Challenges and Performance of Filter Dusts as a Supplementary Cementitious Material
<p>XRD assessment of swellable clay minerals in D-CIC through glycol vapor treatment. D-CIC—AD represents the air-dried and D-CIC—Glycol the glycol vapor-treated D-CIC sample.</p> "> Figure 2
<p>XRD segment of the XRD quantification showing the different phyllosilicates present in the D-CIC.</p> "> Figure 3
<p>TG and DTG curves of the two dusts D-CCC and D-CIC with marked calcination temperatures.</p> "> Figure 4
<p>FTIR spectra, comparing German filter dust before and after treatment.</p> "> Figure 5
<p>FTIR spectra, comparing Argentinian filter dust before and after treatment.</p> "> Figure 6
<p>Visualization of the inverse proportional relationship between the BET surface area and the water demand determined with the Puntke method with qualitatively increasing temperatures for both of the investigated sample groups.</p> "> Figure 7
<p>R<sup>3</sup> test for evolved heat; German samples with reference curves and inert threshold band according to [<a href="#B9-materials-17-05676" class="html-bibr">9</a>].</p> "> Figure 8
<p>R<sup>3</sup> test for evolved heat; Argentinian samples with reference curves and inert threshold band according to [<a href="#B9-materials-17-05676" class="html-bibr">9</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chemical and Mineralogical Characterization
2.2.2. Thermal Characterization
2.2.3. Dust Calcination
2.2.4. Determination of the Calcination State
2.2.5. Assessment of Particle Properties
2.2.6. Reactivity Tests
3. Results and Discussion
3.1. Chemical Characterization of Materials
3.2. Mineralogical Characterization of Materials
3.3. Impact of Temperature on Properties of Filter Dust
3.3.1. Degree of Dehydroxylation
3.3.2. Physical Properties
3.4. Reactivity of Untreated and Calcined Filter Dust
3.5. Implication Regarding the Use of Filter Dusts as SCM
4. Conclusions
- The results show a clear segregation effect for both of the filter dusts in comparison to industrially calcined clays. This is less pronounced for the D-CCC compared to the D-CIC, especially with regard to the enrichment of phyllosilicates and the decrease in the quartz and feldspar content. It is assumed that the airflow in the rotary kiln and the deagglomeration due to the rotation and impact of the aggregates cause the segregation and thus smaller and lighter clay particles are more easily entrained into the airflow.
- The samples can be classified into two groups according to their reactivity. Those associated with the D-CCC can be classified as reactive supplementary cementitious material, while the ones associated with the D-CIC could pose as filler materials with slight pozzolanic properties.
- The cD-CCC-750 presents lower reactivity than CCC.
- The cD-CIC-850 has higher reactivity than CIC, which might be attributed to the enrichment of clay minerals in the D-CIC due to a pronounced segregation effect.
- Both filter dust groups exhibit a significantly lower water demand than their corresponding industrial products, while the further calcination of both filter dusts increases the water demand with an increasing calcination temperature.
- Both filter dust groups have a significantly higher BET compared to their corresponding industrial products, while the further calcination of both filter dusts reduces the BET surface area with an increasing calcination temperature.
