Elemental Silver Nanoparticles: Biosynthesis and Bio Applications
<p>Typical scanning electron microscope (SEM) images of pseudo-spherical elemental silver nanoparticles (Ag-NP) at high resolution (<b>a</b>) none modifier; (<b>b</b>) at the presence of 1.0 g/L N-methyl 2-pyrrolidone [<a href="#B24-materials-12-03177" class="html-bibr">24</a>].</p> "> Figure 2
<p>Scanning electron microscope (SEM) images of Ag-NP obtained using aqueous peel extract of <span class="html-italic">Punica granatum</span> [<a href="#B86-materials-12-03177" class="html-bibr">86</a>].</p> "> Figure 3
<p>SEM images of Ag-NP obtained using aqueous extract of marine seaweed <span class="html-italic">Ulva lactucain</span> [<a href="#B42-materials-12-03177" class="html-bibr">42</a>].</p> "> Figure 4
<p>SEM images of Ag-NP obtained using aqueous leaf extract of <span class="html-italic">Melia azedarach</span> [<a href="#B97-materials-12-03177" class="html-bibr">97</a>].</p> "> Figure 5
<p>SEM images of Ag-NP obtained using aqueous leaf extract of <span class="html-italic">Syzygium cumini</span> [<a href="#B100-materials-12-03177" class="html-bibr">100</a>].</p> "> Figure 6
<p>SEM images of Ag-NP obtained using aqueous leaf extract of <span class="html-italic">Artemisia nilagirica</span> [<a href="#B105-materials-12-03177" class="html-bibr">105</a>].</p> "> Figure 7
<p>SEM of spherical Ag-NP obtained in [<a href="#B147-materials-12-03177" class="html-bibr">147</a>] (<b>a</b>) and obtained in [<a href="#B155-materials-12-03177" class="html-bibr">155</a>] (<b>b</b>).</p> "> Figure 8
<p>Transmission electron microscope (TEM) image of Ag-NP having various shapes and obtained in [<a href="#B186-materials-12-03177" class="html-bibr">186</a>]. At a scale of 100 nm (<b>left</b>) and at a scale 200 nm (<b>right</b>)</p> "> Figure 9
<p>SEM image of Ag-NP having irregular shape and obtained in [<a href="#B176-materials-12-03177" class="html-bibr">176</a>]. At a scale of 400 nm (<b>left</b>) and at a scale 1 m (<b>right</b>).</p> ">
Abstract
:1. Introduction
2. General Principles of Biosynthesis of Elemental Silver Nanoparticles (Ag-NP)
3. Synthesis of Ag-NP Using Extracts of Various Plants
4. Synthesis of Ag-NP Using Various Microorganisms
5. Synthesis of Ag-NP Using Various Protein Products
6. Bio Applications of Ag-NP
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barber, D.J.; Freestone, I.C. An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy. Archaeom. 1990, 32, 33–45. [Google Scholar] [CrossRef]
- Holy Water. Available online: https://en.wikipedia.org/wiki/Holy_water (accessed on 25 September 2019).
- Nägeli, K.W. Über oligodynamische Erscheinungen in lebenden Zellen; Allgemeine schweizerische Gesellschaft für die gesammten Naturwissenschaften: Zürich, Switzerland, 1893. [Google Scholar]
- Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861–1873. [Google Scholar] [CrossRef]
- Shrestha, R.; Joshi, D.R.; Gopali, J.; Piya, S. Oligodynamic fraction of silver, copper and brass on enteric bacteria isolated from water of Kathmandu Valley. Nepal J. Sci. Technol. 2009, 10, 189–193. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Im, S.H.; Lee, Y.T.; Wiley, B.; Xia, Y. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 2005, 44, 2154–2157. [Google Scholar] [CrossRef] [PubMed]
- Landsdown, A.B.G. Silver in Healthcare: Its Antimicrobial Efficacy And Safety in Use; Royal Society of Chemistry: Cambridge, UK, May 2010. [Google Scholar]
- Ghorbani, H.R.; Safekordi, A.A.; Attar, H.; Rezayat Sorkhabadi, S.M. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Quart. 2011, 25, 317–326. [Google Scholar]
- Lee, H.J.; Yeo, S.Y.; Jeong, S.H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 2003, 38, 2199–2204. [Google Scholar] [CrossRef]
- Zhang, J.-P.; Chen, P.; Sun, C.-H.; Hu, X.-J. Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl. Catal. A Gen. 2004, 266, 49–54. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, X.; Chen, J.; Wang, H. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J. Colloid Interface Sci. 2006, 302, 370–373. [Google Scholar] [CrossRef]
- Kirm, I.; Cesteros, Y.; Salagre, P.; Sueiras, J.E.; Chimentão, R.J.; Rodríguez, X.; Medina, F. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem. Commun. 2004, 4, 846. [Google Scholar]
- He, B.; Tan, J.J.; Liew, K.Y.; Liu, H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. A: Chem. 2004, 221, 121–126. [Google Scholar] [CrossRef]
- Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.A.; Michailidis, N.; Tsipas, S.A. Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Mater. Lett. 2012, 76, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Shameli, K.; Bin Ahmad, M.; Al-Mulla, E.A.J.; Ibrahim, N.A.; Shabanzadeh, P.; Rustaiyan, A.; Abdollahi, Y.; Bagheri, S.; Abdolmohammadi, S.; Usman, M.S.; et al. Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction. Molecules 2012, 17, 8506–8517. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.K.; Tang, S.C.; Vongehr, S. A review on diverse silver nanostructures. J. Mater. Sci. Technol. 2010, 26, 487–522. [Google Scholar] [CrossRef]
- Cao, G. Synthesis, properties and applications. In Nanostructures and Nanomaterials; Imperial College Press: London, UK, April 2004. [Google Scholar]
- Krutyakov, Y.A.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008, 77, 233–257. [Google Scholar] [CrossRef]
- Olenin, A.Y.; Lisichkin, G.V. Metal nanoparticles in condensed the bulk and surface structural dynamics. Russ. Chem. Rev. 2011, 80, 605–630. [Google Scholar] [CrossRef]
- Murphy, C.J.; Gole, A.M.; Hunyadi, S.E.; Orendorff, C.J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544–7554. [Google Scholar] [CrossRef]
- Wiley, B.; Sun, Y.G.; Mayers, B.; Xia, Y.N. Shape-controlled synthesis of metal nano-structures: The case of silver. Chem. A Eur. J. 2005, 11, 454–463. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes (review). Arabian J. Chem 2015. [Google Scholar] [CrossRef]
- Cai, X.; Zhai, A. Preparation of microsized silver crystals with different morphologies by a wet-chemical method. Rare Met. 2010, 29, 407–412. [Google Scholar] [CrossRef]
- Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Ankamwar, B.; Damle, C.; Ahmad, A.; Sastry, M. Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 2005, 5, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnol. Prog. 2006, 22, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007, 9, 852. [Google Scholar] [CrossRef]
- Cruz, D.; Falé, P.L.; Mourato, A.; Vaz, P.D.; Serralheiro, M.L.; Lino, A.R.L. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B Biointerfaces 2010, 81, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jagan, E.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, V.; Priyadarshini, S.; Venkatkumar, G.; Saravanan, M.; Ali, D.M. Antibacterial silver nanoparticles. Pharm. Nanotechnol. 2015, 3, 26–34. [Google Scholar] [CrossRef]
- Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surfaces B Biointerfaces 2013, 108, 255–259. [Google Scholar] [CrossRef]
- Arokiyaraj, S.; Kumar, V.D.; Elakya, V.; Kamala, T.; Park, S.K.; Ragam, M.; Saravanan, M.; Bououdina, M.; Arasu, M.V.; Kovendan, K.; et al. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—Potential for malaria vector control. Environ. Sci. Pollut. Res. 2015, 22, 9759–9765. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wanh, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum canphora leaf. Nanotechnology 2007, 18, 1–11. [Google Scholar] [CrossRef]
- Jha, A.K.; Kumar, V.; Prasad, K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Prog. 2009, 25, 1476–1479. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.R.; Singh, R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticle Res. 2011, 13, 2981–2988. [Google Scholar] [CrossRef]
- Udayasoorian, C.; Vinoth, K.K.; Jayabalakrishnan, R.M. Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata. Dig. J Nano. Biostruct 2011, 6, 279–283. [Google Scholar]
