Fract. 2024, 8, 379. [Google Scholar] [CrossRef]
- Wadood, A.; Khan, B.S.; Khurshaid, T.; Kim, K.C.; Rhee, S.B. Chaos-infused wind power integration in the grey wolf optimal paradigm for combine thermal-wind power plant systems. Front. Energy Res. 2024, 12, 1301700. [Google Scholar] [CrossRef]
- Wadood, A.; Ghani, A. An application of Gorilla troops optimizer in solving the problem of economic load dispatch considering valve point loading effect. Eng. Res. Express 2024, 6, 015310. [Google Scholar]
- Reddy, A.S.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96, 237–245. [Google Scholar] [CrossRef]
- Zou, D.; Li, S.; Li, Z.; Kong, X. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses. Energy Convers. Manag. 2017, 139, 45–70. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Abualigah, L.; Eid, A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021, 182, 115205. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Niknam, T.; Roosta, A.; Malekpour, A.R.; Zare, M. Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method. Energy 2021, 37, 322–335. [Google Scholar] [CrossRef]
- Khan, B.S.; Qamar, A.; Wadood, A.; Almuhanna, K.; Al-Shamma, A.A. Integrating economic load dispatch information into the blockchain smart contracts based on the fractional-order swarming optimizer. Front. Energy Res. 2024, 12, 1350076. [Google Scholar] [CrossRef]
Common Setting | Default Setting | ||
---|---|---|---|
Algorithm | Population Size | Number of Iterations | |
PSO | 30 | 1000 | Inertia weight = 0.7, cognitive C1 = 2, Social (C2) = 2 |
GSA | 30 | 1000 | Gravitational constant (G) = 1 |
BA | 30 | 1000 | Loudness (A) = 0.5, pulse rate = 0.5 |
MFO | 30 | 1000 | Spiral function parameter (b) = 1 |
MMFO | 30 | 1000 | b = 1 + 0.5 × (1 − Iteration/Max_iteration); |
Functions | Dim | MFO [28] | PSO [28] | GSA [28] | BA [28] | MMFO | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | STD | Mean | STD | Mean | STD | Mean | STD | Mean | STD | ||
100 | 0.000117 | 0.00015 | 1.32115 | 1.15388 | 608.232 | 464.654 | 20792.4 | 5892.40 | 0.0039 | 0.0031 | |
100 | 0.000639 | 0.000877 | 7.71556 | 4.13212 | 22.7526 | 3.36513 | 89.785 | 41.9577 | 0.0040 | 0.0014 | |
100 | 696.730 | 188.527 | 736.393 | 361.781 | 135,760 | 48,652.6 | 62,481.3 | 29,769.1 | 1.4061 × 103 | 1.6103 × 103 | |
100 | 70.6864 | 5.27505 | 12.9728 | 2.63443 | 78.7819 | 2.81410 | 49.7432 | 10.14363 | 31.6315 | 10.5376 | |
100 | 139.148 | 120.260 | 77,360.83 | 51,156.15 | 741.003 | 781.2393 | 199,512 | 125,238 | 83.1924 | 109.3115 | |
100 | 0.00011 | 9.87 × 10−5 | 286.651 | 107.079 | 3080.96 | 898.635 | 17,053.4 | 4917.56 | 0.0037 | 0.0027 | |
100 | 0.091155 | 0.04642 | 1.037316 | 0.310315 | 0.112975 | 0.037607 | 6.045055 | 3.045277 | 0.0211 | 0.0064 | |
