Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive
<p>Chromatogram of the standards of capsaicin, dihydrocapsaicin (green peaks), and sample (blue peaks) in dried Cayenne pepper red (<span class="html-italic">Capsicum annuum</span> L.). UV detections of capsaicin and dihydrocapsaicin were recorded at a wavelength of 281 nm, retention times of 22.63 min (capsaicin)–23.44 min (dihydrocapsaicin), and using C18 column (150 mm × 3.50 mm × 2.70 µm). Mobile phase was 0.10% phosphoric acid in ddH<sub>2</sub>O (ultra-pure and sterile water) and acetonitrile (HPLC gradient grade).</p> "> Figure 2
<p>Vegetable oil assessment from the viewpoint of the fatty acid summary composition (%). RBO—rice bran oil; GSO—grape seed oil; OO—virgin olive oil; RBO-CP—rice bran oil flavored with dried Cayenne pepper red; GSO-CP—grape seed oil flavored with dried Cayenne pepper red; OO-CP—virgin olive oil flavored with dried Cayenne pepper red; SFA—saturated fatty acid; MUFA—monounsaturated fatty acid; PUFA—polyunsaturated fatty acid.</p> "> Figure 3
<p>The antioxidant activity of evaluated edible vegetable oils. RBO—rice bran oil; GSO—grape seed oil; OO—virgin olive oil; RBO-CP—rice bran oil flavored with dried Cayenne pepper red; GSO-CP—grape seed oil flavored with dried Cayenne pepper red; OO-CP—virgin olive oil flavored with dried Cayenne pepper red. Each bar represents the arithmetic mean (±standard deviation). The power of antioxidant activity was assessed based on the following scheme: weak (0–29%) < medium-strong (30–59%) < strong (60% and more); different small letters indicate statistically significant differences at the level <span class="html-italic">p</span> < 0.05 between oils.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quantitation of Capsaicinoids in Dried Cayenne Pepper Red
2.2. Evaluation of the Fatty Acid Profiles for Health Benefits
2.3. Evaluation of the Technological Properties of Oil Quality—Peroxide and Acid Values, Oxidative Stability
2.4. Evaluation of the Antioxidant Activity
2.5. Evaluation of the Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals
3.2. Materials
3.3. Determination of Capsaicinoids in Cayenne Pepper Red (Capsicum annuum L.) by HPLC-DAD Method
3.4. Determination of Fatty Acid Composition by GC-FID Method
3.5. Technological Properties of Oils Quality
3.5.1. Determination of Peroxide Value
3.5.2. Determination of Acid Value
3.5.3. Determination of Oxidative Stability by Rancimat Method
3.6. Determination of Antioxidant Activity by DPPH Method
3.7. Determination of Antimicrobial Activity by Disc Diffusion Method
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils: A review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef]
- Ali, A.; Devarajan, S. Nutritional and Health Benefits of Rice Bran Oil. In Brown Rice; Manickavasagan, A., Santhakumar, C., Venkatachalapathy, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 135–158. [Google Scholar]
- Riantong, S.; Jorg, J.J. Nutrition and applications of rice bran oil: A mini-overview. Sci. Technol. Cereals Oils Foods 2021, 29, 47–53. [Google Scholar]
- Lai, O.M.; Jacoby, J.J.; Leong, W.F.; Lai, W.T. Chapter 2—Nutritional studies of rice bran oil. In Rice Bran and Rice Bran Oil. Chemistry, Processing and Utilization, 1st ed.; Cheong, L.Z., Xu, X., Eds.; Academic Press and AOCS Press: Urbana, IL, USA, 2019; pp. 19–54. [Google Scholar]
- Punia, S.; Kumar, M.; Sandhu, K.S. Rice-bran oil: An emerging source of functional oil. J. Food Process. Preserv. 2021, 45, e15318. [Google Scholar] [CrossRef]
- Liu, R.; Liu, R.; Shi, L.; Zhang, Z.; Zhang, T.; Lu, M.; Chang, M.; Jin, Q.; Wang, X. Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT 2019, 109, 26–32. [Google Scholar] [CrossRef]
- Lee, S.; Yu, S.; Park, H.J.; Jung, J.; Go, G.-W.; Kim, W. Rice bran oil ameliorates inflammatory responses by enhancing mitochondrial respiration in murine macrophages. PLoS ONE 2019, 14, e0222857. [Google Scholar] [CrossRef]
- Chen, C.W.; Cheng, H.H. A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotin/nicotinamide-induced type 2 diabetes. J. Nutr. 2006, 136, 1472–1476. [Google Scholar] [CrossRef]
- Shih, C.K.; Ho, C.J.; Li, S.C.; Yang, S.H.; Hou, W.C.; Cheng, H.H. Preventive effects of rice bran oil on 1,2-dimethylhydrazine/dextran sodium sulphate-induced colon carcinogenesis in rats. Food Chem. 2011, 126, 562–567. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Wang, J.; Sun, B. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Adv. 2019, 9, 18060–18069. [Google Scholar] [CrossRef]
- Rohman, A. Rice bran oil’s role in health and cooking. In Wheat and Rice in Disease Prevention and Health. Benefits, Risks and Mechanisms of Whole Grains in Health Promotion; Watson, R.R., Preedy, V.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 481–490. [Google Scholar]
- Pal, Y.P.; Pratap, A.P. Rice bran oil: A versatile source for edible and industrial applications. J. Oleo Sci. 2017, 66, 551–556. [Google Scholar] [CrossRef]