- The coarsening of particles and formation of clusters due to the calcination of filter dusts might increase the void volume within the dust particles, which could explain the inversely proportional effect observed regarding the decreasing BET surface area and increasing water demand.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences; OECD Publishing Paris: Paris, France, 2019; p. 214. [Google Scholar]
- Ellen MacArthur Foundation. Annual Impact Report and Consolidated Accounts; Ellen MacArthur Foundation: London, UK, 2023; p. 61. [Google Scholar]
- Tercero Espinoza, L.; Rostek, L.; Loibl, A.; Stijepic, D. The Promise and Limits of Urban Mining—Potentials, Trade-Offs and Supporting Factors for the Recovery of Raw Materials from the Anthroposphere; Fraunhofer ISI: Karlsruhe, Germany, 2020; p. 40. [Google Scholar]
- Müller, F.; Lehmann, C.; Kosmol, J.; Keßler, H.; Bolland, T. Urban Mining—Ressourcenschonung im Anthopozän (Urban Mining—Conserving resources in the Anthopocene); Umweltbundesamt: Dessau-Roßlau, Germany, 2017; p. 72. [Google Scholar]
- United Nations. The Paris Agreement; UNFCCC: Paris, France, 2015; p. 27. [Google Scholar]
- Scrivener, K.; Gartner, E.M.; Vanderley, M.J. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Cordoba, G.; Zito, S.V.; Sposito, R.; Rahhal, V.F.; Tironi, A.; Thienel, K.-C.; Irassar, E.F. Concretes with calcined clay and calcined shale: Workability, mechanical and transport properties. J. Mater. Civ. Eng. 2020, 32, 04020224. [Google Scholar] [CrossRef]
- Thienel, K.-C.; Beuntner, N. Effects of calcined clay as low carbon cementing materials on the properties of concrete. In Proceedings of the Concrete in the Low Carbon Era, Dundee, UK, 9–11 July 2012; pp. 504–518. [Google Scholar]
- Snellings, R.; Suraneni, P.; Skibsted, J. Future and emerging supplementary cementitious materials. Cem. Concr. Res. 2023, 171, 107199. [Google Scholar] [CrossRef]
- Alujas Diaz, A.; Almenares Reyes, R.S.; Hanein, T.; Irassar, E.F.; Juenger, M.; Kanavaris, F.; Maier, M.; Marsh, A.T.M.; Sui, T.; Thienel, K.-C.; et al. Properties and occurrence of clay resources for use as supplementary cementitious materials: A paper of RILEM TC 282-CCL. Mater. Struct. 2022, 55, 139. [Google Scholar] [CrossRef]
- Parashar, A.; Avet, F.; Canut, M.; Almenares Reyes, R.; Riding, K.A.; Viera, S.; Irassar, E.F.; Velásquez, L.; Kanavaris, F.; Thienel, K.-C.; et al. Industrialisation of calcined clay cements: Past, presend and future: A paper of RILEM TC 282-CCL. Mater. Struct. 2024, 57, 211. [Google Scholar] [CrossRef]
- Bundesregierung. Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der Umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz—KrWG (Act to Promote the Circular Economy and Ensure the Environmentally Sound Management of Waste); Justiz, B.F., Ed.; Bundesgesetzblatt: Bonn, Germany, 2023; p. 55. [Google Scholar]
- Bundesregierung. Verordnung über Anforderungen an den Einbau von Mineralischen Ersatzbaustoffen in Technische Bauwerke (Ersatzbaustoffverordnung—ErsatzbaustoffV) (Ordinance on Requirements for the Installation of Mineral Substitute Building Materials in Technical Structures); Justiz, B.F., Ed.; Bundesregierung: Bonn, Germany, 2023; p. 122. [Google Scholar]
- Thienel, K.-C.; Scherb, S.; Beuntner, N.; Maier, M.; Sposito, R. 1:1 or 2:1-Does it matter for calcined clay as supplementary cementitious material? ce/papers 2023, 6, 363–372. [Google Scholar] [CrossRef]
- DIN EN ISO 11885; Wasserbeschaffenheit–Bestimmung von Ausgewählten Elementen Durch Induktiv Gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES) (Water Quality-Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)). Beuth-Verlag: Berlin, Germany, 2009; p. 37.
- Scherb, S.; Köberl, M.; Beuntner, N.; Thienel, K.-C.; Neubauer, J. Reactivity of Metakaolin in Alkaline Environment: Correlation of Results from Dissolution Experiments with XRD Quantifications. Materials 2020, 13, 2214. [Google Scholar] [CrossRef]
- Westphal, T.; Füllmann, T.; Pöllmann, H. Rietveld quantification of amorphous portions with an internal standard—Mathematical consequences of the experimental approach. Powder. Diffr. 2012, 24, 239–243. [Google Scholar] [CrossRef]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C.J. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Cambridge University Press: Oxford, NY, USA, 1997; p. 322. [Google Scholar]
- ISO 13320:2020; Particle Size Analysis-Laser Diffraction Methods. ISO: Geneva, Switzerland, 2020; p. 59.
