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Abstract: In electrical power system engineering, the economic load dispatch (ELD) problem is a
critical issue for fuel cost minimization. This ELD problem is often characterized by non-convexity
and subject to multiple constraints. These constraints include valve-point loading effects (VPLEs),
generator limits, emissions, and wind power integration. In this study, both emission constraints and
wind power are incorporated into the ELD problem formulation, with the influence of wind power
quantified using the incomplete gamma function (IGF). This study proposes a novel metaheuristic
algorithm, the modified moth flame optimization (MMFO), which improves the traditional moth
flame optimization (MFO) algorithm through an innovative flame selection process and adaptive
adjustment of the spiral length. MMFO is a population-based technique that leverages the intelligent
behavior of flames to effectively search for the global optimum, making it particularly suited for
solving the ELD problem. To demonstrate the efficacy of MMFO in addressing the ELD problem, the
algorithm is applied to four well-known test systems. Results show that MMFO outperforms other
methods in terms of solution quality, speed, minimum fuel cost, and convergence rate. Furthermore,
statistical analysis validates the reliability, robustness, and consistency of the proposed optimizer, as
evidenced by the consistently low fitness values across iterations.

Keywords: economic load dispatch; wind power; emission; nature-inspired optimization; modified
technique; moth flame optimizer

MSC: 68T20

1. Introduction

Growing power demand has significantly increased the generation costs. Hence,
there is an increasing need to economically disengage the power in order to reduce fuel
expenses and ensure the consistent functioning of the power grid [1,2]. To minimize
fuel costs and adhere to all system and producing unit constraints, the economic load
dispatch (ELD) problem primarily seeks to organize the output of power generation units
to meet the needed load demand in a logical manner. Newton–Raphson, lambda iteration,
dynamic programming, and gradient methods are some of the well-established procedures
that have been suggested in the literature as appropriate ways to address this particular
issue. However, as shown in [3], the gradient approach demonstrates a sluggish rate of
convergence and has difficulties when faced with constraints related to inequality. The
convergence characteristics of Newton’s approach are subject to the influence of the initial
estimation, which might potentially hinder its effectiveness in obtaining an optimal solution
if the initialization is wrong. The linear programming approach is plagued by inaccuracies
and the approximation of piece-wise linear costs. Additionally, as mentioned in [3], the

Mathematics 2024, 12, 3326. https://doi.org/10.3390/math12213326 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12213326
https://doi.org/10.3390/math12213326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12213326
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12213326?type=check_update&version=3


Mathematics 2024, 12, 3326 2 of 26

application of quadratic programming to the piece-wise quadratic cost approximation
demonstrates inefficiency if the step size is not appropriately chosen. The interior point
approach, although commonly seen as more computationally efficient, may not yield a
realistic solution for non-linear objective functions [4]. Furthermore, it is important to
acknowledge that these traditional approaches need the utilization of incremental fuel cost
curves, which demonstrate a consistent upward trend or incremental linear trend. The
ELD problem demonstrates input–output features that are non-convex, non-linear, and
non-smooth [5]. In order to get beyond the limitations of conventional methods, several
soft computing approaches have been proposed in the literature.

In [5], an innovative methodology for oppositional pigeon-inspired optimization
has been proposed to address the prevalent problem of premature convergence in the
case of power system problem optimization. A chameleon swarm algorithm is proposed
in [6] to address the ELD problem. In addition, a comprehensive exploitation phase is
carried out to tackle the problem of ELD using quasi-quadratic programming for smart
building [7]. In [8], a Q-learning-based search optimization was used to solve the ELD
problem for different IEEE benchmark functions. The ELD problem is solved as multi-
objective economic load dispatch (MELD) considering generation cost and transmission
losses in [9] using the Particle Swarm Optimization (PSO) algorithm. In [10], the modified
version of PSO was used for the utilization of adaptive acceleration constants. This strategy
helps in determining the most suitable value for the acceleration constant in the evaluation
of fitness function values. In [11], a hybrid approach was utilized consisting of bacteria
foraging (BSA) and PSO to deal with the non-convex ELD problem considering the influence
of valve-point effects. This inclusion aims to decrease the degree of unpredictability in
the search procedure and improve the collective behavior of the optimizer. The ELD
problem has been solved utilizing the application of invasive weed optimization [12] while
considering the effects of valve-point loading effect and prohibited operation zones. In
order to best solve the ELD problem, grey wolf optimizer (GWO) has been used for different
IEEE test systems [13]. In [14], an ant lion optimizer was recalled to solve the ELD problem
on four compact test systems keeping in view the valve-point effect scenario. A novel
hybrid methodology was designed in [15] by combining the PSO with pattern search to
solve the ELD problem formulation. In [16], a combination of the Big Bang–Big Crunch
(BB-BC) and PSO optimization techniques has been suggested for solving the ELD problem
in a more resilient and efficient way. Artificial bee colony (ABC) optimization has been
utilized in [17] to solve the ELD problem considering the valve-point effects for different
IEEE test systems, i.e., IEEE three, thirteen, and forty systems.

In [18], the authors explore the possibility of improving the ELD problem solution
by the deployment of a hybrid algorithm that combines a genetic algorithm (GA) and
differential evolution (DE) with a dynamically coordinated PS algorithm considering the
valve-point loading effect. In order to best solve the ELD problem including the valve-point
effects, a new variant of PSO known as catfish PSO has been utilized in [19]. In [20], the
authors examined the conventional ELD problem and proposed a novel approach that
involves the elimination of inefficient generators through the utilization of the differential
evolution (DE) technique. The implementation of this methodology has resulted in a
reduction of 19.88% in the overall fuel cost in comparison to conventional methods. In [21], a
comparative analysis of five soft computing approaches, specifically DE, PSO, evolutionary
programming (EP), genetic algorithm (GA), and simulated annealing (SA), has been utilized
to solve the dynamic ELD problem. This comparative analysis takes into account several
constraints, including limitations on the generator ramp rate. In [22], an improved version
of teaching–learning-based optimization with incorporation of quasi-oppositional-based
learning has been proposed to enhance the exploration and convergence characteristics of
the proposed optimizer in order to best solve the ELD problem. To tackle the ELD problem,
a modified version of the DE approach is suggested in [23]. The proposed optimizer entails
the incorporation of a tournage-best vector during the mutation phase.
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The generation of electrical energy from fossil fuel-based thermal power stations has
led to an increase in the emission of harmful pollutants, including oxides of nitrogen (NOx),
sulfur oxides (SO), and carbon monoxide (CO). To address these environmental issues,
computational methods have been developed to optimize power generating efficiency while
reducing hazardous emissions. The integration of renewable energy sources (RESs), such as
wind and solar power, has significantly alleviated the challenges related to rising generating
prices and harmful fossil emissions [23]. The assimilation of energy from RESs into thermal
power systems has necessitated alterations to the traditional quadratic equation utilized
for calculating the cost of fuel. These enhancements include the incorporation of Beta
and Weibull distribution functions, which account for the probabilistic fluctuations in the
supply of solar and wind energy [24], respectively. PSO is a global methodology inspired
by metaheuristic principles used to achieve optimal results in ELD integrated with wind
power for the development of hybrid energy generating systems [25]. The enhancement
of wind power availability, in conjunction with thermal power generation units, has been
accomplished by a unique optimization technique known as HIC-SQP [26]. The aim is
to optimize direct costs, inflated costs, and underestimated costs to reduce both power
generating expenses and hazardous gas emissions. In [27], an exchange market algorithm
(EMA) has been recalled to solve the ELD problem with wind power integration.

