High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach
<p>Optimized geometries of PDCBT, PPDT2FBT, and PDPP3T.</p> "> Figure 2
<p>UV-visible absorption spectra of PDCBT, PPDT2FBT, and PDPP3T.</p> "> Figure 3
<p>Experimental UV-Vis spectra of PDCBT-PC<sub>71</sub>BM, PPDT2FBT-PC<sub>71</sub>BM, and PDPP3T-PC<sub>71</sub>BM Complexes.</p> "> Figure 4
<p>Simulated UV-Vis spectra of PDCBT-PC<sub>71</sub>BM, PPDT2FBT-PC<sub>71</sub>BM, and PDPP3T-PC<sub>71</sub>BM Complexes.</p> "> Figure 5
<p>MEP plots of (<b>1</b>) PDCBT, (<b>2</b>) PPDT2FBT, and (<b>3</b>) PDPP3T polymer.</p> "> Figure 6
<p>MEP plots of PDCBT-PC<sub>71</sub>BM, PPDT2FBT-PC<sub>71</sub>BM, and PDPP3T-PC<sub>71</sub>BM Complexes.</p> "> Figure 7
<p>HOMO–LUMO plots of (<b>1</b>) PDCBT, (<b>2</b>) PPDT2FBT, and (<b>3</b>) PDPP3T polymer.</p> "> Figure 8
<p>HOMO–LUMO plots and electron density maps of (<b>1</b>) PDCBT-PC<sub>71</sub>BM, (<b>2</b>) PPDT2FBT-PC<sub>71</sub>BM, and (<b>3</b>) PDPP3T-PC<sub>71</sub>BM complexes along with electron density map surface contour.</p> "> Figure 9
<p>(<b>a</b>) Depicts the device structure of a conventional triple-junction solar cell, showing how different materials are stacked in the design to achieve high efficiency. (<b>b</b>) Displays the energy diagram of the conventional triple-junction solar cell, illustrating the energy levels of each layer and how charge carriers (electrons and holes) move through the system.</p> "> Figure 10
<p>Energy level diagram of PDPP3T, PPDT2FBT, PDPP3T, and PC<sub>71</sub>BM system.</p> ">
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussions
3.1. Optimized Geometries
3.2. UV-Vis Spectral Analysis of PDCBT, PPDT2FBT, and PDPP3T
3.3. Theoretical vs. Experimental Data for Polymer Complexes
3.4. Molecular Electrostatic Potential (MEP) Surface Maps of PDCBT, PPDT2FBT, and PDPP3T
3.5. Molecular Orbital Study of PDCBT, PPDT2FBT, and PDPP3T Polymers and Their Complexes with PC71BM
3.6. Non-Covalent Interactions of PDCBT-PC71BM, PPDT2FBT-PC71BM, and PDPP3T-PC71BM Complexes
3.7. Theoretical Performance of Polymer Solar Cells
3.8. Electronic Properties of Triple-Junction Solar Cell Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater. 2018, 30, 1705706. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Feng, L.-W.; Gu, C.; Li, G.; Su, N.; Wang, G.; Swick, S.M.; Huang, W.; Guo, X. Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem 2020, 2, 100042. [Google Scholar] [CrossRef]
- Li, J.-X.; Zhang, J.; Zhao, Y.; Zhao, P.; Xie, Q.; Zhang, S. Heterostructured δ-MnO2/Fe2O3 nanoarrays layer-by-layer assembled on stainless-steel mesh as free-standing anodes for lithium ion batteries towards enhanced performance. Mater. Today Commun. 2022, 32, 104034. [Google Scholar] [CrossRef]
- Zakariya’u, I.; Rawat, S.; Kathuria, S.; Ngulezhu, T.; Song, S.; Yahya, M.; Savilov, S.V.; Polu, A.R.; Singh, R.C.; Singh, P.K. Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte. J. Mater. Sci. Mater. Elect. 2024, 35, 1563. [Google Scholar] [CrossRef]
- Ameri, T.; Khoram, P.; Min, J.; Brabec, C.J. Organic ternary solar cells: A review. Adv. Mater. 2013, 25, 4245–4266. [Google Scholar] [CrossRef]
- An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 2016, 9, 281–322. [Google Scholar] [CrossRef]
- Ahmed, A.Y.; Ike, J.N.; Hamed, M.S.; Mola, G.T. Silver decorated magnesium doped photoactive layer for improved collection of photo-generated current in polymer solar cell. J. App. Poly.Sci. 2023, 140, e53697. [Google Scholar] [CrossRef]
- Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 2019, 4, 229–242. [Google Scholar] [CrossRef]
- Ma, R. High-Performance Single-Junction Organic Solar Cells Enabled by Ternary Blend Design; Hong Kong University of Science and Technology: Hong Kong, 2022. [Google Scholar]