- Mano, P.M.; Karunai, S.B.; John, P.J.A. Green synthesis of silver nanoparticles from the leaf extracts of euphorbia hirta and nerium indicum. Dig. J. Nanomater. Biostruct. 2011, 6, 869–877. [Google Scholar]
- Bangale, S.; Ghotekar, S. Bio-fabrication of silver nanoparticles using rosa chinensis l. extract for antibacterial activities. Int. J. Nano Dimens. 2019, 10, 217–224. [Google Scholar]
- Gopinath, V.; Mubarak, A.D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces 2012, 96, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.S.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; et al. Synthesis of silver nanoparticles using dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012, 7, 483–496. [Google Scholar]
- Devi, J.; Bhimba, V.; Ratnam, K. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactucain vitro. Sci. Rep. 2012, 1, 242–248. [Google Scholar]
- Geethalakshmi, R.; Sarada, D. Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties. Int. J. Nanomed. 2012, 7, 5375–5384. [Google Scholar] [CrossRef]
- Valli, J.S.; Vaseeharan, B. Biosynthesis of silver nanoparticles by Cissus quadrangularis extracts. Mater. Lett. 2012, 82, 171–173. [Google Scholar] [CrossRef]
- Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces 2012, 98, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Sharma, S. Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus. Green Sustain. Chem. 2012, 2, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Kora, A.J.; Sashidhar, R.; Arunachalam, J.; Kora, D.A.J. Aqueous extract of gum olibanum (Boswellia serrata): A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process. Biochem. 2012, 47, 1516–1520. [Google Scholar] [CrossRef]
- Bindhu, M.; Umadevi, M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 101, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Tamuly, C.; Hazarika, M.; Borah, S.C.; Das, M.R.; Boruah, M.P.; Das, D.M.R. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids Surf. B Biointerfaces 2013, 102, 627–634. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Vu, T.T.H.; Nguyen, T.H.; Nguyễn, T.H. Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extract and their antimicrobial activity. Mater. Lett. 2013, 105, 220–223. [Google Scholar] [CrossRef]
- Tripathi, R.; Kumar, N.; Shrivastav, A.; Singh, P.; Shrivastav, B. Catalytic activity of biogenic silver nanoparticles synthesized by ficus panda leaf extract. J. Mol. Catal. B: Enzym. 2013, 96, 75–80. [Google Scholar] [CrossRef]
- Shawkey, A.M.; Rabeh, M.A.; Abdulall, A.K.; Abdellatif, A.O. Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv. Life Sci. Technol. 2013, 13, 60–70. [Google Scholar]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—Antiproliferative effect against prostate cancer cells. Cancer Nanotechnol. 2013, 4, 137–143. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Rajesh, M.; Arun, R.; MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces 2013, 102, 708–717. [Google Scholar] [CrossRef]
- Mariselvam, R.; Ranjitsingh, A.; Nanthini, A.U.R.; Kalirajan, K.; Padmalatha, C.; Selvakumar, P.M. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 129, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.M.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 2014, 7, 1131–1139. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, N.; Rajkamal, P.; Cholan, S.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.; Sundaramanickam, A. Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl. Nanosci. 2014, 4, 881–888. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chowdhury, D.; Kotcherlakota, R.; Patra, S.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System). Theranostics 2014, 4, 316–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, N.J.; Vali, D.N.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C 2014, 34, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sathiya, C.; Akilandeswari, S. Fabrication and characterization of silver nanoparticles using delonix elata leaf broth. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.M.K.; Yugandhar, P.; Savithramma, N. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization, and its antimicrobial properties. J. Intercultur. Ethnopharm. 2016, 5, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, P.; Kokila, T.; Geetha, D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 142, 339–343. [Google Scholar] [CrossRef]
- Sharma, D.; Ledwani, L.; Bhatnagar, N. Antimicrobial and cytotoxic potential of silver nanoparticles synthesized using Rheum emodi roots extract. Ann. West. Univ. Timisoara 2015, 24, 121–135. [Google Scholar]
- Pandian, A.M.K.; Karthikeyan, C.; Rajasimman, M.; Dinesh, M. Synthesis of silver nanoparticle and its application. Ecotoxicol. Environ. Saf. 2015, 121, 211–217. [Google Scholar] [CrossRef]
- Govindaraju, K.; Krishnamoorthy, K.; Alsagaby, S.A.; Singaravelu, G.; Premanathan, M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnology 2015, 9, 325–330. [Google Scholar] [CrossRef]
- Sre, P.R.; Reka, M.; Poovazhagi, R.; Kumar, M.A.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 1137–1144. [Google Scholar]
- Mata, R.; Nakkala, J.R.; Sadras, S.R. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater. Sci. Eng. C 2015, 51, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Chanthini, A.B.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Balakumaran, M.D.; Kalaichelvan, P.T.; Perumal, P. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R. Br.) Asch. & Magnus mediated silver nanoparticles. J. Photochem. Photobiol. B Biol. 2015, 153, 145–152. [Google Scholar]
- Ahmed, M.J.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett. 2015, 153, 10–13. [Google Scholar] [CrossRef]
- Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C 2015, 53, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, J.; Sehrawat, A.R. Biological synthesis of silver nanoparticles using aqueous leaf extract of Capparis decidua (FORSK.) EDGEW: A better alternative. J Pharm Res. 2015, 11, 244–249. [Google Scholar]
- Ahmed, S.; Saifullah; Ahmad, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.K.; Thanki, K.; Jain, S.; Banerjee, U.C. Comparative studies of anticancer and antimicrobial potential of bioinspired silver and silver-selenium nanoparticles. Appl. Nanomedicine 2016, 1, 1–6. [Google Scholar]
- Benakashani, F.; Allafchian, A.; Jalali, S.; Allafchian, A. Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2016, 2, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Azeez, L.; Ajibade, S.E.; Ojo, S.A.; Gueguim-Kana, E.B.; et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and applicationas a paint additive. J. Taibah Univ. Sci. 2016, 10, 551–562. [Google Scholar] [CrossRef]
- Salehi, S.; Shandiz, S.A.S.; Ghanbar, F.; Darvish, M.R.; Ardestani, M.S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 2016, 11, 1835–1846. [Google Scholar] [Green Version]
- Soman, S.; Ray, J. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity. J. Photochem. Photobiol. B Boil. 2016, 163, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Khanra, K.; Panja, S.; Choudhuri, I.; Chakraborty, A.; Bhattacharyya, N. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves. Nanomed. J. 2016, 3, 15–22. [Google Scholar]
- He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomed. 2016, 11, 1879–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Smita, K.; Seqqat, R.; Benalcazar, K.; Grijalva, M.; Cumbal, L. In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J. Photochem. Photobiol. B Boil. 2016, 159, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Jyoti, K.; Patnaik, A.; Singh, A.; Chauhan, R.; Chandel, S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J. Genet. Eng. Biotechnol. 2017, 15, 31–39. [Google Scholar] [CrossRef]