The optimization of the ELD problem is crucial for effective power grid management
due to rising global energy demands and power generation costs as well as with integration
of renewable energies Conventional approaches have difficulties with restrictions and non-
convexity in ELD to handle the inherent unpredictability and non-linear dynamics resulting
in unsatisfactory solutions The aforementioned research indicates that a majority of the
techniques [5–25] require the adjustment of a significant amount of control parameters.
Therefore, in order to obtain an optimal solution, it is necessary to accurately adjust the
control settings, a process that can be both time-consuming and laborious. The moth
flame optimization (MFO) algorithm [28] is a recently developed methodology that draws
inspiration from the migration patterns of moths in relation to moonlight. The moth
employs a mechanism called transverse orientation to enhance its movement [29]. This
technique has demonstrated rapid convergence and effective utilization in tackling diverse
engineering design issues. However, in the conventional MFO approach, in the last step of
iterative optimization, the majority of individuals are concentrated in a limited terrestrial
area surrounding the present ideal individual [30–33]. If sophisticated multimodal global
optimization problems are being addressed, it is possible for the entire population to
quickly achieve the local optimum [31] and be prone to early convergence.

This paper proposes the modified version of MFO known as MMFO. The MMFO tech-
nique entails incorporating the idea of the Archimedean spiral into the conventional MFO;
employing these modifications has led to improvements in the resilience, precision, and
search efficiency of the optimizer while also drastically lowering the number of iterations
needed to obtain the best solution. This Archimedean spiral enables moths to perform
adaptive movements, which ensures a balanced exploration of the search space early in
the optimization process and a more focused exploitation near the optimal solutions in
later stages. This study presents the MMFO methodology as a potential resolution for the
ELD problem.

The key contribution of this paper is expressed as follows:

1. A novel metaheuristic optimization algorithm referred to as MMFO that aims to
improve the exploration capacity of the traditional MFO to the ELD problem.

2. The proposed MMFO is successfully applied to four well-known IEEE ELD test
systems as well as on 11 benchmark functions to verify the MMFO.

3. The proposed approach is validated in independent runs using various statistical
illustrations, including minimal fitness value quantile plots, boxplots, histograms,
standard normal plots, and cumulative distribution function plots for each distinct
case study for accuracy, robustness, and stability.
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The subsequent sections of this paper are organized in the following manner. The
problem formulation of the ELD problem is presented in Section 2. The methods for solving
the problem are elaborated in Section 3. The findings and subsequent statistical analysis
are discussed in Sections 4 and 5.

2. Mathematical Modeling of Problem Formulation

The ELD problem is an optimization problem with constraints that seeks to streamline
the allocation of total power to different generating units by optimizing the overall fuel and
emission costs. Within the framework of the ELD problem, specific limitations are consid-
ered, including the equilibrium of power in the presence and absence of transmission line
losses, the maximum capacity for production, and the influence of valve-point loading [22].

2.1. Objective Function

Minimizing the overall amount of fuel used and the amount of pollution from power
plants is the main goal of the ELD problem. Therefore, as shown below, the objective
function is created by adding the fuel prices of individual dedicated generating units and
the emissions from fossil-fueled thermal units, weighted by their respective contributions.

F1 = ∑N
i=1 Ci(Pi) + σ × ∑N

i=1 Ei(Pi) (1)

For the sake of this discussion, we will use the notation Ei(Pi) to indicate emissions,
Ci(Pi) to indicate fuel cost, N to denote the number of generating units, and Pi to indicate
active power generated by the i-th generating unit, while σ denotes C(pi)

max and E(pi)
min.

2.1.1. Characteristics of a Smooth Cost Function

The quadratic function is used to express the smooth fuel cost characteristic function
in the standard ELD problem, as explained in reference [22].

∑N
i=1 Ci(Pi) = ∑N

i=1 ai + biPi + ciP2
i (2)

The coefficients representing the fuel cost of the i-th unit are represented by ai, bi,
and ci.

2.1.2. Characteristics of Non-Smooth Cost Functions

The output power of the generating unit is regulated via several valves in thermal
power plants. Incoming steam flow is mostly controlled by these valves. Thus, the steam
valves are opened in response to rising power demand, which causes a spike in losses
and changes in the cost curve’s shape. The effect that has been described is sometimes
called a valve-point loading effect. Considering the numerous non-differential scores and
non-smooth features in the cost curve, this phenomenon of valve-point loading [22] is
important. Here, we show how the existence of valve-point effects transforms the objective
function of the ELD problem into a non-convex quadratic and sinusoidal function.

F2 = ∑N
i=1 Ci(Pi) = ∑N

i=1 ai + biPi + ciP2
i + |eisin

(
fi

(
Pmin

i − Pi

))
| (3)

The cost coefficients, denoted as ei and fi, are used to illustrate the effects of valve-point
loading. Additionally, Pi

min is employed to show the minimal active power generation
limit of the i-th generator.
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2.1.3. Characteristics of Non-Smooth Emission Functions

Fossil fuel generating units are primarily responsible for emitting two main pollutants,
namely SOx and NOx. The mathematical expression that represents the functionality of the
overall pollutant emissions is as follows.

N

∑
i=1

Ei(Pi) =
N

∑
i=1

αi + βiPi + γiP2
i + ηiexp(δiPi) (4)

The emission coefficients of the i-th generator are denoted by αi, βi, γi, ηi, and δi.
The equation presented above demonstrates that the pollutant emission function has a
high degree of non-linearity, mostly attributed to the inclusion of both quadratic and
exponential terms.

2.1.4. Wind Power Generation Availability Cost Function

A significant advantage in electrical power generation with regard to cost-effectiveness
and environmental sustainability is the incorporation of wind power into thermal power
producing units. Several models aim to explain the scheduling of operational generating
cost and real power generation in power generation systems that include both wind and
thermal power units. Given the unpredictable nature of wind speed, the power generation
operator is unsure about the availability of wind power. Given the discrepancy between
the actual and predicted power output, it is possible that there was an overestimation of
the wind power availability. This could have resulted in the need to purchase additional
electricity to meet the load requirements. Occasionally, there may be surplus power
resulting from underestimating the availability of wind power. This surplus power is then
utilized to compensate the wind power suppliers for the costs incurred from underutilizing
all of the available wind power. The following model can be used to show the total cost of
generating wind electricity [33].