- Park, H.; Yu, S.; Kim, W. Rice Bran Oil Attenuates Chronic Inflammation by Inducing M2 Macrophage Switching in High-Fat Diet-Fed Obese Mice. Foods 2021, 10, 359. [Google Scholar] [CrossRef]
- Wong, S.K.; Kamisah, Y.; Mohamed, N.; Muhammad, N.; Masbah, N.; Fahami, N.A.M.; Mohamed, I.N.; Shuid, A.N.; Saad, Q.M.; Abdullah, A.; et al. Potential role of tocotrienols on non-communicable diseases: A review of current evidence. Nutrients 2020, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, F.B.; de Santana, F.C.; Mancini-Filho, J. Effect of cold pressed grape seed oil on rats’ biochemical markers and inflammatory profile. Rev. Nutr. Camp. 2015, 28, 65–76. [Google Scholar] [CrossRef]
- Kapcsándi, V.; Hanczné Lakatos, E.; Sik, B.; Linka, L.Á.; Székelyhidi, R. Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. OCL—Oilseeds Fats Crops Lipids 2021, 28, 30. [Google Scholar] [CrossRef]
- Duba, K.S.; Fiori, L. Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- Karaman, S.; Karasu, S.; Tornuk, F.; Toker, O.S.; Geçgel, Ü.; Sagdic, O.; Ozcan, N.; Gül, O. Recovery potential of cold press byproducts obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. J. Agric. Food Chem. 2015, 63, 2305–2313. [Google Scholar] [CrossRef]
- Shinagawa, F.B.; Santana, F.C.; Torres, L.R.O.; Mancini-Filho, J. Grape seed oil: A potential functional food? Food Sci. Technol. 2015, 35, 399–406. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef]
- Raphael, W.; Sordillo, L.M. Dietary polyunsaturated fatty acids and inflammation: The role of phospholipid biosynthesis. Int. J. Mol. Sci. 2013, 14, 21167–21188. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Kamiloglu, O.; Demirkeser, Ö.K. Fatty Acid Composition, Total Phenolic Content and Antioxidant Activity of Grape Seed Oils Obtained by Cold-Pressed and Solvent Extraction. IJPER—Indian J. Pharm. Educ. Res. 2019, 53, 144–150. [Google Scholar] [CrossRef]
- Hanganu, A.; Todaşcă, M.C.; Chira, N.A.; Maganu, M.; Roşca, S. The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chem. 2012, 134, 2453–2458. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Apaydin, D.; Demirci, A.S.; Gecgel, U. Effect of Gamma Irradiation on Biochemical Properties of Grape Seeds. J. Am. Oil Chem. Soc. 2017, 94, 57–67. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Cruz, R.; Pereira, J.A.; Ramalhosa, E. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res. Int. 2013, 50, 161–166. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. A Potential Valorization Strategy of Wine Industry by-Products and Their Application in Cosmetics—Case study: Grape Pomace and Grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef] [PubMed]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Vujasinović, V.B.; Bjelica, M.M.; Čorbo, S.C.; Dimić, S.B.; Rabrenović, B.B. Characterization of the chemical and nutritive quality of coldpressed grape seed oils produced in the Republic of Serbia from different red and white grape varieties. Grasas Aceites 2021, 72, e411. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Kaliora, A.C. Effect of Fruit Maturity on Olive Oil Phenolic Composition and Antioxidant Capacity. In Olive and Olive Oil Bioactive Constituents; Academic Press and AOCS Press: Urbana, IL, USA, 2015; pp. 123–145. [Google Scholar] [CrossRef]
- Wong, M.; Laurence, E.; Leandro, R. Modern Aqueous Oil Extraction-Centrifugation Systems for Olive and Avocado Oils. In Green Vegetable Oil Processing; Academic Press and AOCS Press: Urbana, IL, USA, 2014; pp. 19–51. [Google Scholar] [CrossRef]
- Boskou, D. Olive oil: Properties and processing for use in food. In Specialty Oils and Fats in Food and Nutrition; Woodhead Publishing: Sawston, Cambridge, UK, 2015; pp. 3–38. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Isaakidis, A.; Maghariki, J.E.; Carvalho-Barros, S.; Gomes, A.M.; Correia, M. Is There More to Olive Oil than Healthy Lipids? Nutrients 2023, 15, 3625. [Google Scholar] [CrossRef]
- Revelou, P.K.; Xagoraris, M.; Alexandropoulou, A.; Kanakis, C.D.; Papadopoulos, G.K.; Pappas, C.S.; Tarantilis, P.A. Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules 2021, 26, 4151. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Zellama, M.S.; Chahdoura, H.; Zairi, A.; Ziani, B.E.C.; Boujbiha, M.A.; Snoussi, M.; Ismail, S.; Flamini, G.; Mosbah, H.; Selmi, B.; et al. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. Environ. Sci. Pollut. Res. Int. 2022, 29, 16392–16403. [Google Scholar] [CrossRef] [PubMed]
- Antoun, N.; Tsimidou, M. Gourmet olive oils: Stability and consumer acceptability studies. Food Res. Int. 1997, 30, 131–136. [Google Scholar] [CrossRef]
- Akçar, H.H.; Gümüşkesen, A.S. Sensory evaluation of flavored extra virgin olive oil. GIDA 2011, 36, 249–253. [Google Scholar]
- Singh, G.; Kawatra, A.; Sehgal, S. Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods Hum. Nutr. 2001, 56, 359–364. [Google Scholar] [CrossRef]
- Rosato, A.; Piarulli, M.; Corbo, F.; Muraglia, M.; Carone, A.; Vitali, M.E.; Vitali, C. In vitro synergistic action of certain combinations of gentamicin and essential oils. Curr. Med. Chem. 2010, 17, 3289–3295. [Google Scholar] [CrossRef]