- Mehmood, A.; Murtaza, G.; Bhatti, T.M.; Kausar, R. Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: Characterization and antibacterial activity. Arab. J. Chem. 2017, 10, S3048–S3053. [Google Scholar] [CrossRef] [Green Version]
- Raja, S.; Ramesh, V.; Thivaharan, V.; Vinayagam, R. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 2017, 10, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. [Google Scholar] [CrossRef]
- Elemike, E.E.; Fayemi, O.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ebenso, E.E. Silver nanoparticles mediated by costus afer leaf extract: Synthesis, antibacterial, antioxidant and electrochemical properties. Molecules 2017, 22, 701. [Google Scholar] [CrossRef] [PubMed]
- Devanesan, S.; AlSalhi, M.S.; Balaji, R.V.; A Ranjitsingh, A.J.; Ahamed, A.; Alfuraydi, A.A.; Alqahtani, F.Y.; Aleanizy, F.S.; Othman, A.H. Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from punica granatum peel extract. Nanoscale Res. Lett. 2018, 13, 315. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, G.; Sathiyaseelan, A.; Kalaichelvan, P.T.; Murugesan, K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala Int. J. Mod. Sci. 2018, 4, 61–68. [Google Scholar]
- Dehghanizade, S.; Arasteh, J.; Mirzaie, A. Green synthesis of silver nanoparticles using Anthemis atropatana extract: Characterization and in vitro biological activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 2011, 9, 43. [Google Scholar] [CrossRef]
- Gomathi, M.; Rajkumar, P.; Prakasam, A.; Ravichandran, K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resour. Technol. 2017, 3, 280–284. [Google Scholar] [CrossRef]
- Suman, T.; Rajasree, S.R.; Kanchana, A.; Elizabeth, S.B. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces 2013, 106, 74–78. [Google Scholar] [CrossRef]
- Arunachalam, K.; Shanmuganathan, B.; Sreeja, P.S.; Parimelazhagan, T. Phytosynthesis of silver nanoparticles using the leaves extract of ficus talbot king and evaluation of antioxidant and antibacterial activities. Environ. Sci. Pollut. Res. Int. 2015, 22, 18066–18075. [Google Scholar] [CrossRef]
- Logeswari, P.; Silambarasan, S.; Abraham, J. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci. Iran. F 2013, 20, 1049–1054. [Google Scholar]
- Arokiyaraj, S.; Vincent, S.; Saravanan, M.; Lee, Y.; Oh, Y.K.; Kim, K.H. Green synthesis of silver nanoparticles using rheum palmatum root extract and their antibacterial activity against staphylococcus aureus and pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol. 2017, 45, 372–379. [Google Scholar] [CrossRef]
- Kasithevar, M.; Saravanan, M.; Prakash, P.; Kumar, H.; Ovais, M.; Barabadi, H.; Shinwari, Z.K. Green synthesis of silver nanoparticles using alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J. Interdiscip. Nanomed. 2017, 2, 131–141. [Google Scholar] [CrossRef]
- Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using potentilla fulgens wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C 2015, 53, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic effect of green synthesized silver nanoparticles using melia azedarach against in vitro hela cell lines and lymphoma mice model. Process. Biochem. 2012, 47, 273–279. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Chapman, P.; Shah, M.; Fawcett, D. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull. 2013, 2, 130101. [Google Scholar]
- Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesized silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid. Interface Sci. 2015, 457, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Logeswari, P.; Silambarasan, S.; Abraham, J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J. Saudi Chem. Soc. 2015, 19, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Baharara, J.; Namvar, F.; Ramezani, T.; Mousavi, M.; Mohamad, R. Silver nanoparticles biosynthesized using achillea biebersteinii flower extract: Apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules 2015, 20, 2693–2706. [Google Scholar] [CrossRef] [PubMed]
- Ramar, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 140, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.H. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Velayutham, K.; Ramanibai, R. Larvicidal activity of synthesized silver nanoparticles using isoamyl acetate identified in Annona squamosa leaves against Aedes aegypti and Culex quinquefasciatus. J. Basic Appl. Zool. 2016, 74, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Nalini, M.; Lena, M.; Sumathi, P.; Sundaravadivelan, C. Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti. Egypt. J. Basic Appl. Sci. 2017, 4, 212–218. [Google Scholar] [CrossRef]
- Selvam, K.; Sudhakar, C.; Govarthanan, M.; Thiyagarajan, P.; Sengottaiyan, A.; Senthilkumar, B.; Selvankumar, T. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) miers and evaluate its antibacterial, antioxidant potential. J. Radiat. Res. Appl. Sci. 2017, 10, 6–12. [Google Scholar] [CrossRef]
- Elumalai, D.; Hemavathi, M.; Deepaa, C.V.; Kaleena, P.K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiology Control. 2017, 2, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Pourjavadi, A.; Soleyman, R. Novel silver nano-wedges for killing microorganisms. Mater. Res. Bull. 2011, 46, 1860–1865. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 2016, 11, 3157–3177. [Google Scholar] [CrossRef] [PubMed]
- Ovais, M.; Nadhman, A.; Khalil, A.T.; Raza, A.; Khuda, F.; Sohail, M.F.; Sarwar, H.S.; Shahnaz, G.; Saravanan, M.; Shinwari, Z.K.; et al. Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight. Nanomedicine 2017, 12, 2807–2819. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, K.B.; Sakthivel, N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 2011, 169, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterialactivity. Chem. Biol. Interact. 2017, 273, 219–227. [Google Scholar] [CrossRef]
- Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 1999, 96, 13611–13614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joerger, R.; Klaus, T.; Granqvist, C.G. Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv. Mater. 2000, 12, 407–409. [Google Scholar] [CrossRef]
- Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 2003, 14, 95–100. [Google Scholar] [CrossRef]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surfaces B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; Alves, O.L.; Souza, G.I.H.D.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 2005, 3, 8. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Ashtaputre, N.; Varadarajan, P.; Nachane, R.; Paralikar, K.; Balasubramanya, R.; Nadanathangam, V. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 2007, 61, 1413–1418. [Google Scholar] [CrossRef]
- Ingle, A.; Gade, A.; Pierrat, S.; Sonnichsen, C.; Rai, M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 2008, 4, 141–144. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; Deepak, V.; Pandian, S.R.K.; Nellaiah, H.; Sangiliyandi, G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 2008, 62, 4411–4413. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Babu, R.S.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 2008, 65, 150–153. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Deepak, V.; Pandian, S.R.K.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purifcation and characterization of silver nanoparticles using Escherichia coli. Colloid Surface B. 2009, 74, 328–335. [Google Scholar] [CrossRef]
- Mokhtari, N.; Daneshpajouh, S.; Seyedbagheri, S.; Atashdehghan, R.; Abdi, K.; Sarkar, S.; Minaian, S.; Shahverdi, H.R.; Shahverdi, A.R.; Abdi, K. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 2009, 44, 1415–1421. [Google Scholar] [CrossRef]
