Design and Analysis of Fluorine-Free Mold Fluxes for Continuous Casting of Peritectic Steels
"> Figure 1
<p>Density plot for the desirability function for formulations containing: (<b>a</b>) 0% fluorine and (<b>b</b>) 3% fluorine.</p> "> Figure 2
<p>Evolution of phases in equilibrium for the compositions studied in this work, estimated by thermodynamics calculations.</p> "> Figure 3
<p>XRD of the powder glass samples of samples A, B, C, and D.</p> "> Figure 4
<p>SEM images of the polished sections of samples A, B, C, and D.</p> "> Figure 4 Cont.
<p>SEM images of the polished sections of samples A, B, C, and D.</p> "> Figure 5
<p>DSC curves of the samples A, B, C, and D, obtained at a heating rate of 20 °<math display="inline"><semantics> <mrow> <msup> <mi>C·min</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and a cooling rate at 30 °<math display="inline"><semantics> <mrow> <msup> <mi>C·min</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 6
<p>Comparison between melting and crystallization areas measured from DSC curves for samples A, B, C, and D.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Factorial Experimental Design
2.2. Materials
2.3. Methods
2.3.1. Viscosity and Crystallization Temperature Measurements
2.3.2. X-Ray Diffraction (XRD)
2.3.3. Scanning Electron Microscopy Coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDS)
2.3.4. Differential Scanning Calorimetry (DSC)
2.4. Computational Thermodynamic Analysis
3. Results and Discussion
4. Conclusions
5. Further Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DSC | Differential Scanning Calorimetry |
XRD | X-Ray Diffraction |
SEM-EDS | Scanning Electron Microscopy Equipped with Energy Dispersive Spectroscopy |
HSLA | High-Strength Low-Alloy |
AHSS | Advanced High-Strength Steels |
References
- Krbat’a, M.; Barényi, I.; Eckert, M.; Križan, D.; Kaar, S.; Breznická, A. Hot deformation analysis of lean medium-manganese 0.2C3Mn1.5Si steel suitable for quenching & partitioning process. Kovove Mater. 2021, 59, 379–390. [Google Scholar]
- Azizi, G.; Thomas, B.G.; Asle Zaeem, M. Review of peritectic solidification mechanisms and effects in steel casting. Metall. Mater. Trans. B 2020, 51, 1875–1903. [Google Scholar] [CrossRef]
- Pereira, M.M.S.M. Desenvolvimento de pó Fluxante sem Flúor para o Lingotamento Contínuo de Placas de aço Baixo Carbono. Master’s Thesis, Universidade de Taubaté, Taubaté, Brazil, 2015. [Google Scholar]
- Mills, K.; Fox, A.; Li, Z.; Thackray, R. Performance and properties of mould fluxes. Ironmak. Steelmak. 2005, 32, 26–34. [Google Scholar] [CrossRef]
- Seo, M.D.; Shi, C.B.; Wang, H.; Cho, J.W.; Kim, S.H. Non-isothermal melt crystallization of cuspidine in CaO–SiO2–CaF2 based glasses. J. Non-Cryst. Solids 2015, 412, 58–65. [Google Scholar] [CrossRef]
- Yamauchi, A.; Sorimachi, K.; Yamauchi, T. Effect of solidus temperature and crystalline phase of mould flux on heat transfer in continuous casting mould. Ironmak. Steelmak. 2002, 29, 203–207. [Google Scholar] [CrossRef]
- Mizuno, H.; Esaka, H.; Shinozuka, K.; Tamura, M. Analysis of the crystallization of mold flux for continuous casting of steel. ISIJ Int. 2008, 48, 277–285. [Google Scholar] [CrossRef]
- Tavernier, H.; Pereira, M.; Schulz, K.; Jauch, S.; Vernilli, F.; Vidal, B. Fluorine-free casting fluxes, an overview. In Proceedings of the 4th European Steel Technology and Application Days (ESTAD-METEC), Düsseldorf, Germany, 25–27 June 2019. [Google Scholar]
- Zhang, J.j.; Zhai, B.y.; Zhang, L.; Wang, W.l. A comparison study on interfacial properties of fluorine-bearing and fluorine-free mold flux for casting advanced high-strength steels. J. Iron Steel Res. Int. 2022, 29, 1613–1618. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, W.; Zhou, L.; Sohn, I.; Si, X.; Zheng, B. Melting, Viscosity and Structure of Lithium-free CaO-SiO2 Based Melt: Substituting Li2O with Na2O and B2O3. Ceram. Int. 2024. [CrossRef]