- Duranova, H.; Valkova, V.; Gabriny, L. Chili peppers (Capsicum spp.): The spice not only for cuisine purposes: An update on current knowledge. Phytochem. Rev. 2022, 21, 1379–1413. [Google Scholar] [CrossRef]
- Olatunji, T.L.; Afolayan, A.J. Comparison of nutritional, antioxidant vitamins and capsaicin contents in Capsicum annuum and C. frutescens. Int. J. Veg. Sci. 2020, 26, 190–207. [Google Scholar] [CrossRef]
- Carrizo García, C.; Barfuss, M.H.; Sehr, E.M.; Barboza, G.E.; Samuel, R.; Moscone, E.A.; Ehrendorfer, F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot. 2016, 118, 35–51. [Google Scholar] [CrossRef]
- Hui, Y.H.; Chen, F.; Nollet, L.M.L.; Guiné, R.P.F.; Le Quéré, J.L.; Martín-Belloso, O.; Mínguez-Mosquera, M.I.; Paliyath, G.; Pessoa, F.L.P.; Sidhu, J.S.; et al. Handbook of Fruit and Vegetable Flavors; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2010; p. 1095. [Google Scholar]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 53, 1750–1756. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Martínez-Guirado, C.; Rebolloso-Fuentes, M.M.; Carrique-Pérez, A. Nutrient Composition and Antioxidant Activity of 10 pepper (Capsicum annuum) Varieties. Eur. Food Res. Technol. 2006, 224, 1–9. [Google Scholar] [CrossRef]
- Srilaong, V.; Kaewkhum, N. Physiological and Phytochemical Changes in Cayenne Pepper. Thai J. Agric. Sci. 2011, 44, 16–21. [Google Scholar]
- Loizzo, M.R.; Bonesi, M.; Serio, A.; Chaves-López, C.; Falco, T.; Paparella, A.; Menichini, F.; Tundis, R. Application of Nine Air-Dried Capsicum annum Cultivars as Food Preservative: Micronutrient Content, Antioxidant Activity, and Foodborne Pathogens Inhibitory Effects. Int. J. Food Prop. 2016, 20, 899–910. [Google Scholar] [CrossRef]
- Huang, W.; Cheang, W.S.; Wang, X.; Lei, L.; Liu, Y.; Ma, K.Y.; Zheng, F.; Huang, Y.; Chen, Z.Y. Capsaicinoids but not their analogue capsinoids lower plasma cholesterol and possess beneficial vascular activity. J. Agric. Food Chem. 2014, 62, 8415–8420. [Google Scholar] [CrossRef] [PubMed]
- Morales-Soto, A.; Gómez-Caravaca, A.M.; García-Salas, P.; Segura-Carretero, A.; Fernández-Gutiérrez, A. High-performance liquid chromatography coupled to diode array and electrospray time-of-flight mass spectrometry detectors for a comprehensive characterization of phenolic and other polar compounds in three pepper (Capsicum annuum L.) samples. Food Res. Int. 2013, 51, 977–984. [Google Scholar] [CrossRef]
- Imran, M.; Butt, M.S.; Suleria, H.A.R. Capsicum annuum Bioactive Compounds: Health Promotion Perspectives. In Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–22. [Google Scholar]
- Barbero, G.F.; Ruiz, A.G.; Liazid, A.; Palma, M.; Vera, J.C.; Barroso, C.G. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chem. 2014, 153, 200–206. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Lucas-González, R.; Yilmaz, B.; Mousavi Khaneghah, A.; Hano, C.; Shariati, M.A.; Bangar, S.P.; Goksen, G.; Dhama, K.; Lorenzo, J.M. Cinnamon: An antimicrobial ingredient for active packaging. Food Packag. Shelf Life 2023, 35, 101026. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, H.J.; Yoon, D.K.; Ji, D.S.; Kim, J.H.; Lee, C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2017, 27, 219–225. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Bae, H.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem. 2012, 134, 1912–1918. [Google Scholar] [CrossRef]
- Si, W.; Liang, Y.; Ma, K.Y.; Chung, H.Y.; Chen, Z.-Y. Antioxidant Activity of Capsaicinoid in Canola Oil. J. Agric. Food Chem. 2012, 60, 6230–6234. [Google Scholar] [CrossRef] [PubMed]
- Plastina, P.; Tundis, R.; La Torre, C.; Sicari, V.; Giuffré, A.M.; Neri, A.; Bonesi, M.; Leporini, M.; Fazio, A.; Falco, T.; et al. The addition of Capsicum baccatum to Calabrian monovarietal extra virgin olive oils leads to flavoured olive oils with enhanced oxidative stability. Ital. J. Food Sci. 2021, 33, 61–72. [Google Scholar] [CrossRef]
- Cecchi, L.; Balli, D.; Urciuoli, S.; Urciuolo, A.; Bordiga, M.; Travaglia, F.; Zanoni, B.; Mulinacci, N. Co-milling of sound olives with fresh chili peppers improves the volatile compound, capsaicinoid and sensory profiles of flavoured olive oil with respect to the typical infusion. Food Chem. 2023, 404, 134696. [Google Scholar] [CrossRef] [PubMed]
- Maji, A.K.; Banerji, P. Phytochemistry and gastrointestinal benefits of the medicinal spice, Capsicum annuum L. (Chilli): A review. J. Complement. Integr. Med. 2016, 13, 97–122. [Google Scholar] [CrossRef]
- Tripodi, P.; Kumar, S. The Capsicum Crop: An Introduction. In The Capsicum Genome. Compendium of Plant Genomes; Ramchiary, N., Kole, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–8. [Google Scholar]
- Fox, M.; Newcomb, K.; Oliveira, C.; Shakiba, E.; Nawarathne, I.N. Facile analysis of rice bran oil to compare free unsaturated fatty acid compositions of parental and hybrid rice lines. J. Am. Oil Chem. Soc. 2022, 99, 1103–1111. [Google Scholar] [CrossRef]