100 | 8496.78 | 725.8737 | −3571 | 430.7989 | −2352.32 | 382.167 | 65,535 | 0 | −9.4023 × 103 | 585.8782 | |
100 | 84.600 | 16.1665 | 124.29 | 14.2509 | 31.0001 | 13.6605 | 96.2152 | 19.5875 | 74.9637 | 22.3468 | |
100 | 1.2603 | 0.72956 | 9.1679 | 1.56898 | 3.74098 | 0.17126 | 15.9460 | 0.77495 | 0.0958 | 0.4038 | |
100 | 0.0190 | 0.02173 | 12.418 | 4.16583 | 0.04978 | 0.04978 | 220.281 | 54.7066 | 0.0165 | 0.0143 |
Function | Best | Median | Mean | Std | Worst | |||||
---|---|---|---|---|---|---|---|---|---|---|
MMFO | MFO | MMFO | MFO | MMFO | MFO | MMFO | MFO | MMFO | MFO | |
F1 | 7.5000 × 10−1 | 7.5605 × 10−1 | 7.5000 × 10−1 | 7.8610 × 10−1 | 7.5004 × 10−1 | 8.0100 × 10−1 | 4.9873 × 10−4 | 2.9151 × 10−3 | 8.0952 × 10−1 | 1.0502 × 100 |
F2 | 7.5000 × 10−1 | 1.4078 × 100 | 7.5000 × 10−1 | 1.4673 × 100 | 7.5251 × 10−1 | 1.5807 × 100 | 1.1347 × 10−2 | 2.6191 × 10−3 | 1.9372 × 100 | 3.2955 × 100 |
F3 | 1.0000 × 100 | 1.0789 × 100 | 1.0000 × 100 | 1.0975 × 100 | 1.0002 × 100 | 1.1002 × 100 | 1.0677 × 10−3 | 5.8074 × 10−5 | 1.1315 × 100 | 1.1488 × 100 |
F4 | 7.5000 × 10−1 | 1.5865 × 100 | 7.5000 × 10−1 | 1.6938 × 100 | 7.5008 × 10−1 | 1.7240 × 100 | 9.0085 × 10−4 | 3.3394 × 10−3 | 8.4823 × 10−1 | 2.1179 × 100 |
F5 | 1.7559 × 100 | 7.4318 × 10−1 | 1.7559 × 100 | 7.6418 × 10−1 | 1.7560 × 100 | 7.6312 × 10−1 | 4.5372 × 10−4 | 1.4216 × 10−4 | 1.8116 × 100 | 7.8235 × 10−1 |
F6 | 1.0000 × 100 | 4.3480 × 10−4 | 1.0000 × 100 | 2.2378 × 10−1 | 1.0003 × 100 | 2.8438 × 10−1 | 2.6533 × 10−3 | 2.4468 × 10−3 | 1.2731 × 100 | 8.6231 × 10−1 |
F7 | 1.3603 × 100 | 1.8459 × 100 | 1.3603 × 100 | 2.0237 × 100 | 1.3607 × 100 | 2.0365 × 100 | 5.0828 × 10−3 | 2.6639 × 10−4 | 2.0788 × 100 | 2.4668 × 100 |
F8 | 2.0373 × 100 | 4.4031 × 100 | 2.0373 × 100 | 4.5035 × 100 | 2.0375 × 100 | 4.5165 × 100 | 2.7515 × 10−3 | 1.3499 × 10−4 | 2.4898 × 100 | 4.7865 × 100 |
F9 | 9.5950 × 10−1 | 1.2183 × 100 | 9.5950 × 10−1 | 1.2426 × 100 | 9.5975 × 10−1 | 1.2480 × 100 | 2.5713 × 10−3 | 6.9523 × 10−5 | 1.2761 × 100 | 1.3536 × 100 |
F10 | 2.9160 × 100 | 1.3471 × 101 | 2.9160 × 100 | 1.3637 × 101 | 2.9161 × 100 | 1.3695 × 101 | 2.8887 × 10−4 | 5.7093 × 10−4 | 2.9544 × 100 | 1.4400 × 101 |
Test Metric | p-Value | Test Statistic (W) | Conclusion (Reject H0) |
---|---|---|---|
Best value | 0.0001 | 116866.0000 | Yes |
Median value | 0.0000 | 116867.0000 | Yes |
Mean value | 0.0001 | 116884.0000 | Yes |
Std | 0.0000 | 423354.0000 | Yes |
Worst value | 0.0000 | 129714.0000 | Yes |
Algorithm | P1 (MW) | P1 (MW) | P1 (MW) | PG (MW) | Cost (USD/h) |
---|---|---|---|---|---|
GSA [39] | 300.210 | 149.795 | 399.995 | 850 | 8234.1 |
PSO-SQP [38] | 300.3 | 400 | 149.7 | 850 | 8234.1 |