C3 =
wg

∑
n=1

[(
CW.P(DIR,n) + CW.P(OE,n)

)
+ CW.P(UE,n)

]
(5)

The entire number of wind power generating units is denoted by wg, and the variable
C3 stands for the aggregate cost of wind power generation. Here, CW.P(DIR,n) refers to the
direct cost, CW.P(OE,n) to the overestimated cost, and CW.P(UE,n) to the underestimated cost
as they relate to wind power generating units. A direct proportionality exists between CW
and the output of wind power generation. In terms of mathematics, the nth wind power
generating unit can be expressed as P (DIR, n).

CW.P(DIR,n) =
wg

∑
n=1

(qn × W.Pn) (6)

The coefficient qn in Equation (6) represents the direct electrical energy cost from the
nth wind power generating unit, measured in dollars per megawatt-hour (MWh). On the
other hand, W represents the true electrical output power, measured in megawatts (MW),
from the nth wind power producing unit. The variable CW represents the unbalanced over-
estimated cost resulting from an overestimation of wind power availability. In response to
a lack of electrical power from wind power generating units, more real power in megawatts
(MW) is obtained. This can be mathematically represented as follows:

CW.P(OE,n) =
wg

∑
n=1

(Crw,n × X(Voe,n)) (7)

The cost coefficient for overestimation for each wind power generating unit is repre-
sented by Crw,n and is measured in dollars per megawatt-hour (MWh), whereas X(VOE,n)
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represents the predicted value of wind power overestimation for the nth wind power
generating unit, as demonstrated in Equation (8).

X(VOE,n) = W.Pn

[
1 − exp

(
−VKn

IN,n

CKn
n

)
+ exp

(
−VKn

OUT,n

CKn
n

) ]
+
(

W.Pr,n×VIN,n
Vr,n−VIN,n

+ W.Pn

)
.
[

exp
(
−VKn

IN,n

CKn
n

)
− exp

(
−VKn

1,n

ckm
n

) ]
+(

W.Pr,n×Cn
Vr,n−VIN,n

){
Γ
[

1 + 1
Kn

,
(

V1,n
cn

)Kn
]
− Γ

[
1 + 1

Kn
,
(

VIN,n
Cn

)Kn
] } (8)

The cut-in, cut-out, and rated wind speeds are represented by the variables VIN, VOUT,
and Vr, respectively, and are expressed in meters per second. One way to represent the
intermediary parameter is as V1 = VIN + (Vr − V IN) × W.P1/W.Pr. The coefficients Cn and
Kn represent the size and shape factor, respectively, for the nth wind power generating unit
in the Weibull distribution. In megawatts (MW), W.Pn and W.Pr denote the electrical power
produced and rated for the nth wind power producing unit, respectively. Additionally, the
following mathematical expression can be used to describe the gamma function, which is
defined by its incompleteness and limited parameter count of two [33].

Γ(p, c) = 1/Γ(c)×
p∫

0

tc−1e−tdt (9)

A typical gamma function consists of a solitary parameter that is expressed as follows:

Γ(p) =

p∫
0

tp−1e−pdt (10)

The penalty cost, denoted as CW.P(UE,n), arises from the underestimation of wind
power availability, wherein the actual active power generated by wind power producing
units exceeds the forecast active power. Compensation is offered to cover the costs incurred
by wind power suppliers in this context.

CW.P(UE,n) =
wg

∑
n=1

(Cew,n × Y(VUE,n)) (11)

Cew,n represents the cost coefficient for underestimate in dollars per megawatt-hour
(MWh) for the nth wind power producing unit. Equation (12) mathematically represents
the expected value of wind power underestimate for the nth wind power producing unit,
denoted as Y(VUE,n).

Y(VUE,n) = (W.Pr,n − W.Pn)

[
exp

(
− VKn

r,n

CKn
n

)
− exp

(
− VKn

OUT,n

CKn
n

) ]
+
(

W.P1,n×VIN,n
Vr,n−VIN,n

+ W.Pn

)
.
[

exp
(
− VKn

r,n

CKn
n

)
− exp

(
− VKn

1,n
ckn

n

) ]
+(

W.Pr,n×Cn
Vr,n−VIN,n

){
Γ
[

1 + 1
Kn

,
(

V1,n
cn

)Kn
]
− Γ

[
1 + 1

Kn
,
(

Vr,n
Cn

)Kn
] } (12)

To model the objective function, one can combine the quadratic fuel cost function,
which includes V.P.L.E (Equation (3)), with the wind power generation availability cost
function (Equation (5)). This combination results in the total generating cost (TGC) in
dollars per hour:

TGC =
tg

∑
m=1

[
Am + BmPm + CmP2

m+
abs(Em sin(Fm(Pm,min − Pm)))

]
+

wg

∑
n=1

[
(qn × W.Pn) + (Crw,n × X(Voe,n)+
(Cew,n × Y(VUE,n)

]
(13)
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2.2. Constraint Functions
2.2.1. Constraint on Power Balance

As stated in reference [22], it is expected that the aggregate power produced by
dedicated generators will be equal to the combined value of the load demand (PD) and the
entire losses incurred during transmission.

N

∑
i=1

Pi − PD − PL = 0 (14)

The symbol PL represents the overall transmission loss, and PD is the load demand.
The calculation of losses associated with the transmission of electricity from the producing
station to the load is often performed by load flow analysis or by utilizing Kron’s loss
coefficients, as outlined below.

PL =
N

∑
i=1

N

∑
j=1

PiBijPj +
N

∑
i=1

PiB0i + B00 (15)

The variables Bij, B0i, and B00 represent the loss B coefficients and constants under
typical operational circumstances.

2.2.2. Constraints on Generation Limits

The maximum Pmax and minimum Pmin restrictions, as indicated in reference [22],
and the active power-generated output of each producing unit must meet the
specified requirements.

Pi
min ≤ Pi ≤ Pi

max, f or i = 1, 2, 3, . . ., N. (16)

2.2.3. Ramp Rate Limit Constraints

The power outputs of thermal power units are limited by the ramp rate restrictions
due to their inertia. This limitation is beneficial for prolonging the service life of the units
and is characterized as follows: {

Pt,i − Pt−1,i ≤ URi
Pt−1,i − Pt,i ≤ DRi

(17)

3. Design Methodology Using MMFO
3.1. Moth Flame Optimization

A new swarm intelligence optimization technique called the moth flame optimization
(MFO) algorithm was introduced by Seyedali Mirjalili in 2015 [28]. It takes its cue from the
nighttime spiral flight of a moth, which changes its direction of flight in response to the
moon. However, in the case of artificial flame which is very close as compared to the moon,
moths would eventually form a spiral flight path toward the flame, keeping their angle
with the artificial light constant. The MFO is capable of exploring many solution spaces
and has excellent parallel optimization abilities. For multimodal and non-convex problems
where there is the possibility of many local optimum points, the MFO is more suitable.