- Cocan, I.; Negrea, M.; Cozma, A.; Alexa, E.; Poiana, M.-A.; Raba, D.; Danciu, C.; Popescu, I.; Cadariu, A.I.; Obistioiu, D.; et al. Chili and Sweet Pepper Seed Oil Used as a Natural Antioxidant to Improve the Thermo-Oxidative Stability of Sunflower Oil. Agronomy 2021, 11, 2579. [Google Scholar] [CrossRef]
- Cerecedo-Cruz, L.; Azuara-Nieto, E.; Hernández-Álvarez, A.J.; González-González, C.R.; Melgar-Lalanne, G. Evaluation of the oxidative stability of Chipotle chili (Capsicum annuum L.) oleoresins in avocado oil. Grasas Aceites 2018, 69, e240. [Google Scholar] [CrossRef]
- Bimpizas-Pinis, M.; Santagata, R.; Kaiser, S.; Liu, Y.; Lyu, Y. Additives in the food supply chain: Environmental assessment and circular economy implications. Environ. Sustain. Indic. 2022, 14, 100172. [Google Scholar] [CrossRef]
- Bolek, S. Consumer Attitudes Toward Natural Food Additives. In Natural Additives in Foods, 1st ed.; Valencia, G.A., Ed.; Springer: Cham, Switzerland, 2022; pp. 325–341. [Google Scholar] [CrossRef]
- Elshama, S.S. Synthetic and Natural food additives: Toxicological Hazards and Health Benefits. J. Toxicol. 2020, 4, 555643. [Google Scholar] [CrossRef]
- Yasin, M.; Li, L.; Donovan-Mak, M.; Chen, Z.-H.; Panchal, S.K. Capsicum Waste as a Sustainable Source of Capsaicinoids for Metabolic Diseases. Foods 2023, 12, 907. [Google Scholar] [CrossRef]
- Zewdie, Y.; Bosland, P.W. Evaluation of Genotype, Environment, and Genotype-by-Environment Interaction for Capsaicinoids in Capsicum annuum L. Euphytica 2000, 111, 185–190. [Google Scholar] [CrossRef]
- Kawabata, F.; Inoue, N.; Yazawa, S.; Kawada, T.; Inoue, K.; Fushiki, T. Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci. Biotechnol. Biochem. 2006, 70, 2824–2835. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, S.; Kawabata, F.; Ohnuki, K.; Inoue, N.; Yoneda, H.; Yazawa, S.; Fushiki, T. Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, on sympathetic nervous activity, body temperature, heart rate, and blood pressure in humans. Biosci. Biotechnol. Biochem. 2007, 71, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Al Othman, Z.A.; Ahmed, Y.B.; Habila, M.A.; Ghafar, A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef] [PubMed]
- Popelka, P.; Jevinová, P.; Šmejkal, K.; Roba, P. Determination of capsaicin content and pungency level of different fresh and dried chilli peppers. Folia Vet. 2017, 61, 11–16. [Google Scholar] [CrossRef]
- Arora, R.; Gill, N.S.; Chauhan, G.; Rana, A.C. An overview about versatile molecule capsaicin. A review article. Int. J. Pharm. Sci. Drug Res. 2011, 3, 280–286. [Google Scholar] [CrossRef]
- Lopez-Hernandez, J.; Oruna-Concha, M.J.; Simal-Lozano, J.; Gonzales-Castro, M.J.; Vazquez-Blanco, M.E. Determination of capsaicin and dihydrocapsaicin in Cayenne pepper and padrón peppers by HPLC. Dtsch. Lebensm.-Rundsch. 1996, 92, 393–395. [Google Scholar]
- Chopan, M.; Littenberg, B. The Association of Hot Red Chili Pepper Consumption and Mortality: A Large Population-Based Cohort Study. PLoS ONE 2017, 12, e0169876. [Google Scholar] [CrossRef]
- Zamljen, T.; Slatnar, A.; Hudina, M.; Veberic, R.; Medic, A. Characterization and Quantification of Capsaicinoids and Phenolic Compounds in Two Types of Chili Olive Oils, Using HPLC/MS. Foods 2022, 11, 2256. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative Stability of Selected Edible Oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef] [PubMed]
- Verruck, S.; Balthazar, C.F.; Rocha, R.S.; Silva, R.; Esmerino, E.A.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; da Gruz, A.G.; Prudencio, E.S. Dairy foods and positive impact on the consumer’s health. Adv. Food Nutr. Res. 2019, 89, 95–164. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Jiménez, Y.; Igartuburu, J.M.; Guillén-Sánchez, D.A.; García-Moreno, M.V. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules 2022, 27, 6980. [Google Scholar] [CrossRef]
- Matthäus, B. Virgin grapeseed oil: Is it really a nutritional highlight? Eur. J. Lipid Sci. Technol. 2008, 110, 645–650. [Google Scholar] [CrossRef]
- Demirtas, I.; Pelvan, E.; Ozdemir, I.S.; Alasalvar, C.; Ertas, E. Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur. J. Lipid Sci. Technol. 2013, 115, 641–647. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, M.; Hu, R.; Zhao, J.; Chen, Z.; Li, J.; Ni, Y. Characterisation of seed oils from different grape cultivars grown in China. J. Food Sci. Technol. 2016, 53, 3129–3136. [Google Scholar] [CrossRef]
- Ivanišová, E.; Juricová, V.; Árvay, J.; Kačániová, M.; Čech, M.; Kobus, Z.; Krzywicka, M.; Cichocki, W.; Kozłowicz, K. Physicochemical, Antioxidant, Antimicrobial, and Sensory Characteristics of Selected Kinds of Edible Oils. Appl. Sci. 2024, 14, 3630. [Google Scholar] [CrossRef]
- Dimić, I.; Teslić, N.; Putnik, P.; Bursać Kovačević, D.; Zeković, Z.; Šojić, B.; Mrkonjić, Ž.; Čolović, D.; Montesano, D.; Pavlić, B. Innovative and Conventional Valorizations of Grape Seeds from Winery By-Products as Sustainable Source of Lipophilic Antioxidants. Antioxidants 2020, 9, 568. [Google Scholar] [CrossRef]