PSO [38] | 300.3 | 400 | 149.7 | 850 | 8234.1 |
GA [38] | 398.7 | 399.6 | 50.1 | 848.4 | 8222.1 |
GA-PS-SQP [38] | 300.30 | 400 | 149.70 | 850 | 8234.10 |
QOPO [43] | 300.25 | 400 | 149.75 | 850 | 8234.07 |
MFO | 358.0935 | 365.7145 | 126.192 | 850 | 8198.2314 |
MMFO | 396.769 | 328.4747 | 124.7563 | 850 | 8194.4800 |
Method | Minimum Cost (USD/h) |
---|---|
GWO [13] | 8253.11 |
GA [37] | 8234.419 |
EP [37] | 8234.1357 |
SA [37] | 8234.1355 |
GA-PS-SQP [38] | 8234.1 |
CPSO-SQP [41] | 8234.07 |
NDS [44] | 8234.07 |
MFEP [40] | 8234.08 |
NSS [37] | 8234.08 |
CPSO [41] | 8234.07 |
GSA[39] | 8234.1 |
iBA [42] | 8234.07 |
GAB [40] | 8234.08 |
QOPO [43] | 8234.07 |
MFO | 8198.23141 |
MMFO | 8194.48008 |
Unit | GWO [13] | NN-EPSO [13] | MFO | MMFO |
---|---|---|---|---|
1 | 807.1247 | 490 | 532.6321 | 481.7726 |
2 | 144.869 | 189 | 305.1329 | 194.1905 |
3 | 297.9434 | 214 | 89.01453 | 244.7307 |
4 | 60 | 160 | 117.7604 | 116.1982 |
5 | 60 | 90 | 117.7238 | 117.4941 |
6 | 60 | 120 | 122.1081 | 132.1647 |
7 | 60 | 103 | 60 | 77.94045 |
8 | 60 | 88 | 99.69107 | 125.2659 |
9 | 60.0362 | 104 | 92.019 | 92.16435 |
10 | 40 | 13 | 40 | 40 |
11 | 40.0267 | 58 | 48.91808 | 43.26936 |
12 | 55 | 66 | 120 | 78.6438 |
13 | 55 | 55 | 55 | 56.16537 |
TG (MW) | 1800 | 1750 | 1800 | 1800 |
Total Cost (USD/h) | 18,051.11 | 18,442.59 | 18,008.89 | 17,960.14 |
Technique | Total Fuel Cost (USD/h) |
---|---|
MFEP [40] | 18,028.09 |
FEP [40] | 18,018.00 |
PSO [43] | 18,030.72 |
CEP [40] | 18,048.21 |
MFO | 18,008.89 |
MMFO | 17,960.14253 |
w | P1 | P2 | P3 | P4 | P5 | P6 | Total Load | Fuel Cost (USD/h) | Emission (tons/h) |
---|---|---|---|---|---|---|---|---|---|
0 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 52,009.8943 | 801.4391 |
0.1 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,796.5424 | 807.0951 |
0.2 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,812.7033 | 806.5594 |
0.3 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,616.4886 | 813.7519 |
0.4 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,347.5181 | 824.8128 |
0.5 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,337.3323 | 824.4148 |
0.6 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,048.3607 | 842.7160 |
0.7 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 51,023.9795 | 845.2482 |
0.8 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 50,824.5949 | 862.3027 |
0.9 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 50,508.2147 | 910.1253 |
1 | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 1000 | 50,385.4867 | 986.7312 |
Unit | 1 | 2 | 3 | 4 | 5 | 6 | C | E |
---|---|---|---|---|---|---|---|---|
QOTLBO | 107.3101 | 121.497 | 206.501 | 206.5826 | 304.9838 | 304.6036 | 64,912 | 1281 |