3.1.1. Initialize Parameters

The MFO is fundamentally a swarm intelligence optimization algorithm. In the ELD
problem, the candidate solutions are represented by m, where m refers to the moths. Moths
navigate either in a one-dimensional or multi-dimensional space within the feasible domain,
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with their flight paths defining the range of possible solutions. The population of moths,
M, is described as follows:

M =


m1,1 m1,2 · · · m1,d
m2,1 m2,2 · · · m2,d

...
...

. . .
...

mn,1 mn,2 · · · mn,d

 (18)

Here, d is dimension size, where n represent the number of moths.
Every moth in the MFO has a matching flame, and the moth updates its position by

flying along the flame. The flame that the dimension represents as F is matched by the
moth. The flame’s position is stated as follows:

F =


F1,1 F1,2 · · · F1,d
F2,1 F2,2 · · · F2,d

...
...

. . .
...

Fn,1 Fn,2 · · · Fn,d

 (19)

The search space’s upper bound (ub) and lower bound (lb) are as follows:

ub = [ub1, ub2, ub3, · · · · · · , ubn−1, ubn] (20)

lb = [lb1, lb2, lb3, · · · · · · , lbn−1, lbn] (21)

3.1.2. The Moth’s Location Updating

The logarithmic spiral function (S) that the moth flies according to is constructed
as follows:

S
(
Ki, Fj

)
= di × eat × cos(2πt) + Fj (22)

where the symbol Ki indicates the i-th moth and designates a spiral function, and Fj signifies
the location of the j-th flame. The constant a represents the value required to preserve the
shape of the logarithm spiral. The distance between the j-th flame and the i-th moth is
denoted as di. The random integer t is the distance parameters. The computation of the
value of di is performed by employing Equation (20), defined as a value between −1 and +1.

di =
∣∣Fj − Ki

∣∣ (23)

The variable Ki represents the position of the i-th flame, Fj represents the position of
the j-th moth, and the distance between the j-th flame and the i-th moth is represented by i
and is updated by the following:

f lame number = round
(
(N − L)× N − 1

T

)
(24)

where N indicates the upper limit of flames, T marks the upper limit of iterations, and L
represents the current number of iterations. The adjustment of the position of each moth in
relation to a flame is determined by the following equation.

3.2. Modified Moth Flame Optimizer

The MMFO is an enhanced version of the moth flame optimization (MFO) algorithm,
where the movement of moths is based on the Archimedean spiral rather than the logarith-
mic spiral used in the standard MFO. The flight paths of the moths toward flames follow a
spiral trajectory, providing better exploration and exploitation of the search space.
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The position update formula for the MMFO using the Archimedean spiral is mathe-
matically expressed as follows:

Mi
t+1 = Fi + D.eb.l × cos(2πl) (25)

where Mi
t+1 is the updated position of the moth iii at iteration t + 1, Fi is the position of the

flame i (the best solution found so far), D is the distance between the moth and the flame, b
controls the shape of the spiral, and l is a random number in the range [−1,1].

This Archimedean spiral enables moths to perform adaptive movements, which
ensures a balanced exploration of the search space early in the optimization process and a
more focused exploitation near the optimal solutions in later stages.

Archimedean Spiral Motion

The core idea of the MMFO is to update the position of each moth based on the
Archimedean spiral toward a flame. This spiral is given by the following:

Mi
t+1 = Fi + D.l (26)

Here, D =
∣∣∣Mi

t+1 − Fi

∣∣∣ is the Euclidean distance between the moth and the flame.
The Archimedean spiral is described mathematically as follows:

S(θ) = r(θ).(cosθ, sinθ) (27)

where r(θ) = a + b.θ) defines the radius of the spiral as a function of the angle θ, and a
and b are constants controlling the growth of the spiral. For the MMFO, this translates to
the following:

Mi
t+1 = Fi + (a + b.θ).(cosθ, sinθ) (28)

where a controls the initial radius of the spiral, b defines how fast the spiral expands or
contracts, and θ is a random value determining the angle of the spiral. Also, the coordinate
for the Archimedean spiral could be found in [34,35].

This equation ensures that moths follow a spiral trajectory toward the flames, where
they explore the search space in wide arcs initially (exploration) and tighten their paths
as they converge toward the best solutions (exploitation). The pseudocode summary and
graphical abstract of the proposed MMFO is given in Algorithm 1 and Figure 1.
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Figure 1. Graphical abstract of the proposed methodology.



Mathematics 2024, 12, 3326 11 of 26

Algorithm 1: Pseudocode of MMFO

1. Initialize parameters:

Number of moths (N);
Maximum number of iterations (MaxIter);
Search space bounds (LB, UB);
Moths’ positions (M) randomly within the search space;
Number of flames (F), initially equal to N.

2. Initialize flames (best solutions):

Set the initial positions of flames (F) as the top N moths’ positions.

3. Evaluate the fitness of all moths:

For each moth Mi, evaluate the fitness using the objective function.

4. Sort moths based on fitness:

Rank moths from best to worst based on fitness values.
The best moths are selected as flames (F).

5. Loop through iterations (t = 1 to MaxIter):

a. Update number of flames dynamically:
Reduce the number of flames as iterations progress.
Flame_no = round (N − t × (N − 1)/MaxIter)

b. For each moth Mi (i = 1 to N):

i. Select the corresponding flame Fi:
If i ≤ Flame_no, select the i-th flame;
If i > Flame_no, select the last flame.

ii. Calculate distance between the moth and the flame: D = |Fi − Mi|
iii. Update moth position using Archimedean spiral:

Mi
t+1 = Fi + D.l

where l is a random number in the range [−1, 1], determining the spiral
movement’s direction and distance.

iv. Ensure the updated moth position is within search bounds (LB, UB).

c. Evaluate the fitness of updated moths:
For each updated moth Mi, calculate its fitness using the objective function.

d. Sort moths based on their updated fitness:
Rank all moths based on fitness values.

e. Update flames:
Select the top Flame_no moths as the new flames for the next iteration.

f. Check stopping criteria:
If the maximum number of iterations is reached or the convergence condition

is met, exit the loop.