- Jaidev, L.R.; Narasimha, G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surfaces B Biointerfaces 2010, 81, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Kalishwaralal, K.; Deepak, V.; Pandian, S.R.K.; Kottaisamy, M.; BarathManiKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces 2010, 77, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.G.; Mamidyala, S.K. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces 2011, 84, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Banu, A.; Rathod, V.; Ranganath, E. Silver nanoparticle production by Rhizopus stolonifer and antibacterial activity against extended spectrum b-lactamase producing (ESBL) strains of Enterobacteriaceae. Mater. Res. Bull. 2011, 46, 1417–1423. [Google Scholar] [CrossRef]
- Shivaji, S.; Madhu, S.; Singh, S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process. Biochem. 2011, 46, 1800–1807. [Google Scholar] [CrossRef]
- Nayak, R.R.; Pradhan, N.; Behera, D.; Pradhan, K.M.; Mishra, S.; Sukla, L.B.; Mishra, B.K. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J. Nanoparticle Res. 2011, 13, 3129–3137. [Google Scholar] [CrossRef]
- Kannan, N.; Mukunthan, K.; Balaji, S.; Seetharaman, B. A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids Surf. B Biointerfaces 2011, 86, 378–383. [Google Scholar] [CrossRef]
- Wei, X.; Luo, M.; Li, W.; Yang, L.; Liang, X.; Xu, L.; Kong, P.; Liu, H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol. 2012, 103, 273–278. [Google Scholar] [CrossRef]
- Sivalingam, P.; Antony, J.J.; Siva, D.; Achiraman, S.; Anbarasu, K. Mangrove streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloids Surf. B Biointerfaces 2012, 98, 12–17. [Google Scholar] [CrossRef]
- Samundeeswari, A.; Dhas, S.P.; Nirmala, J.; John, S.P.; Mukherjee, A.; Chandrasekaran, N. Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol. Appl. Biochem. 2012, 9, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, H.R. Biosynthesis of silver nanoparticles using Salmonella typhirium. J. Nanostructure Chem. 2013, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Rathod, V.; Ninganagouda, S.; Herimath, J.; Kulkarni, P. Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J. Pharm. Res. 2013, 7, 448–453. [Google Scholar] [CrossRef]
- Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013, 8, 4277–4290. [Google Scholar] [Green Version]
- Neveen, M.K. Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus. Afr. J. Microbiol. Res. 2013, 7, 5645–5651. [Google Scholar] [CrossRef]
- Saravanan, M.; Jacob, V.; Arockiaraj, J.; Prakash, P. Extracellular Biosynthesis, Characterization and Antibacterial Activity of Silver Nanoparticles Synthesized by Bacillus subtilis (NCIM—2266). J. Bionanoscience 2014, 8, 21–27. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Behera, S.K. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess Biosyst. Eng. 2014, 37, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Rathod, V.; Ninganagouda, S.; Hiremath, J.; Singh, A.K.; Mathew, J. Optimization and characterization of silver nanoparticle by endophytic fungi penicillium sp. isolated from curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg. Chem. Appl. 2014, 2014, 1–8. [Google Scholar]
- Das, V.L.; Thomas, R.; Varghese, R.T.; Soniya, E.V.; Mathew, J.; Radhakrishnan, E.K. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS11 isolated from industrialized area. Biotech 2014, 4, 121–126. [Google Scholar]
- Abdeen, S.; Geo, S.; Sukanya, A.; Praseetha, P.K.; Dhanya, R.P. Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. Int. J. Nano Dimens. 2014, 5, 155–162. [Google Scholar]
- Nanda, A.; Majeed, S. Enhanced antibacterial efficacy of biosynthesized AgNPs from penicillium glabrum (MTCC1985) pooled with different drugs. Int. J. PharmTech Res. 2014, 6, 217–223. [Google Scholar]
- Zarina, A.; Nanda, A. Green approach for synthesis of silver nanoparticles from marine Streptomyces- MS 26 and their antibiotic efficacy. J. Pharm. Sci. Res. 2014, 6, 321–327. [Google Scholar]
- Thomas, R.; Janardhanan, A.; Varghese, R.T.; Soniya, E.V.; Jyothis Mathew, J.; Radhakrishnan, E.K. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz. J. Microbiol. 2014, 45, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husseiny, S.M.; Salah, T.A.; Anter, H.A. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Sarsar, V.; Selwal, M.K.; Selwal, K.K. Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J. Saudi Chem. Soc. 2015, 19, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yi, T.-H. Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Mater. Lett. 2016, 178, 75–78. [Google Scholar] [CrossRef]
- Singh, P.; Singh, H.; Kim, Y.J.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym. Microb. Technol. 2016, 86, 75–83. [Google Scholar] [CrossRef]
- Majeed, S.; Bin Abdullah, M.S.; Nanda, A.; Ansari, M.T. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J. Taibah Univ. Sci. 2016, 10, 614–620. [Google Scholar] [CrossRef]
- Jo, J.H.; Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; Jin, C.-G.; Yang, D.C. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1576–1581. [Google Scholar] [CrossRef]
- Wang, C.; Kim, Y.J.; Singh, P. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1127–1132. [Google Scholar]
- Abd-Elnaby, H.M.; Abo-Elala, G.M.; Abdel-Raouf, U.M.; Hamed, M.M. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 2016, 42, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Subbaiya, R.; Saravanan, M.; Priya, A.R.; Shankar, K.R.; Selvam, M.; Ovais, M.; Balajee, R.; Barabadi, H. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 2017, 11, 965–972. [Google Scholar] [CrossRef] [PubMed]
- AbdelRahim, K.; Mahmoud, S.Y.; Ali, A.M.; Almaary, K.S.; Mustafa, A.E.; Husseiny, S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 2017, 24, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, H.; Du, J.; Yi, T.H. Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artif. Cells Nanomed. Biotechnol. 2017, 45, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Barik, S.K.; MubarakAli, D.; Prakash, P.; Pugazhendhi, A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 2018, 116, 221–226. [Google Scholar] [CrossRef]
- Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog. 2018, 117, 68–72. [Google Scholar] [CrossRef]
- Buszewski, B.; Railean-Plugaru, V.; Pomastowski, P.; Rafińska, K.; Szultka-Mlynska, M.; Golinska, P.; Wypij, M.; Laskowski, D.; Dahm, H. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. Infect. 2018, 51, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Majeed, S.; Danish, M.; Zahrudin, A.H.B.; Dash, G.K. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int. J. Mod. Sci. 2018, 4, 86–92. [Google Scholar] [CrossRef]
- Wypij, M.; Czarnecka, J.; Świecimska, M.; Dahm, H.; Rai, M.; Golinska, P. Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J. Microbiol. Biotechnol. 2018, 34, 23. [Google Scholar] [CrossRef]
- El-Baghdady, K.Z.; El-Shatoury, E.H.; Abdullah, O.M.; Khalil, M.M. Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turk. J. Boil. 2018, 42, 319–321. [Google Scholar] [CrossRef]
- Sanjivkumar, M.; Vaishnavi, R.; Neelakannan, M.; Kannan, D.; Silambarasan, T.; Immanuel, G. Investigation on characterization and biomedical properties of silver nanoparticles synthesized by an actinobacterium Streptomyces olivaceus (MSU3). Biocatal. Agric. Biotechnol. 2019, 17, 151–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Gu, X.; Li, J.; Lin, X. Biosynthesis, characterization and antibacterial activity of silver nanoparticles by the Arctic anti-oxidative bacterium Paracoccus sp. Arc7-R13. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Bhainsa, K.C.; D’Souza, S.F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf. B 2006, 47, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Nanda, A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf. B Biointerfaces 2010, 77, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Vemu, A.K.; Barik, S.K. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surfaces B Biointerfaces 2011, 88, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Bhargava, A.; Majumdar, S.; Tarafdar, J.C.; Panwar, J. Extracellular biosynthesis and characterization of silver nanoparticles using aspergillus flavusNJP08: A mechanism perspective. Nanoscale 2011, 3, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Jeevan, P.; Ramya, K.; Rena, A.E. Extracellular biosynthesis of silver nanoparticles by culture supernatant of pseudomonas aeruginosa. Indian J. Biotechnol. 2012, 11, 72–76. [Google Scholar]