TLBO | 107.8651 | 121.5676 | 206.1771 | 205.1879 | 306.5555 | 304.1423 | 64,922 | 1281 |
MODE | 108.6284 | 115.9456 | 206.7969 | 210 | 301.8884 | 308.4127 | 64,843 | 1286 |
PDE | 107.3965 | 122.1418 | 206.7536 | 203.7047 | 308.1045 | 303.3797 | 64,920 | 1281 |
NSGA | 113.1259 | 116.4488 | 217.4191 | 207.9492 | 304.6641 | 291.5969 | 64,962 | 1281 |
SPEA | 104.1573 | 122.9807 | 214.9553 | 203.1387 | 316.0302 | 289.9396 | 64,884 | 1285 |
MOGA | 108.9318 | 123.1808 | 205.1513 | 206.67 | 304.8553 | 302.6093 | 64,838.57 | 1285.49 |
OGHS | 105.7331 | 119.0825 | 205.2976 | 204.7772 | 305.8042 | 308.9128 | 64,722.74 | 1281.349 |
NGPSO | 144.0425 | 150 | 190.507 | 192.9285 | 284.9083 | 288.0456 | 66,538.34 | 1228.365 |
QOPO | 82.83027 | 82.61994 | 197.7722 | 202.2269 | 317.4203 | 317.6234 | 61,197.88 | 1238.819 |
MMFO | 103.652 | 99.53047 | 154.1789 | 159.767 | 246.1043 | 236.7673 | 51,337.3323 | 824.4148 |
Power Units | MFO | MMFO | Power Units | MFO | MMFO |
---|---|---|---|---|---|
1 | 114 | 112.2146 | 21 | 523.2265 | 534.9080 |
2 | 110.782043 | 85.7714 | 22 | 345.1678 | 519.7360 |
3 | 97.35768193 | 88.2117 | 23 | 523.2798 | 461.0149 |
4 | 179.853732 | 180.9641 | 24 | 550 | 532.9676 |
5 | 47 | 82.4790 | 25 | 523.2365 | 532.8027 |
6 | 140 | 139.9986 | 26 | 522.6056 | 541.2884 |
7 | 300 | 300 | 27 | 47 | 80.9368 |
8 | 300 | 289.7228 | 28 | 163.3979 | 112.6556 |
9 | 285.1041 | 288.4185 | 29 | 169.6291 | 126.9149 |
10 | 130 | 200.5044 | 30 | 190 | 158.8551 |
11 | 318.0878 | 289.2551 | 31 | 172.465 | 199.9890 |
12 | 94 | 243.7934 | 32 | 166.535 | 172.3346 |
13 | 216.8874 | 304.4608 | 33 | 90 | 90 |
14 | 484.0405941 | 390.7212 | 34 | 65.63347 | 86.84495 |
15 | 500 | 500 | 35 | 110 | 57.10207 |
16 | 500 | 353.3224 | 36 | 110 | 72.98398 |
17 | 500 | 313.0460 | 37 | 511.2403 | 500.4913 |
18 | 220 | 421.2108 | 38 | 18 | 19.85508 |
19 | 511.4687 | 495.8544 | 39 | 46 | 46.0001 |
20 | 550 | 518.3697 | 40 | 54 | 54 |
Total cost MFO 139,576.3965 | Total cost MMFO 138,155.7853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albalawi, H.; Wadood, A.; Park, H. Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power. Mathematics 2024, 12, 3326. https://doi.org/10.3390/math12213326
Albalawi H, Wadood A, Park H. Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power. Mathematics. 2024; 12(21):3326. https://doi.org/10.3390/math12213326
Chicago/Turabian StyleAlbalawi, Hani, Abdul Wadood, and Herie Park. 2024. "Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power" Mathematics 12, no. 21: 3326. https://doi.org/10.3390/math12213326
APA StyleAlbalawi, H., Wadood, A., & Park, H. (2024). Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power. Mathematics, 12(21), 3326. https://doi.org/10.3390/math12213326