Enhancing Stress Corrosion Cracking Resistance of Low Cu-Containing Al-Zn-Mg-Cu Alloys by Aging Treatment Control
<p>Diagram of dimensions of the tensile samples.</p> "> Figure 2
<p>Diagram of extracted position and dimensions of the C-ring specimens: (<b>a</b>) extracted position; (<b>b</b>) dimensions of the C-ring specimens.</p> "> Figure 3
<p>Tensile properties and conductivity of samples after different aging treatments: (<b>a</b>) secondary aging treatment; (<b>b</b>) third-stage aging treatment.</p> "> Figure 4
<p>Macroscopic morphology and crack growth features of C-ring samples in different aging treatments: (<b>a</b>) aging at 120 °C × 6 h+152 °C × 18 h; (<b>b</b>) aging at 120 °C × 6 h + 162 °C × 8 h + 120 °C × 24 h.</p> "> Figure 5
<p>SSRT engineering stress–strain curves of samples after different aging treatments tested in silicone oil and 3.5% NaCl conditions.</p> "> Figure 6
<p>TEM images and distribution diagrams of GBP sizes and spacings for samples under different aging conditions: (<b>a</b>,<b>b</b>) TEM images of GBPs in samples aged at 120 °C × 6 h + 152 °C × 18 h; (<b>c</b>) size distribution diagram of GBPs in samples aged at 120 °C × 6 h + 152 °C × 18 h; (<b>d</b>) spacing distribution diagram of GBPs in samples aged at 120 °C×6h+152 °C × 18 h; (<b>e</b>,<b>f</b>) TEM images of GBPs in samples aged at 120 °C × 6 h + 162 °C × 8 h + 120 °C×24 h; (<b>g</b>) size distribution diagram of GBPs in samples aged at 120 °C × 6 h + 162 °C × 8 h + 120 °C × 24 h; (<b>h</b>) spacing distribution diagram of GBPs in samples aged at 120 °C × 6 h + 162 °C × 8 h + 120 °C × 24 h.</p> "> Figure 7
<p>STEM images and EDS analysis of the samples in different aging treatments: (<b>a</b>,<b>c</b>) aging at 120 °C × 6 h + 152 °C × 18 h; (<b>b</b>,<b>d</b>) aging at 120 °C × 6 h + 162 °C × 8 h + 120 °C × 24 h.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Aging Treatment
2.2. Electrical Conductivity Tests
2.3. Mechanical Property Tests
2.4. Corrosion Tests
2.5. Microstructural Investigations
3. Results
3.1. Electrical Conductivity and Tensile Properties
3.2. Stress Corrosion Cracking Properties
- σfw—is the tensile strength of the sample in the corrosive medium, N/mm2;
- σfA—is the tensile strength of the sample in the inert medium, N/mm2;
- δfw—is the percentage of elongation at break of the sample in the corrosive medium, %;
- δfA—is the percentage of elongation at break of the sample in the inert medium, %.
3.3. Microstructures
4. Discussion
5. Conclusions
- (1)
- Extending the aging time leads to a decreasing trend in the tensile strength of the alloy, while the electrical conductivity shows an increasing trend during the two-step aging process. Increasing the second-stage aging temperature also results in a decreasing trend in tensile strength and an increasing trend in electrical conductivity.
- (2)
- Compared to the two-step aging process, the three-step aging resulted in an increase in the alloy’s electrical conductivity by 0.5 to 1 IACS%, while the tensile strength slightly decreased, and there was no significant change in elongation. Specifically, the alloy treated with three-step aging at 120 °C for 6 h, 162 °C for 8 h, and a final stage of 120 °C for 24 h achieved a yield strength of 474 MPa, an ultimate tensile strength of 523 MPa, an elongation of 13.25%, and a conductivity of 42.37 IACS%, meeting the requirements for practical applications.