- Ferreira, R.; Lourenço, S.; Lopes, A.; Andrade, C.; Câmara, J.S.; Castilho, P.; Perestrelo, R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods 2021, 10, 2867. [Google Scholar] [CrossRef]
- Nash, D.T. Cardiovascular risk beyond LDL-C levels. Other lipids are performers in cholesterol story. Postgrad. Med. 2004, 116, 11–15. [Google Scholar] [CrossRef]
- Asadi, F.; Shahriari, A.; Chahardah-Cheric, M. Effect of long-term optional ingestion of canola oil, grape seed oil, corn oil and yogurt butter on serum, muscle and liver cholesterol status in rats. Food Chem. Toxicol. 2010, 48, 2454–2457. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Jeon, G.; Sung, J.; Oh, S.-K.; Hong, H.C.; Lee, J. Effect of grape seed oil supplementation on plasma lipid profiles in rats. Food Sci. Biotechnol. 2010, 19, 249–252. [Google Scholar] [CrossRef]
- Mercola, J.; D’Adamo, C.R. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023, 15, 3129. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.L.; Sicardo, M.D.; Belaj, A.; Martínez-Rivas, J.M. The Oleic/Linoleic Acid Ratio in Olive (Olea europaea L.) Fruit Mesocarp Is Mainly Controlled by OeFAD2-2 and OeFAD2-5 Genes Together with the Different Specificity of Extraplastidial Acyltransferase Enzymes. Front. Plant Sci. 2021, 12, 653997. [Google Scholar] [CrossRef]
- Kim, E.H.; Lee, S.Y.; Baek, D.Y.; Park, S.Y.; Lee, S.G.; Ryu, T.H.; Lee, S.K.; Kang, H.J.; Kwon, O.H.; Kil, M.; et al. A comparison of the nutrient composition and statistical profile in red pepper fruits (Capsicums annuum L.) based on genetic and environmental factors. Appl. Biol. Chem. 2019, 62, 48. [Google Scholar] [CrossRef]
- Ananthan, R.; Subhash, K.; Longvah, T. Capsaicinoids, amino acid and fatty acid profiles in different fruit components of the world hottest Naga king chilli (Capsicum chinense Jacq). Food Chem. 2016, 238, 51–57. [Google Scholar] [CrossRef]
- Islam, F.; Imran, A.; Nosheen, F.; Fatima, M.; Arshad, M.U.; Afzaal, M.; Ijaz, N.; Noreen, R.; Mehta, S.; Biswas, S.; et al. Functional roles and novel tools for improving-oxidative stability of polyunsaturated fatty acids: A comprehensive review. Food Sci. Nutr. 2023, 11, 2471–2482. [Google Scholar] [CrossRef]
- Nadeem, M.; Situ, C.; Abdullah, M. Effect of Olein Fractions of Milk Fat on Oxidative Stability of Ice Cream. Int. J. Food Prop. 2015, 18, 735–745. [Google Scholar] [CrossRef]
- Nagy, K.; Iacob, B.-C.; Bodoki, E.; Oprean, R. Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. Foods 2024, 13, 2961. [Google Scholar] [CrossRef]
- Bot, A. Phytosterols. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 225–228. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, J.; Jin, Q.; Wang, X. Influence of oryzanol and tocopherols on thermal oxidation of rice bran oil during the heating process at Chinese cooking temperatures. LWT 2021, 142, 111022. [Google Scholar] [CrossRef]
- Galano, A.; Martínez, A. Capsaicin, a Tasty Free Radical Scavenger: Mechanism of Action and Kinetics. J. Phys. Chem. B 2012, 116, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Minatel, I.O.; Francisqueti, F.V.; Corrêa, C.R.; Lima, G.P.P. Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions. Int. J. Mol. Sci. 2016, 17, 1107. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Liu, L.; Ma, Q.; Ma, K.Y.; Chen, Z.-Y.; Ye, F.; Lei, L.; Zhao, G. Effect of γ-oryzanol on oxygen consumption and fatty acids changes of canola oil. LWT 2022, 160, 113275. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Chang, M.; Tang, L.; Lu, M.; Liu, R.; Jin, Q.; Wang, X. Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem. 2021, 343, 128431. [Google Scholar] [CrossRef]
- Juliano, C.; Cossu, M.; Alamanni, M.C.; Piu, L. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 2005, 299, 146–154. [Google Scholar] [CrossRef]
- Sunil, L.; Srinivas, P.; Prasanth Kumar, P.K.; Gopala Krishna, A.G. Oryzanol as natural antioxidant for improving sunflower oil stability. J. Food Sci. Technol. 2015, 52, 3291–3299. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, I.H. The Effect of Capsaicin on the Thermal and Oxidative Stability of Soybean Oil. Anim. Resour. Res. 2001, 22, 9–17. [Google Scholar]
- Yang, C.Y.; Mandal, P.K.; Han, K.H.; Fukushima, M.; Choi, K.; Kim, C.J.; Lee, C.H. Capsaicin and tocopherol in red pepper seed oil enhances the thermal oxidative stability during frying. J. Food Sci. Technol. 2010, 47, 162–165. [Google Scholar] [CrossRef]
- Borges, T.H.; Pereira, J.A.; Cabrera-Vique, C.; Lara, L.; Oliveira, A.F.; Seiquer, I. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem. 2017, 215, 454–462. [Google Scholar] [CrossRef]
- Šulcerová, H.; Gregor, T.; Burdychová, R. Quality determination of vegetable oils used as an addition to fermented meat products with different starter cultures. Potravin. Slovak J. Food Sci. 2017, 11, 236–243. [Google Scholar] [CrossRef]