- Yeo, T.m.; Cho, J.W.; Alloni, M.; Casagrande, S.; Carli, R. Structure and its effect on viscosity of fluorine-free mold flux: Substituting CaF2 with B2O3 and Na2O. J. Non-Cryst. Solids 2020, 529, 119756. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Sasaki, Y.; Ostrovski, O.; Zhang, C.; Cai, D.; Kashiwaya, Y. Effect of B2O3 on crystallization behavior, structure, and heat transfer of CaO-SiO2-B2O3-Na2O-TiO2-Al2O3-MgO-Li2O mold fluxes. Metall. Mater. Trans. B. 2017, 48, 2077–2091. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, D.H.; Shin, D.W.; Choi, S.Y.; Cho, J.W.; Park, J.M. Properties of F-free glass system as a mold flux: Viscosity, thermal conductivity and crystallization behavior. J. Non-Cryst. Solids 2004, 345, 157–160. [Google Scholar] [CrossRef]
- Fox, A.; Mills, K.; Lever, D.; Bezerra, C.; Valadares, C.; Unamuno, I.; Laraudogoitia, J.; Gisby, J. Development of fluoride-free fluxes for billet casting. ISIJ Int. 2005, 45, 1051–1058. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Jing, L.; Peng, L. Crystallization behavior in fluoride-free mold fluxes containing TiO2/ZrO2. J. Iron Steel Res. Int. 2011, 18, 31–37. [Google Scholar] [CrossRef]
- Hooli, P. Study on the Layers in the Film Originating from the Casting Powder Between Steel Shell and Mould and Associated Phenomena in Continuous Casting of Stainless Steel; Helsinki University of Technology: Espoo, Finland, 2007. [Google Scholar]
- Klug, J.L.; Hagemann, R.; Heck, N.C.; Vilela, A.C.; Heller, H.P.; Scheller, P.R. Fluorine-Free Mould Powders for Slab Casting: Crystallization Control in the CaO–SiO2–TiO2–Na2O–Al2O3 System. Steel Res. Int. 2012, 83, 1186–1193. [Google Scholar] [CrossRef]
- Sohn, I. Understanding Mould Powders: Is it black magic? In Proceedings of the 22 a Conferencia del Acero IAS, Rosario, Argentina, 23–25 October 2018. [Google Scholar]
- Nakada, H.; Nagata, K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int. 2006, 46, 441–449. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.; He, S.; Mills, K.; Li, Z. Formation of TiN and Ti (C, N) in TiO2 containing, fluoride free, mould fluxes at high temperature. Ironmak. Steelmak. 2011, 38, 297–301. [Google Scholar] [CrossRef]
- Neto, B.B.; Scarminio, I.S.; Bruns, R.E. Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria; Bookman Editora: Porto Alegre, Brazil, 2010. [Google Scholar]
- More, M.P.; Deshmukh, P.K. Quality by design approach for the synthesis of graphene oxide nanosheets using full factorial design with enhanced delivery of Gefitinib nanocrystals. Mater. Res. Express 2021, 8, 075602. [Google Scholar] [CrossRef]
- Laftah, W.A.; Rahman, W.A.W.A. Computational modeling and statistical analysis of buckling characteristics of polysilicon reinforced fiber. Mater. Res. Express 2024, 11, 085302. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaye, H.; Rocabois, P. The IRSID slag model for steelmaking process control. In Proceedings of the 2nd International Conference Mathematical Modeling and Computer Simulation of Metal Technologies, MMT, Ariel, Israel, 13–15 November 2000; pp. 89–96. [Google Scholar]
- Fischer, G.; Golloch, A.; Kasajanow, J. Optimization of the measuring conditions for thermal analysis of casting powders and evaluation of the results by means of factor analysis. Steel Res. 1996, 67, 479–484. [Google Scholar] [CrossRef]
- Fallah, M.M.; Attar, M.A.; Mohammadpour, A.; Moradi, M.; Barka, N. Modelling and optimizing surface roughness and MRR in electropolishing of AISI 4340 low alloy steel in eco-friendly NaCl based electrolyte using RSM. Mater. Res. Express 2021, 8, 106528. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Shahabaz, S.; Shetty, N.; Sharma, S.; Jayashree, P.; Shetty, S.D.; Naik, N. Optimization of drilling parameters on delamination and burr formation in drilling of neat CFRP and hybrid CFRP nano-composites. Mater. Res. Express 2024, 11, 035006. [Google Scholar] [CrossRef]