- DIN ISO 9277; Determination of the Specific Surface Area of Solids by Gas Adsorption-BET Method. Beuth-Verlag: Berlin, Germany, 2003; p. 19.
- Puntke, W. Wasseranspruch von feinen Kornhaufwerken. Beton 2002, 52, 242–248. [Google Scholar]
- DIN EN ISO 1183-3; Bestimmung der Dichte von nicht verschäumten Kunststoffen; Teil 3: Gas-Pyknometer-Verfahren. In Teil 3: Gas-Pyknometer-Verfahren. Beuth Verlag: Berlin, Germany, 2000.
- DIN 66145; Darstellung von Korn-(Teilchen-)Größenverteilungen RRSB-Netz/Graphical Representation of Particle Size Distribution; RRSB-Grid. Beuth Verlag: Berlin, Germany, 1976; p. 3.
- ASTM C1897-20; Standard Test Methods for Measuring the Reactivity of Supplementary Cementitious Materials by Isothermal Calorimetry and Bound Water Measurements. ASTM International: West Conshohocken, PA, USA, 2020; p. 10. [CrossRef]
- DIN EN 196-5; Prüfverfahren für Zement-Teil 5: Prüfung der Puzzolanität von Puzzolanzementen (Methods of Testing Cement–Part 5: Pozzolanicity Test for Pozzolanic Cement). Beuth-Verlag: Berlin, Germany, 2011; p. 14.
- Buchwald, A.; Kriegel, R.; Kaps, C.; Zellmann, H.-D. Untersuchung zur Reaktivität von Metakaolinen für die Verwendung in Bindemittelsystemen. In Gesellschaft Deutscher Chemiker e.V.-Jahrestagung; Gesellschaft Deutscher Chemiker e.V.: Frankfurt, Germany, 2003; Volume 27, pp. 91–97. [Google Scholar]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef]
- Scherb, S.; Maier, M.; Beuntner, N.; Thienel, K.-C.; Neubauer, J. Reaction kinetics during early hydration of calcined phyllosilicates in clinker-free model systems. Cem. Concr. Res. 2021, 143, 106382. [Google Scholar] [CrossRef]
- ASTM C 618-23; Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2023; p. 4. [CrossRef]
- Kalina, R.D.; Al-Shmaisani, S.; Ferron, R.D.; Juenger, M.C. False Positives in ASTM C618 Specifications for Natural Pozzolans. ACI Mater. J. 2019, 116, 165–172. [Google Scholar] [CrossRef]
- Maier, M.; Beuntner, N.; Thienel, K.-C. An approach for the evaluation of local raw material potential for calcined clay as SCM, based on geological and mineralogical data: Examples from German clay deposits. In Calcined Clays for Sustainable Concrete—Proceedings of the 3rd International Conference on Calcined Clays for Sustainable Concrete; Bishnoi, S., Ed.; Volume RILEM Bookseries; Springer: Singapore, 2020; Volume 25, pp. 37–47. [Google Scholar]
- Beuntner, N.; Thienel, K.-C. Properties of Calcined Lias Delta Clay-Technological Effects, Physical Characteristics and Reactivity in Cement. In Calcined Clays for Sustainable Concrete—Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete; Scrivener, K., Favier, A., Eds.; Volume RILEM Bookseries Volume 10; Springer: Dordrecht, The Netherlands, 2015; pp. 43–50. [Google Scholar]
- Zalba, P.E.; Morosi, M.E.; Conconi, M.S. Gondwana Industrial Clays Tandilia System, Argentina: Geology and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Irassar, E.F.; Bonavetti, V.L.; Castellano, C.C.; Trezza, M.A.; Rahhal, V.F.; Cordoba, G.; Lemma, R. Calcined illite-chlorite shale as supplementary cementing material: Thermal treatment, grinding, color and pozzolanic activity. Appl. Clay Sci. 2019, 179, 105143. [Google Scholar] [CrossRef]
- Maier, M.; Beuntner, N.; Thienel, K.-C. Mineralogical characterization and reactivity test of common clays suitable as supplementary cementitious material. Appl. Clay Sci. 2021, 202, 105990. [Google Scholar] [CrossRef]
- Snellings, R.; Almenares Reyes, R.; Hanein, T.; Irassar, E.F.; Kanavaris, F.; Maier, M.; Marsh, A.T.; Valentini, L.; Zunino, F.; Alujas Diaz, A. Paper of RILEM TC 282-CCL: Mineralogical characterization methods for clay resources intended for use as supplementary cementitious material. Mater. Struct. 2022, 55, 149. [Google Scholar] [CrossRef]