- Zanoni, B. The role of oxygen and water in the extra-virgin olive oil process Bruno. In The Extra-Virgin Olive Oil Handbook; Peri, C., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2014; pp. 69–74. [Google Scholar]
- Deáková, Ľ. Chemické Zloženie a Oxidačná Stabilita Semien a Oleja Maku Siateho (Papaver somniferum L.). Mak Siaty pre Slovensko; NPPC, VÚRV: Piešťany, Slovakia, 2016; pp. 28–29. [Google Scholar]
- Decree of the Ministry of Agriculture and Rural Development of the Slovak Republic No. 424/2012 Laying Down Requirements for Edible Vegetable Fats and Edible Vegetable Oils and Their Products, Including Requirements for Their Production, Labeling and Division; Decree No. 424/2012; Ministry of Agriculture and Rural Development of the Slovak Republic: Staré Mesto, Slovakia, 2012.
- Pimpa, B.; Thongraung, C.; Sutthirak, P. Effect of Solvents and Extraction Conditions on the Properties of Crude Rice Bran Oil. WJST 2021, 18, 9611. [Google Scholar] [CrossRef]
- Pardo, J.E.; Fernández, E.; Rubio, M.; Alvarruiz, A.; Alonso, G.L. Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Technol. 2009, 111, 188–193. [Google Scholar] [CrossRef]
- Osanloo, M.; Jamali, N.; Nematollahi, A. Improving the oxidative stability of virgin olive oil using microformulated vitamin C. Food Sci. Nutr. 2021, 9, 3712–3721. [Google Scholar] [CrossRef]
- Yi, B.; Kim, M.J. Extraction of γ-oryzanol from rice bran using diverse edible oils: Enhancement in oxidative stability of oils. Food Sci. Biotechnol. 2019, 29, 393–399. [Google Scholar] [CrossRef]
- Vaisali, C.; Belur, P.D.; Regupathi, I. Comparison of antioxidant properties of phenolic compounds and their effectiveness in imparting oxidative stability to sardine oil during storage. LWT 2016, 69, 153–160. [Google Scholar] [CrossRef]
- European Union. European Commission (EC) Regulation No. 1989/2003 Amending Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive-Pomace Oil and on the Relevant Methods of Analysis. Off. J. Eur. Communities 2003, 295, 58–68. [Google Scholar]
- Şahin, S. Evaluation of Stability against Oxidation in Edible Fats and Oils. J. Food Sci. Nutr. Res. 2019, 2, 283–297. [Google Scholar] [CrossRef]
- Porter, W.L. Paradoxical Behavior of Antioxidants in Food and Biological Systems. Toxicol. Ind. Health 1993, 9, 93–122. [Google Scholar] [CrossRef]
- Chang, Y.; Almy, E.A.; Blamer, G.A.; Gray, J.I.; Frost, J.W.; Strasburg, G.M. Antioxidant Activity of 3-Dehydroshikimic Acid in Liposomes, Emulsions, and Bulk Oil. J. Agric. Food Chem. 2003, 51, 2753–2757. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the AOCS; American Oil Chemists’ Society: Urbana, IL, USA, 2004. [Google Scholar]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Gimeno, E.; de la Torre-Carbot, K.; Lamuela-Raventós, R.M.; Castellote, A.I.; Fitó, M.; de la Torre, R.; Covas, M.I.; López-Sabater, M.C. Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br. J. Nutr. 2007, 98, 1243–1250. [Google Scholar] [CrossRef]
- Liu, H.R.; White, P.J. Oxidative stability of soybean oils with altered fatty acid. J. Am. Oil Chem. Soc. 1992, 69, 528–532. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; de Alencar, S.M.; Canniatti-Brazaca, S.G.; de Souza Vieira, T.M.F.; Shahidi, F. Chemical Changes and Oxidative Stability of Peanuts as Affected by the Dry-Blanching. J. Am. Oil Chem. Soc. 2016, 93, 1101–1109. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, N.; Paduano, A.; Nicoletti, G.; Sacchi, R. Capsaicinoids, antioxidant activity, and volatile compounds in olive oil flavored with dried chili pepper (Capsicum annuum). Eur. J. Lipid Sci. Technol. 2013, 115, 1434–1442. [Google Scholar] [CrossRef]
- Khah, M.D.; Ghanbarzadeh, B.; Roufegarinejad Nezhad, L.; Ostadrahimi, A. Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. Int. J. Biol. Macromol. 2021, 171, 262–274. [Google Scholar] [CrossRef]
- Hassimotto, N.M.; Genovese, M.I.; Lajolo, F.M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef]
- Mokhtar, M.; Ginestra, G.; Youcefi, F.; Filocamo, A.; Bisignano, C.; Riazi, A. Antimicrobial Activity of Selected Polyphenols and Capsaicinoids Identified in Pepper (Capsicum annuum L.) and Their Possible Mode of Interaction. Curr. Microbiol. 2017, 74, 1253–1260. [Google Scholar] [CrossRef]
- Adaszek, Ł.; Gadomska, D.; Mazurek, Ł.; Łyp, P.; Madany, J.; Winiarczyk, S. Properties of capsaicin and its utility in veterinary and human medicine. Res. Vet. Sci. 2019, 123, 14–19. [Google Scholar] [CrossRef]
- Ciulu-Costinescu, F.; Chifiriuc, M.C.; Popa, M.; Bleotu, C.; Neamtu, J.; Averis, L.M.E.; Bubulica, M.V.; Simionescu, A.; Aldea, I.M.; Belu, I. Screening of Polyphenol Content and In vitro Studies of Antioxidant, Antibacterial and Cytotoxic Activities of Capsicum annuum Extracts. Rev. Chim. 2015, 66, 1261–1266. [Google Scholar]
- Kumral, A.; ve Şahin, I. Effects of some spice extracts on Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Yersinia enterocolitica and Enterobacter aerogenes. Ann. Microbiol. 2003, 53, 427–436. Available online: http://hdl.handle.net/11452/31460 (accessed on 2 July 2024).