- Seshadri, S.; Prakash, A.; Kowshik, M. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull. Mater. Sci. 2012, 35, 1201–1205. [Google Scholar] [CrossRef] [Green Version]
- Manikprabhu, D.; Lingappa, K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J. Pharm. Res. 2013, 6, 255–260. [Google Scholar] [CrossRef]
- Chauhan, R.; Kumar, A.; Abraham, J. A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity. Sci. Pharm. 2013, 81, 607–621. [Google Scholar] [CrossRef]
- Chandrakanth, K.R.; Ashajyothi, C.; Oli, A.K.; Prabhurajeshwar, C. Potential bactericidal effect of silver nanoparticles synthesized from Enterococcus species. Orient J. Chem. 2014, 30, 1253–1262. [Google Scholar]
- Saminathan, K. Biosynthesis of silver nanoparticles using soil actinomycetes Streptomyces sp. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 1073–1083. [Google Scholar]
- Shaker, M.A.; Shaaban, M.I. Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from Acinetobacter baumannii. J. Taibah Univ. Med. Sci. 2017, 12, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Du, J.; Singh, P.; Yi, T.H. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. J. Pharm. Anal. 2018, 8, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, S.; Gopinath, V.; Priyadharsshini, N.M.; MubarakAli, D.; Velusamy, P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces 2013, 102, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Abari, A.; Emtiazi, G.; Lee, S.-H.; Kim, B.-G.; Kim, J.-H. Biosynthesis of Silver Nanoparticles by Bacillus stratosphericus Spores and the Role of Dipicolinic Acid in This Process. Appl. Biochem. Biotechnol. 2014, 174, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Basavaraja, S.; Balaji, S.; Lagashetty, A.; Rajasab, A.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 2008, 43, 1164–1170. [Google Scholar] [CrossRef]
- Verma, V.C.; Kharwar, R.N.; Gange, A.C. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungusAspergillus clavatus. Nanomedicine 2010, 5, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Sardar, M. Alpha-amylase mediated synthesis of silver nanoparticles. Sci. Adv. Mater. 2012, 4, 143–146. [Google Scholar] [CrossRef]
- Mohamedin, A.; El-Naggar, N.E.-A.; Hamza, S.S.; Sherief, A. Green synthesis, characterization and antimicrobial activities of silver nanoparticles by streptomyces viridodiastaticus SSHH-1 as a living nanofactory: Statistical optimization of process variables. Curr. Nanosci. 2015, 11, 640–654. [Google Scholar] [CrossRef]
- Husain, S.; Sardar, M.; Fatma, T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J. Microbiol. Biotechnol. 2015, 31, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Singh, P.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Biosynthesis of anisotropic silver nanoparticles by bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J. Nanomater. 2015, 2015, 1–10. [Google Scholar]
- Xu, J.; Cheng, G.-A.; Zheng, R.-T. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Appl. Surf. Sci. 2010, 256, 5006–5010. [Google Scholar] [CrossRef]
- Murphy, C.; Jana, N. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater. 2002, 14, 80–82. [Google Scholar] [CrossRef]
- Wiley, B.J.; Chen, Y.; McLellan, J.M.; Xiong, Y.; Li, Z.-Y.; Ginger, D.; Xia, Y. Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Lett. 2007, 7, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Wird, A.G.; Courts, A. The Science and Technology of Gelatin; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Ramachadran, G.N. Treatise on collagen. Science 1969, 164, 172. [Google Scholar]
- Boedtker, H.; Doty, P. A Study of Gelatin Molecules, Aggregates and Gels. J. Phys. Chem. 1954, 58, 968–983. [Google Scholar] [CrossRef]
- James, T.H.; Mees, C.E. The Theory of the Photographic Process; Macmillan: New York, NY, USA, 1972. [Google Scholar]
- James, T.H. The Theory of the Photographic Process; Macmillan: New York, NY, USA, 1977. [Google Scholar]
- Mikhailov, O.V. Synthesis of 3d-element metalmacrocyclic chelates into polypeptide biopolymer medium and their molecular structures. Inorganica Chim. Acta 2013, 394, 664–684. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Sol–gel technology and template synthesis in thin gelatin films. J. Sol-Gel Sci. Technol. 2014, 72, 314–327. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix. Arab. J. Chem. 2017, 10, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, O.V. Electron microscopy of elemental silver produced by its reprecipitation in glass-like biopolymer film. Glas. Phys. Chem. 2017, 43, 471–474. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Enzyme-assisted matrix isolation of novel dithiooxamide complexes of nickel(II). Indian J. Chem. A 1991, 30, 252–254. [Google Scholar]
- Mikhailov, O. Synthesis of Ag nanoparticles under a contact of water solution with silver(I)chloride biopolymer matrix. J. Mol. Liq. 2019, 291. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Kondakov, A.V.; Krikunenko, R.I. Image Intensification in Silver Halide Photographic Materials for Detection of High-Energy Radiation by Reprecipitation of Elemental Silver. High Energy Chem. 2005, 39, 324–329. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Self-assembly of molecules of metal macrocyclic compounds in nanoreactors on the basis of biopolymer-immobilized matrix systems. Nanotechnologies Russ. 2010, 5, 18–34. [Google Scholar] [CrossRef]
- Mikhailov, O.V. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. Nano Rev. 2014, 5, 14767. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Yang, D.; Cui, D.; Wang, Z.; Guo, L. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomed. 2012, 7, 2101–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eby, D.M.; Schaeublin, N.M.; Farrington, K.E.; Hussain, S.M.; Johnson, G.R. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 2009, 3, 984–994. [Google Scholar] [CrossRef]
- Singh, A.V.; Bandgar, B.M.; Kasture, M.; Prasad, B.L.V.; Sastry, M. Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J. Mater. Chem. 2005, 15, 5115. [Google Scholar] [CrossRef]
- Dickerson, M.B.; Sandhage, K.H.; Naik, R.R. Protein- and peptide-directed synthesis of inorganic materials. Chem. Revs. 2008, 108, 4935–4978. [Google Scholar] [CrossRef]
- Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules 2008, 9, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release 2014, 190, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Khutoryanskiy, V.V.; Stewart, A.; Rahman, S.; Papahadjopoulos-Sternberg, B.; Dufes, C.; McCarthy, D.; Wilson, C.G.; Lyons, R.; Carter, K.C.; et al. Carbohydrate-Based Micelle Clusters Which Enhance Hydrophobic Drug Bioavailability by Up to 1 Order of Magnitude. Biomacromolecules 2006, 7, 3452–3459. [Google Scholar] [CrossRef] [PubMed]
- Koland, M.; Vijayanarayana, K.; Charyulu, R.N.; Prabhu, P. In vitro and in vivo evaluation of chitosan buccal films of ondansetron hydrochloride. Int. J. Pharm. Investig. 2011, 1, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Apryatina, K.V.; Mochalova, A.E.; Gracheva, T.A.; Kuz’micheva, T.A.; Smirnova, L.A.; Smirnova, O.N. Vliyanie molekularnoi massy khitozana na razmernye kharakteristiki nanochastitz serebra. Vysok. Soedin. B. 2015, 57, 154–158. [Google Scholar]
- Apryatina, K.V.; Mochalova, A.E.; Gracheva, T.A.; Kuz’Micheva, T.A.; Smirnova, O.N.; Smirnova, L. Influence of the molecular mass of chitosan on the dimensional characteristics of silver nanoparticles. Polym. Sci. Ser. B 2015, 57, 145–149. [Google Scholar] [CrossRef]