- Derkowski, A.; Kuligiewicz, A. Thermal Analysis and Thermal Reactions of Smectites: A review of Methology, Mechanisms and Kinetics. Clays Clay Miner. 2023, 70, 946–972. [Google Scholar] [CrossRef]
- Koga, N.; Takemoto, S.; Okada, S.; Tanaka, H. A kinetic study of the thermal decomposition of iron(III) hydroxide oxides-Part 1.~-FeO(OH) in banded iron formations. Thermochim Acta 1994, 254, 193–207. [Google Scholar] [CrossRef]
- Gasparini, E.; Tarantino, S.C.; Ghigna, P.; Riccardi, P.M.; Cedillo-González, E.I. Thermal dehydroxylation of kaolinite under isothermal conditions. Appl. Clay Sci. 2012, 80, 417–425. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. Dev. Clay Sci. 2017, 8, 107–149. [Google Scholar] [CrossRef]
- Król, M.; Minkiewicz, J.; Mozgawa, W. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 2016, 1126, 200–206. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Alujas, A.; Almenares, R.S.; Betancourt, S.; Leyva, C. Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Mineralogical Composition. In Calcined Clays for Sustainable Concrete; Scrivener, K., Favier, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 10, pp. 339–345. [Google Scholar]
- Locher, F.W. Zement: Grundlagen der Herstellung und Verwendung; Verlag Bau und Technik: Düsseldorf, Germany, 2000; p. 522. [Google Scholar]
- Bentz, D.P.; Ferraris, C.F.; Galler, M.A.; Hansen, A.S.; Guynn, J.M. Influence of particle size distributions on yield stress and viscosity of cement–fly ash pastes. Cement. Concr. Res. 2012, 42, 404–409. [Google Scholar] [CrossRef]
- BauMineral, K. Microsit-Feinstflugasche für Hochleistungsbeton; BauMineral Kraftwerkstoffe: Herten, Germany, 2014; p. 2. [Google Scholar]
- Teklay, A.; Yin, C.; Rosendahl, L. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO₂ footprint from cement industry. Appl. Energy 2015, 162, 1218–1224. [Google Scholar] [CrossRef]
- Hanpongpun, W.; Kazemi-Kamyab, H.; Snellings, R.; Scrivener, K. Study on activation energy of calcined clays from different calcination process. In Proceedings of the 15 International Congress on the Chemistry of Cement, Prague, Czech Republic, 16–20 September 2019; p. 9. [Google Scholar]
- Fernandez Lopez, R. Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2009. [Google Scholar]
- He, C.; Makovicky, E.; Osbæck, B. Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite. Appl. Clay Sci. 2000, 17, 141–161. [Google Scholar] [CrossRef]
- Neißer-Deiters, A.; Scherb, S.; Beuntner, N.; Thienel, K.-C. Influence of the calcination temperature on the properties of a mica mineral as a suitability study for the use as SCM. Appl. Clay Sci. 2019, 179, 105168. [Google Scholar] [CrossRef]
- He, C.; Osbæck, B.; Makovicky, E. Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cem. Concr. Res. 1995, 25, 1691–1702. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Avet, F.; Li, X.; Ben Haha, M.; Bernal, S.A.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; Dolenec, S.; Durdzinski, P.; Haufe, J.; et al. Report of RILEM TC 267-TRM phase 2: Optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materials. Mater. Struct. 2022, 55, 92. [Google Scholar] [CrossRef]
- Li, X.; Snellings, R.; Antoni, M.; Alderete, N.M.; Ben Haha, M.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; De Weerdt, K.; Dhandapani, Y.; et al. Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Mater. Struct. 2018, 51, 151. [Google Scholar] [CrossRef]
- DIN EN 12620; Gesteinskörnungen für Beton (Aggregates for Concrete). Beuth-Verlag: Berlin, Germany, 2008; p. 61.
