A Topological Characterization to Arbitrary Resilient Asynchronous Complexity
<p>The star of <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> in complex <math display="inline"><semantics> <mi mathvariant="script">K</mi> </semantics></math>.</p> "> Figure 2
<p>Once standard chromatic and general chromatic subdivision of 2-simplex <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 3
<p><math display="inline"><semantics> <mi mathvariant="script">C</mi> </semantics></math>-extended and <math display="inline"><semantics> <mi mathvariant="script">C</mi> </semantics></math>-neighborhood.</p> "> Figure 4
<p>Execution for three processes with input simplex <math display="inline"><semantics> <msup> <mi>I</mi> <mn>2</mn> </msup> </semantics></math>.</p> "> Figure 5
<p>An intuitive procedure of 2-simplex <math display="inline"><semantics> <msup> <mi>I</mi> <mn>2</mn> </msup> </semantics></math> to some reduced delayed complex.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Basic Concepts of Combinatorial Topology
- there are vertices in total in ;
- for all , if , and either or ;
- for all , if , then ;
2.2. Distributed Computing Model
- ;
- , where can be regarded as the location for some data, ⊥ means nothing but a placeholder, and is a pair.
Algorithm 1: An execution of a protocol for process in |
(1) input value; (2) ; (3) ; (4) forever do (5) ; (6) if and (7) then output and ; (8) ; (9) od; |
2.3. Topological Task Specification
3. The Topological Description of
3.1. Delayed Complexes
3.2. The Characterization of
4. Measure Complexity
4.1. Complexity of the Delayed Model
4.2. Reduced Delayed Complex
- C and T can not be empty-set at the same time.
- If , then is a sub-complex of .
- is also a pure chromatic m-complex with the same set of colors as X.
- Suppose is a partition of ; then, there must be and .
- Suppose Y is another simplex in with a partition , and assume . If and , then , and vice versa; if and , then , and vice versa.
- In fact, it needs only to consider all the facets of complex to construct the reduced delayed complex ; that is, .
4.3. Arbitrary Resilient Asynchronous Complexity Theorem
5. Application
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Corresponding Meaning |
, | (abstract) simplicial complexes |
(abstract) simplexes | |
the set of vertices of simplex X/simplicial complexes | |
the number of vertices (or elements) of simplex (or set) X | |
the geometric realization of simplex X | |
the complex generated by simplex X | |
delayed object consists of processes with t-resilience | |
invoking delayed object in r-th round execution | |
the datatype generated by k-fold iterations with data D | |
-extended of simplex X | |
-neighborhood of simplex X | |
k-fold delayed complex about n-simplicial complex | |
k-fold reduced delayed complex about n-simplicial complex | |
iterated delayed model |
Appendix A. Delayed Algorithm
Algorithm A1: Delayed algorithm [33] |
(1) shared , , done; (2) done ← false; (3) immediate (4) ; (5) ; (6) if then (7) while (8) skip (9) immediate (10) ; (11) ; (12) ; (13) return ; |
References
- Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of distributed consensus with one faulty process. In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Atlanta, GA, USA, 21–23 March 1983; pp. 1–7. [Google Scholar]
- Lynch, N. Distributed Algorithms; Morgan Kaufmann: San Francisco, CA, USA, 1996. [Google Scholar]
- Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 1991, 13, 124–149. [Google Scholar] [CrossRef]
- Mahafzah, B.A.; Al-Zoubi, I. Broadcast communication operations for hyper hexa-cell interconnection network. Telecommun. Syst. 2018, 67, 73–93. [Google Scholar] [CrossRef]
- Herlihy, M.; Shavit, N. The asynchronous computability theorem for t-resilient tasks. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 16–18 May 1993; pp. 111–120. [Google Scholar]
- Attiya, H.; Amotz, B.N.; Dolev, D. Sharing memory robustly in message-passing systems. J. ACM 1995, 42, 124–142. [Google Scholar] [CrossRef]