- Uryupina, O.Y.; Urodkova, E.K.; Zhavoronok, E.S.; Vysotskii, V.V.; Senchikhin, I.N. Synthesis of monodisperse silver nanoparticles in chitosan solutions. Colloid J. 2019, 81, 194–198. [Google Scholar] [CrossRef]
- Shirokova, L.N.; Alexandrova, V.A. Radiatsionno-khimicheskii sintez nanochastits serebra v karboximetilkhitine. Dokl. Akad. Nauk. 2015, 464, 440–443. [Google Scholar]
- Shirokova, L.N.; Alexandrova, V.A. Radiation-chemical synthesis of silver nanoparticles in carboxymethyl chitin. Dokl. Phys. Chem. 2015, 464, 234–237. [Google Scholar] [CrossRef]
- Laudenslager, M.J.; Schiffman, J.D.; Schauer, C.L. Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles. Biomacromolecules 2008, 9, 2682–2685. [Google Scholar] [CrossRef]
- Wei, D.; Qian, W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces 2008, 62, 136–142. [Google Scholar] [CrossRef]
- Wang, B.; Zhuang, X.; Deng, W.; Cheng, B. Microwave-assisted synthesis of silver nanoparticles in alkalic carboxymethyl chitosan solution. Engineering 2010, 2, 387–390. [Google Scholar] [CrossRef]
- Biswal, J.; Ramnani, S.P.; Shirolikar, S.; Sabharwal, S. Synthesis of guar-gum-stabilized nanosized silver clusters with γ radiation. J. Appl. Polym. Sci. 2009, 114, 2348–2355. [Google Scholar] [CrossRef]
- Ameen, K.B.; Rajasekar, K.; Rajasekharan, T. Silver nanoparticles in mesoporous aerogel exhibiting selective catalytic oxidation of benzene in CO2 free air. Catal. Lett. 2007, 119, 289–295. [Google Scholar] [CrossRef]
- Jiang, Z.-J.; Liu, C.-Y.; Sun, L.-W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 2005, 109, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lakowicz, J.R.; Geddes, C.D. Enhanced lanthanide luminescence using silver nanostructures: Opportunities for a new class of probes with exceptional spectral characteristics. J. Fluoresc. 2005, 15, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R.; Maliwal, B.P.; Malicka, J.; Gryczynski, Z.; Gryczynski, I. Effects of silver island films on the luminescent intensity and decay times of lanthanide chelates. J. Fluoresc. 2002, 12, 431–437. [Google Scholar] [CrossRef]
- Lee, I.-Y.S.; Suzuki, H.; Ito, K.; Yasuda, Y. Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. J. Phys. Chem. B 2004, 108, 19368–19372. [Google Scholar] [CrossRef]
- Aslan, K.; Holley, P.; Geddes, C.D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J. Mater. Chem. 2006, 16, 2846. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Aslan, K.; Malyn, S.N.; Lakowicz, J.R.; Geddes, C.D. Metal-enhanced chemiluminescence. J. Fluorescence 2006, 16, 295–299. [Google Scholar] [CrossRef]
- Aslan, K.; Leonenko, Z.; Lakowicz, J.R.; Geddes, C.D. Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J. Fluoresc. 2005, 15, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Lipovskii, A.; Kuittinen, M.; Karvinen, P.; Leinonen, K.; Melehin, V.G.; Zhurikhina, V.V.; Svirko, Y.P. Electric field imprinting of sub-micron patterns in glass–metal nanocomposites. Nanotechnol. 2008, 19, 415304. [Google Scholar] [CrossRef] [PubMed]
- Hashemifard, N.; Mohsenifar, A.; Ranjbar, B.; Allameh, A.; Lotfi, A.; Etemadikia, B. Fabrication and kinetic studies of a novel silver nanoparticles–glucose oxidase bioconjugate. Anal. Chim. Acta 2010, 675, 181–184. [Google Scholar] [CrossRef]
- Xie, T.; Wang, A.; Huang, L.; Li, H.; Chen, Z.; Wang, Q.; Yin, X. Recent advance in the support and technology used in enzyme immobilization. African J. Biotechnol. 2009, 8, 4724–4733. [Google Scholar]
- Raghava, S.; Singh, P.K.; Rao, A.R.; Dutta, V.; Gupta, M.N. Nanoparticles of unmodified titanium dioxide facilitate protein refolding. J. Mater. Chem. 2009, 19, 2830–2834. [Google Scholar] [CrossRef]
- Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Ferey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.Y.; Duoss, E.B.; Motala, M.J.; Guo, X.; Park, S.-I.; Xiong, Y.; Yoon, J.; Nuzzo, R.G.; Rogers, J.A.; Lewis, J.A. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science 2009, 323, 1590–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as potential antibacterial agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.J.; Singh, H.; Wang, C.; Hwang, K.H.; Farh, M.E.-A.; Yang, D.-C. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int. J. Nanomed. 2015, 10, 2567–2577. [Google Scholar]
- Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Magdah, A.G.; Helmy, E.A.M.; Mabrouk, A.S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. a review. BioNanoSci. 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Verma, P.; Maheshwari, S.K. Applications of silver nanoparticles in diverse sectors. Int. J. Nano Dimens. 2019, 10, 18–36. [Google Scholar]
- Klasen, H.J. A historical review of the use of silver in the treatment of burns. Burns 2000, 26, 117–130. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Kairemo, K.; Erba, P.; Bergström, K.; Pauwels, E.K.J. Nanoparticles in cancer. Curr. Radiopharm. 2010, 1, 30–36. [Google Scholar]
- Agasti, S.S.; Chompoosor, A.; You, C.-C.; Ghosh, P.; Kim, C.K.; Rotello, V.M. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc. 2009, 131, 5728–5729. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Han, G.; Fernández, J.M.; Kim, B.-J.; Forbes, N.S.; Rotello, V.M. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 2006, 128, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
- Fodale, V.; Pierobon, M.; Liotta, L.; Petricoin, E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J. 2011, 17, 89–95. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and escherichia coli. Nanomed. Nanotechnol. Boil. Med. 2007, 3, 168–171. [Google Scholar] [CrossRef]
- Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Nanotechnologies in the food industry—Recent developments, risks and regulation. Trends Food Sci. Technol. 2012, 24, 30–46. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Bing, X.; Gao, C.; Wang, T.; Yuan, B. Nanosilver Migrated into Food-Simulating Solutions from Commercially Available Food Fresh Containers. Packag. Technol. Sci. 2011, 24, 291–297. [Google Scholar] [CrossRef]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Parashar, U.K.; Kumar, V.; Bera, T.; Saxena, P.S.; Nath, G.; Srivastava, S.K.; Giri, R.; Srivastava, A. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnol. 2011, 22, 415104. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5, 7328. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, A.C.M.; Lima, B.A.; De Faria, A.F.; Brocchi, M.; Alves, O.L. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. Int. J. Nanomed. 2015, 10, 6847–6861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban-Tejeda, L.; Malpartida, F.; Esteban-Cubillo, A.; Pecharromán, C.; Moya, J.S. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 2009, 20, 085103. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.C.; Jiang, H.J.; Ye, H.L.; Li, J.R.; Huang, J.Y. Preparation, antibacterial, and antioxidant activities of silver/chitosan composites. J. Carbohydr. Chem. 2014, 33, 298–312. [Google Scholar] [CrossRef]
- Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973. [Google Scholar] [CrossRef]
- Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.P.; Chudasama, B. Antibacterial activity of silver: The role of hydrodynamic particle size at nanoscale. J. Biomed. Mater. Res. A 2014, 102, 3361–3368. [Google Scholar] [CrossRef]
- Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chem. Mater. 2010, 22, 4548–4554. [Google Scholar] [CrossRef]
- Ahamed, M.; Alsalhi, M.S.; Siddiqui, M.K. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef]
- Hirai, T.; Yoshioka, Y.; Ichihashi, K.; Mori, T.; Nishijima, N.; Handa, T.; Takahashi, H.; Tsunoda, S.; Higashisaka, K.; Tsutsumi, Y. Silver nanoparticles induce silver nanoparticle-specific allergic responses (HYP6P.274). J. Immunol. 2014, 192, 118.19. Available online: https://www.jimmunol.org/content/192/1_Supplement/118.19.short (accessed on 31 August 2019).