6. Return the best flame (optimal solution) as the result.

4. Results and Discussion

The effectiveness of the proposed MMFO approach in solving the constraint opti-
mization problem is assessed by initially applying it on a standard benchmark function.
The most effective way for evaluating optimization techniques is to employ to standard
unimodal and multimodal benchmark functions. The optimizer with the lowest error
is regarded as a good optimizer [30,31]. For a fair comparison of performances of the
proposed MMFO and other competing algorithms in solving the benchmark, common and
default settings for all and individual algorithms are shown in Table 1.
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Table 1. Common and default settings for all algorithms.

Common Setting
Default Setting

Algorithm Population Size Number of Iterations

PSO 30 1000 Inertia weight = 0.7, cognitive C1 = 2, Social (C2) = 2

GSA 30 1000 Gravitational constant (G) = 1

BA 30 1000 Loudness (A) = 0.5, pulse rate = 0.5

MFO 30 1000 Spiral function parameter (b) = 1

MMFO 30 1000 b = 1 + 0.5 × (1 − Iteration/Max_iteration);

In order to evaluate different optimization methods across different contexts, this
paper uses a complete set of 11 benchmark functions. Unimodal functions are the first
seven functions (F1–F7), whereas multimodal functions are the last four functions (F8–F11).
All these benchmark functions have been taken from [28]. The MMFO achieves an optimum
result in all different test scenarios. The results are tabulated in Table 2 which shows the
performance of MMFO in terms of average fitness value over 100 independent runs with
other state-of-the-art solvers, and it has been observed that the MMFO surpasses other
optimization techniques in terms of average fitness value. To further demonstrate the
superiority of our proposed optimizer, it has been also applied to a set of 10 benchmark
functions consisting of different multimodal multi-objective optimization functions. The
mathematical formulation and function details could be found in reference [36]. From
Table 3, it has been realized that the MMFO outperforms the conventional MFO in terms
of best, median, mean, and worst value and optimizes it up to optimum values. The
results shown in Table 4 present statistically significant differences between MMFO and
MFO in all metrics, with p-values below 0.05 using the Wilcoxon test. This indicates that
MMFO exhibits a distinct optimization performance compared to MFO, suggesting that
the modifications in MMFO have a substantial impact on the optimization outcomes. The
consistent differences across metrics highlight the different behaviors of these two methods.
In Table 4, it has been further concluded that the null hypothesis (H0) is rejected in all
scenarios which indicates that our proposed MMFO differed significantly and outperformed
its counterpart MFO.

In order to further validate the performance of the MMFO approach, it is first applied
on the conventional ELD problem, which entails minimizing fuel cost. This assessment
is carried out utilizing two practical benchmark IEEE testing systems. The subsequent
content is presented as follows.

Case study 1 examines a small test system including three thermal units, each sup-
porting a load requirement of 850 MW. The second case study focuses on a medium-sized
test system consisting of 13 thermal generating units having a load demand of 1800 MW.

After validating the performance to solve the traditional ELD problem, the suggested
technique minimizes fuel cost and emission by taking into consideration VPLEs, transmis-
sion line loss generator limitations of a standard IEEE benchmark system consisting of six
power units for emission, and forty power units for wind power.
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Table 2. MMFO comparison with other solvers for unimodal and multimodal benchmark functions.

Functions Dim
MFO [28] PSO [28] GSA [28] BA [28] MMFO

Mean STD Mean STD Mean STD Mean STD Mean STD

F1(x) =
n
∑

i=1
x2

i
100 0.000117 0.00015 1.32115 1.15388 608.232 464.654 20792.4 5892.40 0.0039 0.0031

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1

|xi | 100 0.000639 0.000877 7.71556 4.13212 22.7526 3.36513 89.785 41.9577 0.0040 0.0014

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
100 696.730 188.527 736.393 361.781 135,760 48,652.6 62,481.3 29,769.1 1.4061 × 103 1.6103 × 103

F4(x) = max
i

{|xi |, 1 ⩽ i ⩽ n} 100 70.6864 5.27505 12.9728 2.63443 78.7819 2.81410 49.7432 10.14363 31.6315 10.5376

F5(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
100 139.148 120.260 77,360.83 51,156.15 741.003 781.2393 199,512 125,238 83.1924 109.3115

F6(x) =
n
∑

i=1
([xi + 0.5])2 100 0.00011 9.87 × 10−5 286.651 107.079 3080.96 898.635 17,053.4 4917.56 0.0037 0.0027

F7(x) =
n
∑

i=1
ix4

i + random[0, 1) 100 0.091155 0.04642 1.037316 0.310315 0.112975 0.037607 6.045055 3.045277 0.0211 0.0064

F8(x) =
n
∑

i=1
− xisin

(√
|xi |
)

100 8496.78 725.8737 −3571 430.7989 −2352.32 382.167 65,535 0 −9.4023 × 103 585.8782

F9(x) =
n
∑

i=1

[
x2

i − 10cos(2πxi) + 10
] 100 84.600 16.1665 124.29 14.2509 31.0001 13.6605 96.2152 19.5875 74.9637 22.3468

F10(x) = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+20 + e

100 1.2603 0.72956 9.1679 1.56898 3.74098 0.17126 15.9460 0.77495 0.0958 0.4038

F11(x) =
1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 100 0.0190 0.02173 12.418 4.16583 0.04978 0.04978 220.281 54.7066 0.0165 0.0143
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Table 3. MMFO vs. MFO comparison for CEC2020 benchmark functions.

Function
Best Median Mean Std Worst

MMFO MFO MMFO MFO MMFO MFO MMFO MFO MMFO MFO

F1 7.5000 × 10−1 7.5605 × 10−1 7.5000 × 10−1 7.8610 × 10−1 7.5004 × 10−1 8.0100 × 10−1 4.9873 × 10−4 2.9151 × 10−3 8.0952 × 10−1 1.0502 × 100

F2 7.5000 × 10−1 1.4078 × 100 7.5000 × 10−1 1.4673 × 100 7.5251 × 10−1 1.5807 × 100 1.1347 × 10−2 2.6191 × 10−3 1.9372 × 100 3.2955 × 100

F3 1.0000 × 100 1.0789 × 100 1.0000 × 100 1.0975 × 100 1.0002 × 100 1.1002 × 100 1.0677 × 10−3 5.8074 × 10−5 1.1315 × 100 1.1488 × 100

F4 7.5000 × 10−1 1.5865 × 100 7.5000 × 10−1 1.6938 × 100 7.5008 × 10−1 1.7240 × 100 9.0085 × 10−4 3.3394 × 10−3 8.4823 × 10−1 2.1179 × 100

F5 1.7559 × 100 7.4318 × 10−1 1.7559 × 100 7.6418 × 10−1 1.7560 × 100 7.6312 × 10−1 4.5372 × 10−4 1.4216 × 10−4 1.8116 × 100 7.8235 × 10−1