- (3)
- Increasing the secondary aging temperature and adding a tertiary aging step can significantly reduce the SCC sensitivity of the alloy while meeting the mechanical performance requirements. The reduced SCC sensitivity was mainly attributed to the increased spacing of GPBs, a wider PFZ at the grain boundaries, and a higher Cu content in the grain boundary precipitates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar] [CrossRef]
- Österreicher, J.A.; Kirov, G.; Gerstl, S.S.A.; Mukeli, E.; Grabner, F.; Kumar, M. Stabilization of 7xxx aluminium alloys. J. Alloys Compd. 2018, 740, 167–173. [Google Scholar] [CrossRef]
- Lopez Freixes, M.; Zhou, X.; Zhao, H.; Godin, H.; Peguet, L.; Warner, T.; Gault, B. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat. Commun. 2022, 13, 4290. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Toda, H.; Masunaga, R.; Shimizu, K.; Gao, H.; Sasaki, K.; Bhuiyan, M.S.; Uesugi, K.; Takeuchi, A.; Watanabe, Y. Influence of hydrogen on strain localization and fracture behavior in Al–Zn–Mg–Cu aluminum alloys. Acta Mater. 2018, 159, 332–343. [Google Scholar] [CrossRef]
- Rao, A.C.U.; Vasu, V.; Govindaraju, M.; Srinadh, K.V.S. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Trans. Nonferrous Met. Soc. China 2016, 26, 1447–1471. [Google Scholar] [CrossRef]
- Knight, S.P.; Pohl, K.; Holroyd, N.J.H.; Birbilis, N.; Rometsch, P.A.; Muddle, B.C.; Goswami, R.; Lynch, S.P. Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys. Corros. Sci. 2015, 98, 50–62. [Google Scholar] [CrossRef]
- Liao, Y.G.; Han, X.Q.; Zeng, M.X.; Jin, M. Influence of Cu on microstructure and tensile properties of 7xxx series aluminum alloy. Mater. Des. 2015, 66, 581–586. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Hu, G.-Y.; Chen, K.; Huang, L. Effect of Zn/Mg ratios on SCC, electrochemical corrosion properties and microstructure of Al–Zn–Mg alloy. J. Alloys Compd. 2018, 757, 259–264. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, Q.; Sun, Y.; Wang, W.; Huang, Z.; Wang, X.; Hu, Q. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al–Zn–Mg–Cu–Zr alloy. J. Alloys Compd. 2019, 783, 329–340. [Google Scholar] [CrossRef]
- Chemin, A.; Marques, D.; Bisanha, L.; Motheo, A.d.J.; Bose Filho, W.W.; Ruchert, C.O.F. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys. Mater. Des. 2014, 53, 118–123. [Google Scholar] [CrossRef]
- Xiao, Q.; Xu, Y.; Huang, J.; Li, B.; Wang, B.; Liu, S.; Fu, L. Effects of quenching agents, two-step aging and microalloying on tensile properties and stress corrosion cracking of Al–Zn–Mg–Cu alloys. J. Mater. Res. Technol. 2020, 9, 10198–10208. [Google Scholar] [CrossRef]
- Song, F.; Zhang, X.; Liu, S.; Tan, Q.; Li, D. The effect of quench rate and overageing temper on the corrosion behaviour of AA7050. Corros. Sci. 2014, 78, 276–286. [Google Scholar] [CrossRef]
- Xie, P.; Chen, S.; Chen, K.; Jiao, H.; Huang, L.; Zhang, Z.; Yang, Z. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al–Zn–Mg–Cu aluminum alloy by step-quench and aging heat treatment. Corros. Sci. 2019, 161, 108184. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Feng, L. Comprehensive improvement of stress corrosion cracking resistance and strength by retrogression and re-aging in Al-8.9Zn-2.6Mg-1.7Cu alloy. J. Alloys Compd. 2022, 893, 162310. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, H.; Li, Y.; Chen, X.; Liu, Y. Effect of static mechanical load on intergranular stress-corrosion cracking of 7050-T7451 C-ring specimens. Corros. Eng. Sci. Technol. 2018, 54, 122–130. [Google Scholar] [CrossRef]
- Zhong, H.; Li, S.; Wu, J.; Deng, H.; Chen, J.; Yan, N.; Chen, Z.; Duan, L. Effects of retrogression and re-aging treatment on precipitation behavior, mechanical and corrosion properties of a Zr+Er modified Al-Zn-Mg-Cu alloy. Mater. Charact. 2022, 183, 111617. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, K.; Chen, S.; Zhou, L.; Chang, J.; Huang, L.; Yi, Y. Enhancing stress corrosion cracking resistance of low Cu-containing Al-Zn-Mg-Cu alloys by slow quench rate. Mater. Des. 2019, 164, 107558. [Google Scholar] [CrossRef]
- Nie, B.; Liu, P.; Zhou, T. Effect of compositions on the quenching sensitivity of 7050 and 7085 alloys. Mater. Sci. Eng. A 2016, 667, 106–114. [Google Scholar] [CrossRef]
- Standardization Administration of China. Methods for Chemical Analysis of Aluminium and aluminium Alloys; Standardization Administration of China: Beijing, China, 2020.