- Laban, G.; Nies, L.F.; Turco, R.F.; Bickham, J.W.; Sepúlveda, M.S. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 2009, 19, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Asharani, P.V.; Wu, Y.L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102. [Google Scholar] [CrossRef] [PubMed]
- AshRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Thiago, V.-B.; Rona, M.-G.; Katarzyna, W.; Adelina, R.-W.; Jonathan, R.B.; Helmut, E.; Frank, K. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 2014, 8, 2161–2175. [Google Scholar]
Plant | Part Used for Synthesis | Shape (form) | Size of Ag-NP (nm) | Max of Absorption of Ag-NP in Visible Spectrum (nm) | Ref. |
---|---|---|---|---|---|
Pelargonium graveolens (Geranium) | Leaves | Spherical | 16–40 | 440 | [25] |
Emblica Officinalis (Amla, Indian Gooseberry) | Fruits | Spherical | 15–25 | 400–420 | [26] |
Aloe Vera | Leaves | Spherical | 15.2 ± 4.2 | 410 | [27] |
Capsicum annuum | Leaves | Spherical | 50–70 | 428 | [28] |
Lippia citriodora (Lemon Verbena) | Leaves | Spherical | 15–30 | 430–440 | [29] |
Acalypha indica | Leaves | Spherical | 20–30 | 425 | [30] |
Tribulus terrestris | Exsiccated leaves | Spherical | 18–47 | 450 | [31] |
Mimusops elengi | Leaves | Spherical | 55–83 | 440 | [32] |
Chrysanthemum indicum | Flowers | Spherical | 25–59 | 430 | [33] |
Cinnamomum canphora | Leaves | Spherical | 55–80 | 440 | [34] |
Eclipta | Leaves | Spherical | 2–6 | 419 | [35] |
Ocimum sanctum (Tulsi) | Leaves | Spherical | 4–30 | 413 | [36] |
Cassia auriculata | Leaves | Spherical | 1–100 | 450 | [37] |
Euphorbia hirta Nerium indicum | Leaves | Spherical | 29–31 | 380, 460 | [38] |
Rosa Chinensis | Leaves | Spherical | 25–60 | No λmax data | [39] |
Tribulus terrestris | Fruit | Spherical | 16–28 | 435 | [40] |
Dioscorea bulbifera | Tuber | Triangular, Nanorod | 8–20 | 455 | [41] |
Ulva lactucain | Whole plant | Spherical | 76 | 434 | [42] |
Trianthema decandra | Root | Spherical | 36–74 | Absent | [43] |
Cissus quadrangularis | Whole plant | Spherical | 50–100 | 450 | [44] |
Iresine herbstii | Leaves | Spherical | 44–64 | 420 | [45] |
Ananas comosus | Fruits | Spherical | ~12 | 430 | [46] |
Boswellia serrata | Gum | Spherical | 7.5 ± 3.8 | 420 | [47] |
Hibiscus cannabinus | Leaves | Spherical | 9–10 | 446 | [48] |
Piper pedicellatum | Leaves | Spherical | 2–30 | 440 | [49] |
Tithonia diversifolia | Leaves | Spherical | ~25 | Absent | [50] |
Ficus panda | Leaves | Spherical | 12–36 | 421 | [51] |
Citrullus colocynthis | Leaves Root Seeds | Spherical Spherical Spherical | 13.37 7.39 16.57 | No. λmax data | [52] |
Alternanthera sessilis | Leaves | Spherical | 30–50 | 420 | [53] |
Podophyllum hexandrum | Leaves | Spherical | ~14 | 430 | [54] |
Cocos nucifera | Inflorescence | Spherical | ~22 | 420 | [55] |
Olea europaea (Olive) | Leaves | Spherical | 20–25 | 441–456 | [56] |
Sargassum wightii (algae) | Whole | Spherical | 5–22 | 439 | [57] |
Olax scandens | Leaves | Spherical | 30–60 | 410–430 | [58] |
Piper longum | Fruits | Spherical | ~46 | 465 | [59] |
Delonix elata | Leaves | Spherical | 35–45 | 432 | [60] |
Adansonia digitata | Fruits | Spherical | 3–57 | 434 | [61] |
Emblica officinalis | Fruits | Spherical | 15–20 | 425 | [62] |
Rheum emodi | Root | Spherical | 10–40 | 425 | [63] |
Allium sativum | Whole plant | Spherical | 100–800 | No. λmax data | [64] |
Sargassum vulgare (algae) | Whole plant | Spherical | ~10 | No. λmax data | [65] |
Erythrina indica lam | Root | Spherical | 20–118 | 438 | [66] |
Plumeria alba | Flowers | Spherical | 36.2 | 455 | [67] |
Cymodocea serrulata | Whole plant | Spherical | 17–29 | 430 | [68] |
Skimmia laureola | Leaves | Spherical | 460 | [69] | |
Butea monosperma | Leaves | Spherical | 20–80 | 440–475 | [70] |
Capparis decidua | Leaves | Spherical | 1.5–25 | 452 | [71] |
Azadirachta indica | Leaves | Spherical | ~34 | 436–446 | [72] |
Syzygium cumini Azadirachta indica | Flowers Leaves | Spherical Spherical | <40 <40 | 400–450 | [73] |
Capparis spinosa | Leaves | Spherical | 10–40 | 420 | [74] |
Cola nitida | Pods | Spherical | 12–80 | 431 | [75] |
Artemisia marschalliana | Aerial part | Spherical | 5–50 | 430 | [76] |
Ziziphus oenoplia | Leaves | Spherical | 10 | 436 | [77] |
Croton bonplandianum Baill. | Leaves | Spherical | 32 | 425 | [78] |
Dimocarpus longan | Peel | Spherical | 8–22 | No. λmax data | [79] |
Rubus glaucus | Leaves | Spherical | 12–50 | 440–445 | [80] |
Raphanus sativus | Leaves | Spherical | 4–30 | 426 | [81] |
Melia azedarach | Leaves | Spherical | 34–48 | 482 | [82] |
Calliandra haematocephala | Leaves | Spherical | 13.5–91.3 | 414 | [83] |
Crocus sativus | Leaves | Spherical | 12–20 | 450 | [84] |
Costus afer | Leaves | Spherical | ~20 | 405–411 | [85] |
Punica granatum | Peel | Spherical | 20–40 | Absent | [86] |
Cleome viscosa | Fruits | Spherical | 20–50 | 410–430 | [87] |
Anthemis atropatana | Aerial part | Spherical | 10–80 | 430 | [88] |
Citrullus colocynthis | Callus | Spherical | ~31 | No. λmax data | [89] |
Datura stramonium | Leaves | Spherical | 15–20 | 444 | [90] |
Morinda citrifolia | Root | Spherical | 30–55 | 413 | [91] |
Ficus talboti | Leaves | Spherical | 10–14 | 438 | [92] |
Potentilla fulgens | Root | Spherical | 10–15 | 410 | [93] |
Syzygium cumini Citrus sinensis Solanum tricobatum Centella asiatica | Leaves powder | Triangular | 53 41 52 42 | 420 | [94] |
Rheum palmatum | Root | Hexagonal | 121 ± 2 | 440 | [95] |
Alysicarpus monilifer | Leaves | Hexagonal, Spherical | 5–45 | 422 | [96] |
Melia azedarach | Leaves | Cubic | 78 | 436 | [97] |
Eucalyptus macrocarpa | Leaves | Cubic | 10–50 | 430 | [98] |
Cucurbita maxima Moringa oleifera Acorus calamus | Petals Leaves Rhizome | Cubic | 30–70 | Absent | [99] |
Ocimum tenuiflorum Solanum tricobatum Syzygium cumini Centella asiatica Citrus sinensis | Leaves | Prismatic | 28 22.3 26.5 28.4 65 | 420 420 420 415 415 | [100] |
Achillea biebersteinii | Flowers | Pentagonal Spherical | 10–40 | 450 | [101] |
Solanum trilobatum | Fruits | Polygonal | 41–42 | 420 | [102] |
Musa paradisiaca (banana) | Peels | Irregular | ~24 | 433 | [103] |
Annona squamosa | Leaves | Irregular | ~300 | 420 | [104] |
Artemisia nilagirica | Leaves | Irregular | ≤30 | 463 | [105] |
Tinospora cordifolia | Leaves | Irregular Spherical | ~30 | 430 | [106] |
Leucas aspera Hyptis suaveolens | Leaves Leaves | Irregular Polygonal | 7–22 5–25 | 401 408 | [107] |
Órchis máscula | Tuber | “Flower-like” | <100 (width) ~500 (length) | 444 | [108] |