F6 1.0000 × 100 4.3480 × 10−4 1.0000 × 100 2.2378 × 10−1 1.0003 × 100 2.8438 × 10−1 2.6533 × 10−3 2.4468 × 10−3 1.2731 × 100 8.6231 × 10−1

F7 1.3603 × 100 1.8459 × 100 1.3603 × 100 2.0237 × 100 1.3607 × 100 2.0365 × 100 5.0828 × 10−3 2.6639 × 10−4 2.0788 × 100 2.4668 × 100

F8 2.0373 × 100 4.4031 × 100 2.0373 × 100 4.5035 × 100 2.0375 × 100 4.5165 × 100 2.7515 × 10−3 1.3499 × 10−4 2.4898 × 100 4.7865 × 100

F9 9.5950 × 10−1 1.2183 × 100 9.5950 × 10−1 1.2426 × 100 9.5975 × 10−1 1.2480 × 100 2.5713 × 10−3 6.9523 × 10−5 1.2761 × 100 1.3536 × 100

F10 2.9160 × 100 1.3471 × 101 2.9160 × 100 1.3637 × 101 2.9161 × 100 1.3695 × 101 2.8887 × 10−4 5.7093 × 10−4 2.9544 × 100 1.4400 × 101
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Table 4. Statistical comparison of MMFO and MFO performance using Wilcoxon signed-rank test.

Test Metric p-Value Test Statistic (W) Conclusion
(Reject H0)

Best value 0.0001 116866.0000 Yes

Median value 0.0000 116867.0000 Yes

Mean value 0.0001 116884.0000 Yes

Std 0.0000 423354.0000 Yes

Worst value 0.0000 129714.0000 Yes

4.1. Case 1. Three Thermal Generating Units with a Load Demand of 850 MW

The purpose of this case study is to assess the performance of the proposed MMFO
and MFO with a load demand of 850 MW using a three-unit producing system, taking
into account the valve-point loading impact. The parameters for fuel cost and the upper
and lower limits for generators have been sourced from references [17,33,37–42]. The
findings derived from the use of MMFO and MFO are presented in Table 5, alongside
the findings documented in the existing literature. Table 6 illustrates the distribution of
powers among several generators in response to a specified load demand of 850 MW. The
suggested MMFO algorithm demonstrates superior performance, achieving a total cost of
8194.48008 USD/h, in comparison to MFO and other state-of-the-art algorithms.

Table 5. Optimum results for case 1 with other optimization techniques.

Algorithm P1 (MW) P1 (MW) P1 (MW) PG (MW) Cost (USD/h)

GSA [39] 300.210 149.795 399.995 850 8234.1

PSO-SQP [38] 300.3 400 149.7 850 8234.1

PSO [38] 300.3 400 149.7 850 8234.1

GA [38] 398.7 399.6 50.1 848.4 8222.1

GA-PS-SQP [38] 300.30 400 149.70 850 8234.10

QOPO [43] 300.25 400 149.75 850 8234.07

MFO 358.0935 365.7145 126.192 850 8198.2314

MMFO 396.769 328.4747 124.7563 850 8194.4800

Table 6. Comparison of total fuel cost with up-to-date algorithms for case 1.

Method Minimum Cost (USD/h)

GWO [13] 8253.11

GA [37] 8234.419

EP [37] 8234.1357

SA [37] 8234.1355

GA-PS-SQP [38] 8234.1

CPSO-SQP [41] 8234.07

NDS [44] 8234.07

MFEP [40] 8234.08

NSS [37] 8234.08

CPSO [41] 8234.07

GSA[39] 8234.1

iBA [42] 8234.07

GAB [40] 8234.08

QOPO [43] 8234.07

MFO 8198.23141

MMFO 8194.48008
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Moreover, the findings are succinctly presented in Table 6 and juxtaposed with al-
ternative comparison methodologies proposed in the existing literature. The proposed
method yields superior outcomes compared to previous procedures. It has been seen that
the proposed method achieved a superior solution and minimized the overall fuel cost
to the optimal level, demonstrating the superiority of the suggested technique over other
state-of-the-art algorithms in terms of total net gain in cost (USD/h). Figure 2 displays the
convergence characteristic graph of MMFO vs. MFO, illustrating a more rapid convergence
and the achievement of the lowest fuel cost within a reduced number of iterations as com-
pared to MFO. Figure 3 shows the statistical analysis of MMFO vs MFO using cumulative
distribution function (CDF), histograms, boxplot and fitness propagation obtained during
the course of simulation
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Figure 2. MMFO vs. MFO convergence characteristics curve for case 1. Figure 2. MMFO vs. MFO convergence characteristics curve for case 1.

4.2. Case 2. Thirteen Thermal Generating Units with 1800 MW Load Demands

This case study examines the efficacy of the suggested MMFO with load requirements
of 1800 MW using the system of 13 generating units, taking into account the valve-point
loading effect. The parameters for fuel cost and the upper and lower limits for generators
have been sourced from references [8,17,38,40,43,45,46]. The outcomes derived using
MMFO and MFO are presented in Table 7 for load demands of 1800 MW, in addition to the
findings reported in the literature. Table 7 depicts the distribution of power among various
generators in response to load demands of 1800 MW. The suggested MMFO demonstrates
superior outcomes, with a total expenditure of 17,960.14253 USD/h. The data presented
in Table 8 clearly demonstrate that the suggested method outperforms other strategies,
including conventional Fast EP (FEP), EP (CEP), MFEP, enhanced FEP (IFEP), and PSO.
With the expansion of the system to 13 units, the suggested technique has demonstrated
a significant cost reduction of at least USD per hour in comparison to the Fast EP (FEP),
MFEP, and PSO techniques for a load requirement of 1800 MW. The aforementioned results
demonstrate the efficacy of the suggested MMFO approach. Figure 4 indicates that the
MMFO and MFO convergence characteristic allows it to reach the global optimal solution
with fewer iterations. When compared to other methods discussed in the relevant literature,
the suggested MMFO has shown to be more effective. Optimal fuel cost and enhanced
convergence rate have improved the solution’s overall quality. Figure 5 shows the complete
statistical analysis of the proposed MMFO VS MFO consisting of CDF, histogram, boxplot
and fitness propagation demonstrating the reliability consistency of MMFO over MFO.
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Table 7. Optimum power distribution for 13 generator units with other algorithms.

Unit GWO [13] NN-EPSO [13] MFO MMFO

1 807.1247 490 532.6321 481.7726

2 144.869 189 305.1329 194.1905

3 297.9434 214 89.01453 244.7307

4 60 160 117.7604 116.1982

5 60 90 117.7238 117.4941

6 60 120 122.1081 132.1647

7 60 103 60 77.94045
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Table 7. Cont.