- Sene, L.; Tavares, B.; de Almeida Felipe, M.d.G.; dos Santos, J.C.; Pereira, F.M.; Tominc, G.C.; da Cunha, M.A.A. Ethanol production by Kluyveromyces marxianus ATCC 36907: Fermentation features and mathematical modeling. Biocatal. Agric. Biotechnol. 2023, 51, 102789. [Google Scholar] [CrossRef]
- Mills, K. Mould Powder for Continuous Casting; Instituto Argentino de Siderurgia: San Nicolas, Argentina, 2003. [Google Scholar]
- He, Y.M.; Wang, Q.; Hu, B.; Zhu, L.L.; Chen, W.M.; He, S.P. Application of high-basicity mould fluxes for continuous casting of large steel slabs. Ironmak. Steelmak. 2016, 43, 588–593. [Google Scholar] [CrossRef]
- Wen, G.; Sridhar, S.; Tang, P.; Qi, X.; Liu, Y. Development of fluoride-free mold powders for peritectic steel slab casting. ISIJ Int. 2007, 47, 1117–1125. [Google Scholar] [CrossRef]
- Riaz, S.; Mills, K.; Nagat, K.; Ludlow, V.; Nonnanton, A. Determination of mould powder crystallinity using X-ray diffractometry. High Temp. Mater. Process. 2003, 22, 379–386. [Google Scholar] [CrossRef]
Level | O (%) | (%) | (%) | F (%) |
---|---|---|---|---|
Lower (−) | 5 | 0 | 4 | 0 |
Higher (+) | 12 | 3 | 7 | 3 |
Exp. | ||||||||
---|---|---|---|---|---|---|---|---|
1 | − | − | − | − | 5.1 | 1135 | 1188 | 54 |
2 | + | − | − | − | 2.3 | 1017 | 1054 | 51 |
3 | − | + | − | − | 3.9 | 1111 | 1181 | 58 |
4 | + | + | − | − | 1.7 | 1014 | 1041 | 43 |
5 | − | − | + | − | 5.9 | 1186 | 1182 | 74 |
6 | + | − | + | − | 2.4 | 1083 | 1046 | 74 |
7 | − | + | + | − | 4.8 | 1171 | 1188 | 79 |
8 | + | + | + | − | 2.0 | 1079 | 1035 | 66 |
9 | − | − | − | + | 2.9 | 1064 | 1197 | 57 |
10 | + | − | − | + | 1.1 | 987 | 1049 | 60 |
11 | − | + | − | + | 2.3 | 1045 | 1192 | 62 |
12 | + | + | − | + | 0.9 | 971 | 1040 | 46 |
13 | − | − | + | + | 3.5 | 1135 | 1193 | 84 |
14 | + | − | + | + | 1.3 | 1076 | 1044 | 89 |
15 | − | + | + | + | 2.9 | 1103 | 1184 | 88 |
16 | + | + | + | + | 1.2 | 1040 | 1027 | 71 |
Compounds | Samples | |||
---|---|---|---|---|
A | B | C | D | |
Binary Basicity (, wt:wt) | 1.03 | 1.00 | 1.04 | 1.01 |
O (wt%) | 9.40 | 8.00 | 8.00 | 8.00 |
(wt%) | 5.00 | 6.00 | 5.40 | 4.60 |
F (wt%) | 0.00 | 1.50 | 3.00 | 0.00 |
(wt%) | 0.00 | 1.90 | 0.00 | 0.00 |
Others (wt%) * | 85.60 | 82.60 | 83.60 | 87.40 |
Characteristics | Samples | |||
---|---|---|---|---|
A | B | C | D | |
Crystallization Temperature (°C) | 1301 | 1069 | 1159 | 1309 |
Viscosity at C (dPa·s) | 2.70 | 2.97 | 1.75 | 4.58 |
Sample | Tg (°C) | Tcryst (°C) on Heating | Tmelting range (°C) |
---|---|---|---|
A | 550 | 670 | 1000–1270 |
B | 520 | 730 | 1030–1270 |
C | 530 | 700 | 1010–1300 |
D | 520 | 720 | 900–1300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.M.d.S.M.; Tavernier, H.; dos Santos Junior, T.; Vernilli, F. Design and Analysis of Fluorine-Free Mold Fluxes for Continuous Casting of Peritectic Steels. Materials 2024, 17, 5947. https://doi.org/10.3390/ma17235947
Pereira MMdSM, Tavernier H, dos Santos Junior T, Vernilli F. Design and Analysis of Fluorine-Free Mold Fluxes for Continuous Casting of Peritectic Steels. Materials. 2024; 17(23):5947. https://doi.org/10.3390/ma17235947
Chicago/Turabian StylePereira, Márcia Maria da Silva Monteiro, Hervé Tavernier, Tiago dos Santos Junior, and Fernando Vernilli. 2024. "Design and Analysis of Fluorine-Free Mold Fluxes for Continuous Casting of Peritectic Steels" Materials 17, no. 23: 5947. https://doi.org/10.3390/ma17235947
APA StylePereira, M. M. d. S. M., Tavernier, H., dos Santos Junior, T., & Vernilli, F. (2024). Design and Analysis of Fluorine-Free Mold Fluxes for Continuous Casting of Peritectic Steels. Materials, 17(23), 5947. https://doi.org/10.3390/ma17235947