Microorganism (Type) | Shape (form) | Size of Ag-NP (nm) | Max of Absorption of Ag-NP in Visible Spectrum (nm) | Ref. |
---|---|---|---|---|
Pseudomonas stutzeri (bacteria) | Spherical Triangular Hexagonal | 70–200 | 400 | [115] |
Pseudomonas stutzeri (bacteria) | Spherical Triangular Hexagonal | 70–200 | 400 | [116] |
MKY3 strain (bacteria) | Spherical Hexagonal | ~26 | 420 | [117] |
Fusarium oxysporum (fungus) | Spherical | 5–15 | 413 | [118] |
Fusarium oxysporum (fungus) | Spherical | 20–50 | 420 | [119] |
Aspergillus flavus (fungus) | Spherical | ~9 | 420 | [120] |
Fusarium acuminatum (fungus) | Spherical | 5–40 | 420 | [121] |
Bacillus licheniformis (bacteria) | Spherical | ~40 | Absent | [122] |
Bacillus licheniformis (bacteria) | Spherical | ~50 | 440 | [123] |
Escherichia coli (bacteria) | Spherical | ~50 | 420 | [124] |
Klebsiella pneumonia (bacteria) | Spherical | 1–6 | 420 | [125] |
Aspergillus niger (fungus) | Spherical | 3–30 | 430 | [126] |
Brevibacterium casei (bacteria) | Spherical | 10–50 | 420 | [127] |
Pseudomonas aeruginosa (bacteria) | Spherical | ~13 | 430 | [128] |
Rhizopus stolonifer (fungus) | Spherical | 3–20 | Absent | [129] |
Pseudomonas antarctica (bacteria) Pseudomonas proteolytica (bacteria) Pseudomonas meridian (bacteria) Arthrobacter kerguelensis(bacteria) Arthrobacter gangotriensis (bacteria) Bacillus indicus (bacteria) Bacillus cecembensis (bacteria) | Spherical | 6–13 | 400–430 | [130] |
Penicillium purpurogenum (fungus) | Spherical | 8–10 | 390–420 | [131] |
Bacillus subtilis (bacteria) | Spherical Triangular Hexagonal | 45–70 | 440 | [132] |
Bacillus amyloliquefaciens (bacteria) | Spherical Triangular | ~15 | 420–425 | [133] |
Streptomyces sp. (bacteria) | Spherical | 21–48 | 441 | [134] |
Streptomyces albogriseolus (bacteria) | Spherical | 16.25 ± 1.6 | 409 | [135] |
Salmonella typhirium (bacteria) | Spherical Ellipsoidal | 87 ± 30 | 427 | [136] |
Pencillium sp. (fungus) | Spherical | 25 | 425 | [137] |
Acinetobacter calcoaceticus (bacteria) | Spherical | 8–60 | 420–440 | [138] |
Aspergillus fumigatus (fungus) | Spherical | 20–140 | 420 | [139] |
Bacillus subtilis (bacteria) | Spherical | No data | 420 | [140] |
Streptomyces sp. (bacteria) | Spherical | 50–86 | 420 | [141] |
Penicillium sp. (fungus) | Spherical | 25–30 | 420 | [142] |
Bacillus sp. (bacteria) | Spherical | 42–94 | 450 | [143] |
Actinomycetes (bacteria) | Spherical | 10–20 | 415 | [144] |
Penicillium glabrum (fungus) | Spherical | 26–32 | 420 | [145] |
Streptomyces sp. (bacteria) | Spherical | 50–76 | 420 | [146] |
Ochrobactrum sp. (bacteria) | Spherical | 38–85 | 450 | [147] |
Fusarium oxysporum (fungus) | Spherical | 15–40 | 420 | [148] |
Penicillium atramentosum (fungus) | Spherical | 5–25 | 420 | [149] |
Variovorax guangxiensis (bacteria) | Spherical | 10–40 | 418 | [150] |
Sporosarcina koreensis (bacteria) | Spherical | 10–30 | 424 | [151] |
Penicillium brevicompactum (fungus) | Spherical | 30–50 | 420 | [152] |
Pseudomonas deceptionensis (bacteria) | Spherical | 10–30 | 428 | [153] |
Bacillus methylotrophicus (bacteria) | Spherical | 10–30 | 416 | [154] |
Streptomyces rochei (bacteria) | Almost ideally spherical | 22–85 | 410 | [155] |
Streptomyces atrovirens (bacteria) | Spherical | 58 ± 2 | 418 | [156] |
Rhizopus stolonifer (fungus) | Spherical | 3–50 | 420 | [157] |
Aeromonas sp. (bacteria) | Spherical | 8–16 | 400 | [158] |
Bacillus brevis (bacteria) | Spherical | 41–68 | 420 | [159] |
Phenerochaete chrysosporium (bacteria) | Spherical | 34–90 | 430 | [160] |
Streptacidiphilus durhamensis (bacteria) | Spherical | 8–48 | 430 | [161] |
Penicillium italicum (fungus) | Spherical | 14.5–23.3 | 423 | [162] |
Streptomyces xinghaiensis (bacteria) | Spherical | 5–20 | 420 | [163] |
Enterobacter cloacae (bacteria) | Spherical | 7–25 | 440 | [164] |
Streptomyces olivaceus (bacteria) | Spherical | ~12.3 | 450 | [165] |
Paracoccus sp. (bacteria) | Spherical Ellipsoidal | 2–5 | 416 | [166] |
Aspergillus fumigates (fungus) | Irregular | 5–25 | 420 | [167] |
Aspergillus clavatus (fungus) | Irregular | 550–650 | 420 | [168] |
Bacillus megaterium (bacteria) | Irregular | 80–99 | Absent | [169] |
Aspergillus flavus (fungus) | Irregular | 17 ± 5.9 | 421 | [170] |
Pseudomonas aeruginosa (bacteria) | Irregular | 2–20 | 425 | [171] |
Idiomarina sp (bacteria) | Irregular | 26 | 450 | [172] |
Staphylococcus aureus (bacteria) | Irregular | 28–50 | 420–430, 550–570 | [173] |
Streptomyces sp. (bacteria) | Irregular | 68 | 423 | [174] |
Enterococcus sp. (bacteria) | Irregular | 30–100 | Absent | [175] |
Streptomyces sp. (bacteria) | Irregular | 70–100 | 400 | [176] |
Acinetobacter baumannii (bacteria) | Irregular | 37–168 | Absent | [177] |
Pseudomonas sp. (bacteria) | Irregular | 10–40 | 412 | [178] |
Bacillus flexus (bacteria) | Triangular | 12–65 | 420 | [179] |
Bacillus stratosphericus (bacteria) | Triangular Hexagonal Cubic | 2–20 | 405 | [180] |
Fusarium semitectum (fungus) | Hexagonal Spherical | 10–60 | 420 | [181] |
Aspergillus clavatus (fungus) | Hexagonal Spherical | 10–25 | 415 | [182] |
Bacillus licheniformis (bacteria) | Hexagonal Triangular | 22–44 | 422 | [183] |
Streptomyces viridodiastaticus (bacteria) | Polygonal | 15–45 | 400 | [184] |
Arthrospira maxima (cyanobacteria) Arthrospira platensis (cyanobacteria) Hapalosiphon fontinalis (cyanobacteria) Spirulina sp. (cyanobacteria) Cylindrospermum stagnale (cyanobacteria) Spirulina sp. (cyanobacteria) Phormidium sp. (cyanobacteria) Spirulina sp. (cyanobacteria) Calothrix brevissema (cyanobacteria) | Triangular Triangular Triangular Pentagonal Pentagonal Hexagonal Cubic Cubic Cubic | 61 46 50 51 38–40 47 48 49 42 | 465 445 450 450 440 446 446 450 443 | [185] |
Hargavaea indica (bacteria) | Pentagonal Spherical Icosahedral Hexagonal Triangular Icosahedral Truncated triangle | 30–100 | 460 | [186] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, O.V.; Mikhailova, E.O. Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. Materials 2019, 12, 3177. https://doi.org/10.3390/ma12193177
Mikhailov OV, Mikhailova EO. Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. Materials. 2019; 12(19):3177. https://doi.org/10.3390/ma12193177
Chicago/Turabian StyleMikhailov, Oleg V., and Ekaterina O. Mikhailova. 2019. "Elemental Silver Nanoparticles: Biosynthesis and Bio Applications" Materials 12, no. 19: 3177. https://doi.org/10.3390/ma12193177
APA StyleMikhailov, O. V., & Mikhailova, E. O. (2019). Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. Materials, 12(19), 3177. https://doi.org/10.3390/ma12193177