Unit GWO [13] NN-EPSO [13] MFO MMFO

8 60 88 99.69107 125.2659

9 60.0362 104 92.019 92.16435

10 40 13 40 40

11 40.0267 58 48.91808 43.26936

12 55 66 120 78.6438

13 55 55 55 56.16537

TG (MW) 1800 1750 1800 1800

Total Cost (USD/h) 18,051.11 18,442.59 18,008.89 17,960.14

Table 8. Comparison of total fuel cost with up-to-date algorithms for case 2.

Technique Total Fuel Cost (USD/h)

MFEP [40] 18,028.09

FEP [40] 18,018.00

PSO [43] 18,030.72

CEP [40] 18,048.21

MFO 18,008.89

MMFO 17,960.14253

4.3. Case 3. Six Generating Units with 1000 MW Load Demand with Emission

A small test system has been used in this scenario to assess its efficacy in delivering a
more efficient and precise solution for high load demand. The generator maximum and
lowest limitations, emission coefficients, and fuel cost coefficients have been extracted from
references [43,47–50]. Table 9 displays the optimal solutions obtained by MMFO, which
includes the power generating output of each unit for the economic emission dispatch
(EELD) problem. This study examines the outcomes obtained utilizing the scalar factor
w. It has been noticed that when w is set to 0.5, the desired balance values are reached.
In this situation, the EELD problem obtained with a weight (w) of 0.5, as shown in the
table, has been selected for further investigation and comparison [4]. Table 10 presents a
comparison of the solutions obtained by MMFO and other previously published approaches
for minimizing fuel cost (FC) in ELD and minimizing emissions (E) in the economic
emission issue. Based on the table, MMFO has produced lower results for the lowest
fuel cost compared to other algorithms. The acquired findings are compared with nine
distinct strategies that have been suggested in the literature and sourced from [43] The
simulation results indicate that the suggested MMFO approach offers superior fuel cost
compared to other strategies but with somewhat higher emissions compared to NGPSO.
The emission level is significantly elevated owing to the significant reduction in fuel cost
of 51,337.3323 USD/h, which is 15,201.0077 USD/h lower than NGPSO. In addition, the
suggested MMFO approach has been shown to provide both the lowest fuel cost and the
lowest pollution cost when compared to other strategies. The graph in Figure 6 illustrates
the convergence characteristic of total fuel cost when using various scaling factors. It reveals
that the convergence is rapid and achieves the optimal solution in a reduced number of
iterations. Thus, it can be said that the suggested MMFO offers a superior and better
compromised solution.
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Table 9. Optimum power allocation among 6 units for different values of w.

w P1 P2 P3 P4 P5 P6 Total
Load

Fuel Cost
(USD/h)

Emission
(tons/h)

0 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 52,009.8943 801.4391

0.1 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,796.5424 807.0951

0.2 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,812.7033 806.5594

0.3 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,616.4886 813.7519

0.4 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,347.5181 824.8128

0.5 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,337.3323 824.4148

0.6 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,048.3607 842.7160

0.7 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 51,023.9795 845.2482

0.8 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 50,824.5949 862.3027

0.9 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 50,508.2147 910.1253

1 103.652 99.53047 154.1789 159.767 246.1043 236.7673 1000 50,385.4867 986.7312

Table 10. Comparison of results of six-unit system with other algorithms.

Unit 1 2 3 4 5 6 C E

QOTLBO 107.3101 121.497 206.501 206.5826 304.9838 304.6036 64,912 1281

TLBO 107.8651 121.5676 206.1771 205.1879 306.5555 304.1423 64,922 1281

MODE 108.6284 115.9456 206.7969 210 301.8884 308.4127 64,843 1286

PDE 107.3965 122.1418 206.7536 203.7047 308.1045 303.3797 64,920 1281

NSGA 113.1259 116.4488 217.4191 207.9492 304.6641 291.5969 64,962 1281

SPEA 104.1573 122.9807 214.9553 203.1387 316.0302 289.9396 64,884 1285

MOGA 108.9318 123.1808 205.1513 206.67 304.8553 302.6093 64,838.57 1285.49

OGHS 105.7331 119.0825 205.2976 204.7772 305.8042 308.9128 64,722.74 1281.349

NGPSO 144.0425 150 190.507 192.9285 284.9083 288.0456 66,538.34 1228.365

QOPO 82.83027 82.61994 197.7722 202.2269 317.4203 317.6234 61,197.88 1238.819

MMFO 103.652 99.53047 154.1789 159.767 246.1043 236.7673 51,337.3323 824.4148
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4.4. Case 4. Thirty-Seven Thermal Generating Units and Three Wind Power Units with Demand of
10,500 MW

This scenario investigates a modified case study of ELD-VPLE, focusing on a total
of 40 generators. Specifically, the analysis includes thirty-seven thermal power generat-
ing units and three units of wind power producing units, which are examined for the
bi-objective function. The integration of ELD-VPLE with wind power is achieved by em-
ploying the system model formulation of Equation (3). Equation (5) is used to include the
total cost of generation. The dataset containing information on thermal and wind power
generating units has been sourced from references [27,45,46,51,52]. Table 11 depicts the
distribution of power among various generators in response to load demands of 10,500 MW.
Table 12 presents the optimal overall cost value in dollars per hour when compared to
alternative algorithms. Furthermore, it has been shown that the suggested MMFO exhibits
strong performance in the context of bi-objective functions, thereby reducing the overall
fuel cost to an optimal level. Furthermore, it has significantly enhanced the overall qual-
ity of the solution in terms of achieving the most efficient fuel cost, faster convergence
rate, and improved dependability. As shown in Figure 7, the minimum fitness value is
obtained in a fewer number of iterations; furthermore, it has been observed that the conver-
gence process is expedited, resulting in a shorter number of iterations to obtain the global
optimum solution.

Table 11. Optimum power allocation for 40-unit test system (37 thermal and 3 wind power units).

Power Units MFO MMFO Power Units MFO MMFO

1 114 112.2146 21 523.2265 534.9080

2 110.782043 85.7714 22 345.1678 519.7360

3 97.35768193 88.2117 23 523.2798 461.0149

4 179.853732 180.9641 24 550 532.9676

5 47 82.4790 25 523.2365 532.8027

6 140 139.9986 26 522.6056 541.2884

7 300 300 27 47 80.9368

8 300 289.7228 28 163.3979 112.6556

9 285.1041 288.4185 29 169.6291 126.9149

10 130 200.5044 30 190 158.8551

11 318.0878 289.2551 31 172.465 199.9890

12 94 243.7934 32 166.535 172.3346

13 216.8874 304.4608 33 90 90

14 484.0405941 390.7212 34 65.63347 86.84495

15 500 500 35 110 57.10207

16 500 353.3224 36 110 72.98398

17 500 313.0460 37 511.2403 500.4913

18 220 421.2108 38 18 19.85508

19 511.4687 495.8544 39 46 46.0001

20 550 518.3697 40 54 54

Total cost MFO 139,576.3965 Total cost MMFO 138,155.7853
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Table 12. Comparison of total fuel cost for 40-unit test system with wind power units.