- Omolo, M.A.; Wong, Z.; Borh, W.G.; Hedblom, G.A.; Dev, K.; Baumler, D.J. Comparative analysis of capsaicin in twenty nine varieties of unexplored Capsicum and its antimicrobial activity against bacterial and fungal pathogens. J. Med. Plants Res. 2018, 12, 544–556. [Google Scholar] [CrossRef]
- Golian, M.; Mezeyová, I.; Andrejiová, A.; Hegedűsová, A.; Adamec, S.; Štefániková, J.; Árvay, J. Effects of selected biostimulants on qualitative and quantitative parameters of nine cultivars of the genus Capsicum spp. Open Agric. 2024, 9, 20220266. [Google Scholar] [CrossRef]
- AOCS. Official Methods of Analysis Cd 8b-90; American Oil Chemists’ Society: Urbana, IL, USA, 2005. [Google Scholar]
- Příbela, A. Analýza Potravín, 2nd ed.; STU: Bratislava, Slovakia, 1993; 394p. [Google Scholar]
- Kačániová, M.; Terentjeva, M.; Vukovic, N.; Puchalski, C.; Roychoudhury, S.; Kunová, S.; Klūga, A.; Tokár, M.; Kluz, M.; Ivanišová, E. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish. Saudi Pharm. J. 2017, 25, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Juricová, V.; Ivanišová, E.; Árvay, J.; Godočíková, L.; Kačániová, M. Technological, antioxidant, antimicrobial and sensory profiles of selected kinds of grape oils. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 500–504. [Google Scholar] [CrossRef]
Notation | Names of the Fatty Acids | Molecular Mass | Samples of Evaluated Edible Vegetable Oils (%) | |||||
---|---|---|---|---|---|---|---|---|
RBO | GSO | OO | RBO-CP | GSO-CP | OO-CP | |||
C14:0 | Myristic acid | 228.38 | 0.25 ± 0.00 b | n.d. | n.d. | 0.31 ± 0.00 a | n.d. | n.d. |
C16:0 | Palmitic acid | 256.43 | 16.74 ± 0.00 b | 8.26 ± 0.02 d | 11.39 ± 0.01 c | 18.12 ± 0.02 a | 8.16 ± 0.01 e | 11.41 ± 0.01 c |
C16:1 | Palmitoleic acid | 254.41 | 0.16 ± 0.00 c | 0.13 ± 0.00 d | 0.77 ± 0.00 a | 0.17 ± 0.00 b | 0.13 ± 0.00 d | 0.78 ± 0.00 a |
C18:0 | Stearic acid | 284.48 | 2.25 ± 0.01 d | 3.52 ± 0.00 a | 2.85 ± 0.00 b | 2.40 ± 0.00 c | 3.54 ± 0.01 a | 2.85 ± 0.00 b |
C18:1cis n9 | Oleic acid | 282.47 | 36.16 ± 0.02 c | 27.18 ± 0.00 d | 69.70 ± 0.01 a | 38.97 ± 0.01 b | 27.14 ± 0.01 d | 69.73 ± 0.07 a |
C18:2cis n6 | Linoleic acid | 280.46 | 41.34 ± 0.01 c | 57.93 ± 0.02 b | 11.04 ± 0.00 f | 36.23 ± 0.01 d | 58.03 ± 0.04 a | 11.14 ± 0.00 e |
C18:3 n3 | α-linolenic acid | 278.44 | 0.81 ± 0.00 c | 0.99 ± 0.00 a | 0.78 ± 0.00 d | 0.82 ± 0.00 c | 0.92 ± 0.00 b | 0.79 ± 0.00 d |
C20:0 | Arachidic acid | 312.54 | 0.53 ± 0.00 b | 0.26 ± 0.00 d | 0.43 ± 0.00 c | 0.67 ± 0.00 a | 0.26 ± 0.00 d | 0.43 ± 0.00 c |
C20:1 n9 | cis-11-eicosenoic acid | 310.52 | 0.33 ± 0.00 b | 0.23 ± 0.00 c | 0.30 ± 0.00 b | 0.41 ± 0.04 a | 0.20 ± 0.02 c | 0.31 ± 0.00 b |
C22:0 | Behenic acid | 340.60 | 0.18 ± 0.00 c | 0.27 ± 0.00a | 0.17 ± 0.00 c | 0.22 ± 0.00 b | 0.28 ± 0.00 a | 0.18 ± 0.00 c |
C24:0 | Lignoceric acid | 368.64 | 0.24 ± 0.00 b | n.d. | n.d. | 0.32 ± 0.00 a | n.d. | n.d. |
∑ n3/n6 ratio | 0.020 | 0.017 | 0.071 | 0.023 | 0.016 | 0.070 | ||
∑ n6/n3 ratio | 50.95 | 58.42 | 14.04 | 44.06 | 63.09 | 14.15 |
Parameters | Samples of Evaluated Edible Vegetable Oils | |||||
---|---|---|---|---|---|---|
RBO (x ± SD) | GSO (x ± SD) | OO (x ± SD) | RBO-CP (x ± SD) | GSO-CP (x ± SD) | OO-CP (x ± SD) | |