- Dhers, S.; Müller, A.; Guggenberger, R.; Freimut, D.; Weldert, K.S.; Sachsenhauser, B.; Yermakou, V.; Mikanovic, N.; Schwesig, P. On the relationship between superplasticizer demand and specific surface area of calcined clays in LC3 systems. Constr. Build. Mater. 2024, 441, 1. [Google Scholar] [CrossRef]
- Lei, L.; Plank, J. A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cem. Concr. Res. 2012, 42, 1299–1306. [Google Scholar] [CrossRef]
Argentina | Germany |
---|---|
|
|
Filter Dust | Industrial Products | |||
---|---|---|---|---|
Sample | D-CCC | D-CIC | CCC | CIC |
SiO2 | 50.6 | 53.9 | 51.74 | 61.3 |
Al2O3 | 18.3 | 16.3 | 21.6 | 16.4 |
CaO | 5.2 | 3.9 | 6.5 | 2.2 |
Fe2O3 | 10.3 | 6.8 | 8.0 | 6.8 |
K2O | 2.4 | 4.3 | 2.9 | 4.3 |
MgO | 2.2 | 2.2 | 2.9 | 2.2 |
Na2O | 0.9 | 5.8 | 0.8 | 4.2 |
TiO2 | 1.3 | 0.8 | 1.0 | 0.9 |
SO3 | 3.1 | 0.2 | 1.8 | 0.3 |
LOI | 5.5 | 6.7 | 2.8 | 1.4 |
D-CCC | CCC | D-CIC | CIC | |
---|---|---|---|---|
Quartz | 16 | 19 | 21 | 32 |
Carbonate | 3 | 3 | 3 | - |
Chlorite | 3 | - | 10 | 1 |
Pyrite | 1 | - | - | - |
Feldspar | 4 | 3 | 12 | 15 |
Muscovite | 6 | - | - | - |
Illite/Muscovite | - | - | 33 | 21 |
Illite/smectite alternation | 36 | 22 | - | - |
Smectite | - | - | 15 | 8 |
Kaolinite | 10 | - | - | - |
Rutile/Anatase | 3 | - | 1 | 1 |
Hematite | - | 2 | - | - |
Anhydrite | - | 2 | - | - |
Amorphous | 17 | 49 | 5 | 22 |
Sample | Temperature Range | Loss of Mass (%) | Maximum in DTG Curve (°C) |
---|---|---|---|
D-CCC | 25–300 | 1.03 | 89.3 |
300–650 | 2.55 | 505.5 | |
650–1000 | 1.60 | 721.7 | |
D-CIC | 25–250 | 1.12 | 106.8 |
250–350 | 0.19 | 292.3 | |
350–650 | 1.93 | 579.9 | |
650–1000 | 2.50 | 764.2 |
D-CCC | cD-CCC-650 | cD-CCC-750 | CCC | D-CIC | cD-CIC-750 | cD-CIC-850 | CIC | |
---|---|---|---|---|---|---|---|---|
Particle size (µm) | ||||||||
d10 | 2.3 | 2.5 | 2.8 | 4.0 | 2.4 | 3.0 | 3.9 | 2.1 |
d50 | 19.1 | 21.7 | 23.9 | 13.2 | 19.7 | 21.8 | 22.8 | 16.5 |
d90 | 77.2 | 88.6 | 101.9 | 37.0 | 90.0 | 93.8 | 88.2 | 47.7 |
x′ (63.3%) RRSB | 30.0 | 34.5 | 38.0 | 16.7 | 30.5 | 33.2 | 33.8 | 23.3 |
Density (g/cm3) | 2.65 | 2.66 | 2.66 | 2.60 | 2.75 | 2.71 | 2.70 | 2.69 |
BET (m2/g) | 18.5 | 17.8 | 14.3 | 3.8 | 13.9 | 9.3 | 3.4 | 4.6 |