- Herlihy, M.; Rajsbaum, S. Set consensus using arbitrary objects (preliminary version). In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, Los Angeles, CA, USA, 14–17 August 1994; pp. 324–333. [Google Scholar]
- Herlihy, M.; Rajsbaum, S. Algebraic spans (preliminary version). In Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, Ottawa, ON, Canada, 20–23 August 1995; pp. 90–99. [Google Scholar]
- Herlihy, M.; Rajsbaum, S. The topology of distributed adversaries. Distrib. Comput. 2013, 26, 173–192. [Google Scholar] [CrossRef]
- Herlihy, M.; Rajsbaum, S.; Raynal, M.; Stainer, J. From wait-free to arbitrary concurrent solo executions in colorless distributed computing. Theor. Comput. Sci. 2017, 683, 1–21. [Google Scholar] [CrossRef]
- Herlihy, M.; Rajsbaum, S.; Tuttle, M.R. Unifying synchronous and asynchronous message-passing models. In Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, PODC '98, Puerto Vallarta, Mexico, 28 June–2 July 1998; ACM: New York, NY, USA, 1998; pp. 133–142. [Google Scholar]
- Kuznetsov, P.; Rieutord, T.; He, Y. An asynchronous computability theorem for fair adversaries. CoRR 2020, abs/2004.08348. [Google Scholar]
- Yue, Y.G.; Lei, F.C.; Liu, X.W.; Wu, J. Asynchronous computability theorem in arbitrary solo models. Mathematics 2020, 5, 757. [Google Scholar] [CrossRef]
- Gafni, E.; Kuznetsov, P.; Manolescu, C. A generalized asynchronous computability theorem. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC’14, Paris, France, 15–18 July 2014; pp. 222–231. [Google Scholar]
- Moses, Y.; Rajsbaum, S. Toward a topological characterization of asynchronous complexity. SIAM J. Comput. 2002, 31, 989–1021. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, B.S.; Guerraoui, R.; Florian, H. Fast byzantine agreement. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC’13, Montreal, QC, Canada, 22–24 July 2013; pp. 57–64. [Google Scholar]
- Mendes, H.; Tasson, C.; Herlihy, M. Distributed computability in byzantine asynchronous systems. CoRR 2013, abs/1302.6224. [Google Scholar]
- Herlihy, M.; Rajsbaum, S. The decidability of distributed decision tasks (extended abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, TX, USA, 4–6 May 1997; pp. 589–598. [Google Scholar]
- Herlihy, M.; Rajsbaum, S. A classification of wait-free loop agreement tasks. Theor. Comput. Sci. 2003, 291, 55–77. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.W.; Xu, Z.W.; Pan, J.Z. Classifying rendezvous tasks of arbitrary dimension. Theor. Comput. Sci. 2009, 410, 2162–2173. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.G.; Lei, F.C.; Wu, J. The evolution of non-degenerate and degenerate rendezvous tasks. Topol. Its Appl. 2019, 264, 187–200. [Google Scholar] [CrossRef]
- Biran., O.; Moran, S.; Zaks, S. Tight bounds on the round complexity of distributed 1-solvable tasks. Theor. Comput. Sci. 1995, 145, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, A.; Rajsbaum, S. New combinatorial topology bounds for renaming: The lower bound. Distributed Comput. 2010, 22, 287–301. [Google Scholar] [CrossRef]
- Castañeda, A.; Rajsbaum, S. New combinatorial topology bounds for renaming: The upper bound. J. ACM 2012, 59, 3. [Google Scholar] [CrossRef]
- Abraham, I.; Dolev, D. Byzantine agreement with optimal early stopping, optimal resilience and polynomial complexity. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, Portland, OR, USA, 14–17 June 2015; pp. 605–614. [Google Scholar]
- Attiya, H.; Guerraoui, R.; Hendler, D.; Kuznetsov, P. The complexity of obstruction-free implementations. J. ACM 2009, 56, 24:1–24:33. [Google Scholar] [CrossRef]
- Galil, Z.; Mayer, A.J.; Yung, M. Resolving message complexity of byzantine agreement and beyond. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Milwaukee, WN, USA, 23–25 October 1995; pp. 724–733. [Google Scholar]