Peroxide value (mEq O2/kg) | 7.20 ± 0.00 c | 9.20 ± 0.00 b | 9.00 ± 0.28 b | 11.60 ± 0.57 a | 11.20 ± 0.00 a | 9.40 ± 0.28 b |
Acid value (mg KOH/g) | 0.28 ± 0.08 b | 0.17 ± 0.08 b | 0.28 ± 0.08 b | 1.40 ± 0.24 a | 1.29 ± 0.24 a | 0.67 ± 0.00 b |
Oxidative stability (h) | 5.60 ± 0.36 b | 3.48 ± 0.10 c | 9.10 ± 0.28 a | 5.21 ± 0.18 b | 3.00 ± 0.06 c | 8.38 ± 0.00 a |
Microorganisms | Samples of Evaluated Edible Vegetable Oils | |||||
---|---|---|---|---|---|---|
RBO | GSO | OO | RBO-CP | GSO-CP | OO-CP | |
Inhibition Zone (mm) | Inhibition Zone (mm) | Inhibition Zone (mm) | Inhibition Zone (mm) | Inhibition Zone (mm) | Inhibition Zone (mm) | |
Gram-positive bacteria | ||||||
Staphylococcus aureus subsp. aureus CCM 2461 | 1.67 ± 0.58 | 2.33 ± 0.58 | 2.67 ± 0.58 | 2.33 ± 0.58 | 1.33 ± 0.58 | 2.33 ± 0.58 |
Listeria monocytogenes CCM 4699 | 2.67 ± 0.58 | 1.67 ± 0.58 | 2.67 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 |
Bacillus cereus CCM 2010 | 2.33 ± 0.58 | 2.33 ± 0.58 | 2.67 ± 0.58 | 2.33 ± 0.58 | 1.67 ± 0.58 | 2.33 ± 0.58 |
Gram-negative bacteria | ||||||
Salmonella enterica subsp. enterica CCM 3807 | 1.67 ± 0.58 | 2.67 ± 0.58 | 1.67 ± 0.58 | 2.33 ± 0.58 | 2.67 ± 0.58 | 2.67 ± 0.58 |
Pseudomonas aeruginosa CCM 1959 | 2.33 ± 0.58 | 2.33 ± 0.58 | 2.67 ± 0.58 | 1.33 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 |
Yersinia enterocolitica CCM 5671 | 2.33 ± 0.58 | 2.33 ± 0.58 | 2.33 ± 0.58 | 1.67 ± 0.58 | 2.67 ± 0.58 | 1.33 ± 0.58 |
Yeast | ||||||
Candida albicans CCM 8186 | 2.33 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 | 2.33 ± 0.58 |
Candida glabrata CCM 8270 | 1.67 ± 0.58 | 2.33 ± 0.58 | 1.33 ± 0.58 | 1.33 ± 0.58 | 1.33 ± 0.58 | 1.33 ± 0.58 |
Candida krusei CCM 8271 | 2.33 ± 0.58 | 1.67 ± 0.58 | 1.33 ± 0.58 | 1.67 ± 0.58 | 1.67 ± 0.58 | 2.33 ± 0.58 |
Candida tropicalis CCM 8223 | 1.33 ± 0.58 | 1.67 ± 0.58 | 1.33 ± 0.58 | 1.33 ± 0.58 | 1.33 ± 0.58 | 1.33 ± 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knazicka, Z.; Galik, B.; Novotna, I.; Arvay, J.; Fatrcova-Sramkova, K.; Kacaniova, M.; Mlcek, J.; Kovacikova, E.; Mixtajova, E.; Jurikova, T.; et al. Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive. Molecules 2025, 30, 927. https://doi.org/10.3390/molecules30040927
Knazicka Z, Galik B, Novotna I, Arvay J, Fatrcova-Sramkova K, Kacaniova M, Mlcek J, Kovacikova E, Mixtajova E, Jurikova T, et al. Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive. Molecules. 2025; 30(4):927. https://doi.org/10.3390/molecules30040927
Chicago/Turabian StyleKnazicka, Zuzana, Branislav Galik, Ivana Novotna, Julius Arvay, Katarina Fatrcova-Sramkova, Miroslava Kacaniova, Jiri Mlcek, Eva Kovacikova, Eva Mixtajova, Tunde Jurikova, and et al. 2025. "Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive" Molecules 30, no. 4: 927. https://doi.org/10.3390/molecules30040927
APA StyleKnazicka, Z., Galik, B., Novotna, I., Arvay, J., Fatrcova-Sramkova, K., Kacaniova, M., Mlcek, J., Kovacikova, E., Mixtajova, E., Jurikova, T., Ivanisova, E., Kolesarova, A., & Duranova, H. (2025). Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive. Molecules, 30(4), 927. https://doi.org/10.3390/molecules30040927