Water demand (dm3/m3) | 26 | 32 | 34 | 42 | 25 | 32 | 38 | 33 |
Sample | RRSB: x′ (63.2% Quantile) |
---|---|
CEM I 32.5 R [45] | 19.6–31.3 |
Fly Ash [46] | 26.5 |
EFA Filler (Electro-Filter Ash) [47] | 21.8 |
R3 Calorimeter | R3 Bound Water | Frattini | |
---|---|---|---|
Sample | Accumulated Heat Over 168 h [J/gSCM] | Bound Water After 7 d (→168 h) [%] | XFr—Pozzolanic Coefficient (28 d) → See Section 2.2.6 |
D-CCC | 222 | 5.21 | 3.39 |
cD-CCC-650 | 296 | 6.71 | 2.96 |
cD-CCC-750 | 304 | 6.71 | 3.46 |
CCC | 349 | 8.11 | 4.09 |
D-CIC | 43.7 | 2.00 | −0.17 |
cD-CIC-750 | 78 | 2.40 | 0.34 |
cD-CIC-850 | 151 | 3.70 | 0.06 |
CIC | 129 | 3.10 | 1.15 |
Sample | Al [mmol/L] | Si [mmol/L] | Al + Si [mmol/L] | Si/Al |
---|---|---|---|---|
D-CCC | 0.95 | 1.25 | 2.20 | 1.31 |
cD-CCC-650 | 0.67 | 0.82 | 1.49 | 1.23 |
cD-CCC-750 | 1.53 | 2.00 | 3.53 | 1.31 |
CCC | 1.44 | 2.40 | 3.84 | 1.67 |
D-CIC | 0.11 | 0.27 | 0.38 | 2.46 |
cD-CIC-750 | 0.32 | 0.69 | 1.01 | 2.19 |
cD-CIC-850 | 0.31 | 0.80 | 1.11 | 2.56 |
CIC | 0.41 | 0.89 | 1.30 | 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, J.; Mocciaro, A.; Cordoba, G.; Martinefsky, C.; Irassar, E.F.; Beuntner, N.; Scherb, S.; Thienel, K.-C.; Tironi, A. Challenges and Performance of Filter Dusts as a Supplementary Cementitious Material. Materials 2024, 17, 5676. https://doi.org/10.3390/ma17225676
Berger J, Mocciaro A, Cordoba G, Martinefsky C, Irassar EF, Beuntner N, Scherb S, Thienel K-C, Tironi A. Challenges and Performance of Filter Dusts as a Supplementary Cementitious Material. Materials. 2024; 17(22):5676. https://doi.org/10.3390/ma17225676
Chicago/Turabian StyleBerger, Johannes, Anabella Mocciaro, Gisela Cordoba, Cecilia Martinefsky, Edgardo F. Irassar, Nancy Beuntner, Sebastian Scherb, Karl-Christian Thienel, and Alejandra Tironi. 2024. "Challenges and Performance of Filter Dusts as a Supplementary Cementitious Material" Materials 17, no. 22: 5676. https://doi.org/10.3390/ma17225676
APA StyleBerger, J., Mocciaro, A., Cordoba, G., Martinefsky, C., Irassar, E. F., Beuntner, N., Scherb, S., Thienel, K. -C., & Tironi, A. (2024). Challenges and Performance of Filter Dusts as a Supplementary Cementitious Material. Materials, 17(22), 5676. https://doi.org/10.3390/ma17225676