- Georgiou, C.; Russell, A.; Shvartsman, A.A. The complexity of synchronous iterative do-all with crashes. Distributed Comput. 2004, 17, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Helmi, M.; Higham, L.; Pacheco, E.; Woelfel, P. The space complexity of long-lived and one-shot timestamp implementations. J. ACM 2014, 61, 7. [Google Scholar] [CrossRef]
- Hoest, G.; Shavit, N. Toward a topological characterization of asynchronous complexity. SIAM J. Comput. 2006, 36, 457–497. [Google Scholar] [CrossRef]
- Chordia, S.; Rajamani, S.K.; Rajan, K.; Ramalingam, G.; Vaswani, K. Asynchronous Resilient Linearizability. In Distributed Computing, Proceedings of the 27th International Symposium, DISC 2013, Jerusalem, Israel, 14–18 October 2013; Lecture Notes in Computer Science; Afek, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8205, pp. 164–178. [Google Scholar]
- Choudhury, A.; Patra, A. Optimally Resilient Asynchronous MPC with Linear Communication Complexit. In Proceedings of the 2015 International Conference on Distributed Computing and Networking, ICDCN 2015, Goa, India, 4–7 January 2015; Das, S.K., Krishnaswamy, D., Karkar, S., Korman, A., Kumar, M.J., Portmann, M., Sastry, S., Eds.; ACM: New York, NY, USA, 2015; p. 5. [Google Scholar]
- Vikram, S.; Herlihy, M.; Gafni, E. Asynchronous Computability Theorems for t-Resilient Systems. In Distributed Computing, Proceedings of the 30th International Symposium, DISC 2016, Paris, France, 27–29 September 2016; Lecture Notes in Computer Science; Cyril, G., David, I., Eds.; Springer: Berlin/Heidelberg, Germany; Volume 9888, pp. 428–441.
- Kozlov, D.N. Combinatorial Algebraic Topology; Algorithms and Computation in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 21. [Google Scholar]
- Munkres, J.R. Elements of Algebraic Topology; Addision-Wesley: Reading, MA, USA, 1984. [Google Scholar]
- Delporte, C.; Fauconnier, H.; Rajsbaum, S.; Raynal, M. t-resilient immediate snapshot is impossible. In Structural Information and Communication Complexity, Proceedings of the 23rd International Colloquium, SIROCCO 2016, Helsinki, Finland, 19–21 July 2016; Revised Selected Papers; Lecture Notes in Computer Science; Jukka, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 177–191. [Google Scholar]
- Borowsky, E.; Gafni, E. A simple algorithmically reasoned characterization of wait-free computations (extended abstract). In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, Santa Barbara, CA, USA, 21–24 August 1997; pp. 189–198. [Google Scholar]
- Herlihy, M.; Rajsbaum, S. Concurrent computing and shellable complexes. In Proceedings of the Distributed Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, 13–15 September 2010; pp. 109–123. [Google Scholar]
- Kozlov, D.N.; Shavit, N. Combinatorial topology of the standard chromatic subdivision and weak symmetry breaking for 6 processes. CoRR 2015, abs/1506.03944. [Google Scholar]
- Herlihy, M.; Shavit, N. The topological structure of asynchronous computability. J. ACM 1999, 46, 858–923. [Google Scholar] [CrossRef]
- Herlihy, M.; Kozlov, D.N.; Rajsbaum, S. Distributed Computing through Combinatorial Topology, 1st ed.; Morgan Kaufmann: San Francisco, CA, USA, 2013. [Google Scholar]
- Fajstrup, L.; Raußen, M.; Goubault, E. Algebraic topology and concurrency. Theor. Comput. Sci. 2006, 357, 241–278. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Liu, X.; Lei, F.; Wu, J. A Topological Characterization to Arbitrary Resilient Asynchronous Complexity. Mathematics 2022, 10, 2720. https://doi.org/10.3390/math10152720
Yue Y, Liu X, Lei F, Wu J. A Topological Characterization to Arbitrary Resilient Asynchronous Complexity. Mathematics. 2022; 10(15):2720. https://doi.org/10.3390/math10152720
Chicago/Turabian StyleYue, Yunguang, Xingwu Liu, Fengchun Lei, and Jie Wu. 2022. "A Topological Characterization to Arbitrary Resilient Asynchronous Complexity" Mathematics 10, no. 15: 2720. https://doi.org/10.3390/math10152720
APA StyleYue, Y., Liu, X., Lei, F., & Wu, J. (2022). A Topological Characterization to Arbitrary Resilient Asynchronous Complexity. Mathematics, 10(15), 2720. https://doi.org/10.3390/math10152720