- Garner, A.; Euesden, R.; Yao, Y.; Aboura, Y.; Zhao, H.; Donoghue, J.; Curioni, M.; Gault, B.; Shanthraj, P.; Barrett, Z.; et al. Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys. Acta Mater. 2021, 202, 190–210. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Zhang, C.; Chu, G.; Meng, Z.; Zhao, G.; Chen, L. Effect of stress-aging treatment on the mechanical and corrosion properties of Al–Zn–Mg–Cu alloy. Mater. Sci. Eng. A 2022, 838, 142791. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Liu, Y.; Zhang, Y.; Liu, J. Analysis of the microhardness, mechanical properties and electrical conductivity of 7055 aluminum alloy. Vacuum 2020, 171, 109005. [Google Scholar] [CrossRef]
Number | First-Step Aging | Second-Step Aging | Third-Step Aging |
---|---|---|---|
1 | 120 °C, 6 h | 152 °C, 18/20 h | - |
2 | 152 °C, 18/20 h | 120 °C, 24 h | |
3 | 157 °C, 10/12/14/16/18 h | - | |
4 | 157 °C, 10/12/14 h | 120 °C, 24 h | |
5 | 160 °C, 10/11 | - | |
6 | 160 °C, 10/11 | 120 °C, 24 h | |
7 | 162 °C, 8/10 | - | |
8 | 162 °C, 8/10 | 120 °C, 24 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yu, M.; Li, X.; Wen, K.; Yan, L.; Zhu, K.; Xiao, W. Enhancing Stress Corrosion Cracking Resistance of Low Cu-Containing Al-Zn-Mg-Cu Alloys by Aging Treatment Control. Materials 2024, 17, 5678. https://doi.org/10.3390/ma17235678
Li Y, Yu M, Li X, Wen K, Yan L, Zhu K, Xiao W. Enhancing Stress Corrosion Cracking Resistance of Low Cu-Containing Al-Zn-Mg-Cu Alloys by Aging Treatment Control. Materials. 2024; 17(23):5678. https://doi.org/10.3390/ma17235678
Chicago/Turabian StyleLi, Ying, Mingyang Yu, Xiwu Li, Kai Wen, Lizhen Yan, Kai Zhu, and Wei Xiao. 2024. "Enhancing Stress Corrosion Cracking Resistance of Low Cu-Containing Al-Zn-Mg-Cu Alloys by Aging Treatment Control" Materials 17, no. 23: 5678. https://doi.org/10.3390/ma17235678
APA StyleLi, Y., Yu, M., Li, X., Wen, K., Yan, L., Zhu, K., & Xiao, W. (2024). Enhancing Stress Corrosion Cracking Resistance of Low Cu-Containing Al-Zn-Mg-Cu Alloys by Aging Treatment Control. Materials, 17(23), 5678. https://doi.org/10.3390/ma17235678