Method Minimum Cost (USD/h)

Best Compromise [51] 143,587.90

PSO [52] 139,000.03

DWTED2 [51] 154,993.00

PWTED2 [51] 156,878.97

EMA [27] 144,356.00

GAEPSO [27] 146,035.00

PSO [27] 142,068.00

COOT [52] 139,000.63

MFO 139,576.3965

MMFO 138,155.7853
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5. Comparative and Statistical Analysis

The proposed MMFO was applied to solve the ELD problem for the IEEE benchmark
systems comprising three, six, eleven, and forty generating units, incorporating wind power
effects. The results obtained by the proposed optimizer were aligned with and superior to
those reported in references [13,27,37–46,51,52]. The MMFO successfully achieved optimal
solutions for addressing the ELD problem while considering both emission constraints and
wind power factors. The findings confirm that MMFO outperforms other optimization
methods in solving this non-convex, non-linear, and complex optimization problem, offer-
ing a faster convergence rate. In comparison with methods cited in the literature, the MMFO
demonstrated superior performance under similar boundary conditions and characteristics.
Convergence graphs from the simulations across all case studies highlight MMFO’s faster
convergence and ability to find optimal solutions in fewer iterations. As evidenced in
Tables 6, 8, 10, and 12, the proposed MMFO achieved a significant reduction in total fuel
cost, demonstrating a clear advantage over state-of-the-art techniques. The results show
that MMFO consistently improves solution quality and minimizes total cost to its optimal
value. A comprehensive statistical analysis was conducted on the test systems to ensure the
dependability, consistency, and stability of the proposed method. A total of 100 indepen-
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dent simulations were performed, with the median outcome serving as a benchmark for
determining the best solution. Figures 3, 5 and 8 provide a quantitative analysis using the
empirical cumulative distribution function (CDF), histograms, boxplots, and fitness progres-
sions in each independent run. Figures 3a, 5a, and 8a demonstrate that MMFO significantly
increases the probability of finding the optimal solution compared to traditional MFO.
Figures 3b, 5b and 8b reveal that MMFO consistently achieves a lower median of the final
solution in 100 trials compared to MFO, while Figures 3c, 5c, and 8c show the histogram
indicating minimal fitness after multiple trials. Moreover, Figures 3d, 5d and 8d reflect
the probability distribution for normality, indicating that MMFO has a higher likelihood
of solving the ELD and EELD problems more efficiently than conventional MFO. Finally,
Figures 3e, 5e and 8e show that MMFO exhibits a favorable minimum fitness relative to
the quantiles of the normal distribution. Based on these visual and graphical analyses,
it is evident that incorporating the Archimedean spiral into the optimization framework
significantly enhances MMFO’s performance and serves as a robust mathematical tool for
developing new variants of traditional optimization techniques.
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Figure 8. MMFO vs. MFO statistical analysis during total fuel cost minimization for 37 thermal
generating units and 3 wind power: (a) CDF, (b) boxplot illustration, (c) histogram, (d) probability
plot for normal distribution, and (e) quantile–quantile plot.

6. Conclusions

This study introduces a novel variant of the moth flame optimization algorithm,
termed MMFO, designed to address the complex ELD and EELD problems, which are
characterized by non-linearity, non-convexity, and non-smoothness. The proposed MMFO
method is initially validated through its application to a wide range of generating units,
from small systems with three units to large-scale systems with up to forty units, demon-
strating its capability to deliver reliable and competitive solutions.
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The effectiveness and performance of the MMFO approach are assessed across various
scales, including small (three units and six units with emission), medium (thirteen units),
and large (forty units) generating systems consisting of thirty-seven thermal and three
wind power units. The evaluation considers fuel cost, emission cost, and wind power cost
under different load demands and constraints. Comparative results highlight the efficacy
of the proposed method in solving simple ELD problems, EELD and ELD with wind power
scenarios, by achieving the lowest cost and emissions in power generation across all unit
sizes in distinct case studies.

For case 1, the proposed MMFO reveals an improvement in percentages of 0.71% for
GWO, 0.485% for GA, and 0.48% over EP, SA, GA-PS-SQP, NDS, MEEP, NSS, HCPSO, GSA,
iBA, GAB, QOPO, and MFO in total fuel cost in dollars per hour, keeping in view it is a
very small system. For case 2, the optimal setting determined by MMFO with MEEP, FEP,
PSO, CEP, and MFO shows an improvement in percentages of 0.3768%, 0.3211%, 0.3914,
0.4879%, and 0.2706%, respectively, in dollars per hour.

For case 3, the MMFO again has superiority in net improvement in percentage over
other state-of-the-art solvers in both fuel cost and emission. There were observed net
improvements in percentages in fuel cost of 20.912%, 20.924%, 20.828%, 20.922%, 20.973%,
20.878%, 20.822%, 20.681%, 22.845%, and 16.112% with QOTLBO, TLBO, MODE, PDE,
NSGA, SPEA, MOGA, OGHS, NGPSO, and QOPO, respectively, while in the case of
emission reduction, there was an improvement of 35.64% with QOTLBO and TLBO, 35.893%
with MODE, 35.64 with PDE and NSGA, and 35.84%, 35.867%, 35.860%, and 35.88% with
SPEA, MOGA, OGHS, NGPSO, and QOPO, respectively.

For case 4 consisting of thirty-seven thermal units and three wind power units, a net
improvement in percentage in total fuel cost was obtained that corresponds to 3.783%,
0.6073%, 10.863%, 11.934%, 4.295%, 2.753%, 0.6077%, and 1.017%.

Furthermore, the method’s reliability, robustness, and consistency are confirmed
through statistical analyses, including cumulative distribution function (CDF) plots, lowest
objective function values, normal distribution probabilities, and histogram representations
across independent runs. The results reveal that incorporating the Archimedean spiral
within the MFO framework significantly enhances the optimizer’s convergence speed. The
obtained results provide strong evidence of MMFO’s efficiency in discovering superior
and optimal solutions for the EELD problem, establishing MMFO as a highly effective
tool for combined economic and emission optimization as well as for the ELD problem
with wind power. Additionally, the proposed approach requires less computational effort
and demonstrates superior convergence properties, achieving optimal trade-offs more
efficiently than alternative methods.

In the future, the proposed MMFO will be implemented for real-time load dispatch in
smart grids for fuel costs and emission optimization with the integration of more complex
constraints in real-time power dispatch.
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