- Li, D.; Zhu, L.; Liu, X.; Xiao, W.; Yang, J.; Ma, R.; Ding, L.; Liu, F.; Duan, C.; Fahlman, M. Enhanced and balanced charge transport boosting ternary solar cells over 17% efficiency. Adv. Mater. 2020, 32, 2002344. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 2015, 137, 8176–8183. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Yuan, J.; Wei, Q.; Li, J.; Jiang, L.; Huang, J.; Li, Y.; Li, Y.; Zou, Y. Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. J. Mater. Chem. A 2021, 9, 14752–14757. [Google Scholar] [CrossRef]
- Yu, R.; Yao, H.; Hou, J. Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv. Energy Mater. 2018, 8, 1702814. [Google Scholar] [CrossRef]
- Armin, A.; Li, W.; Sandberg, O.J.; Xiao, Z.; Ding, L.; Nelson, J.; Neher, D.; Vandewal, K.; Shoaee, S.; Wang, T. A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 2021, 11, 2003570. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720–731. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Chow, P.C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 2018, 118, 3447–3507. [Google Scholar] [CrossRef]
- Zhan, C.; Zhang, X.; Yao, J. New advances in non-fullerene acceptor based organic solar cells. RSC Adv. 2015, 5, 93002–93026. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, Y.; Li, G. Recent advances of non-fullerene organic solar cells: From materials and morphology to devices and applications. EcoMat 2023, 5, e12281. [Google Scholar] [CrossRef]
- Fu, H.; Wang, Z.; Sun, Y. Advances in Non-Fullerene Acceptor Based Ternary Organic Solar Cells. Solar RRL 2018, 2, 1700158. [Google Scholar] [CrossRef]
- Feng, X. Electronic structure of MnO and CoO from the B3LYP hybrid density functional method. Phys. Rev. B 2004, 69, 155107. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements, Li–F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Thapa, B.; Schlegel, H.B. Density functional theory calculation of p K a’s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J. Phys. Chem. A 2016, 120, 5726–5735. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, D.; Wathelet, V.; Perpete, E.A.; Adamo, C. Extensive TD-DFT benchmark: Singlet-excited states of organic molecules. J. Chem. Theory Comput. 2009, 5, 2420–2435. [Google Scholar] [CrossRef] [PubMed]
- Cramariuc, O.; Hukka, T.I.; Rantala, T.T.; Lemmetyinen, H. TD-DFT description of photoabsorption and electron transfer in a covalently bonded porphyrin-fullerene dyad. J. Phys. Chem. A 2006, 110, 12470–12476. [Google Scholar] [CrossRef]
- Sun, H.; Autschbach, J. Electronic Energy Gaps for π-Conjugated Oligomers and Polymers Calculated with Density Functional Theory. J. Chem. Theory Comput. 2014, 10, 1035–1047. [Google Scholar] [CrossRef]
- Jacquemin, D.; Perpete, E.A.; Scuseria, G.E.; Ciofini, I.; Adamo, C. TD-DFT performance for the visible absorption spectra of organic dyes: Conventional versus long-range hybrids. J. Chem. Theory Comput. 2008, 4, 123–135. [Google Scholar] [CrossRef]
- Berardo, E.; Hu, H.-S.; Shevlin, S.A.; Woodley, S.M.; Kowalski, K.; Zwijnenburg, M.A. Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description. J. Chem. Theory Comput. 2014, 10, 1189–1199. [Google Scholar] [CrossRef]
- Zade, S.S.; Zamoshchik, N.; Bendikov, M. From short conjugated oligomers to conjugated polymers. Lessons from studies on long conjugated oligomers. Acc. Chem. Res. J. 2010, 44, 14–24. [Google Scholar] [CrossRef]
- Baer, R.; Livshits, E.; Salzner, U. Tuned range-separated hybrids in density functional theory. Ann. Rev. Phys. Chem. 2010, 61, 85–109. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Casanovas, J.; Alemán, C. Comparative theoretical study of heterocyclic conducting oligomers: Neutral and oxidized forms. J. Phys. Chem. C 2007, 111, 4823–4830. [Google Scholar] [CrossRef]
- Lukeš, V.; Rapta, P.; Idzik, K.R.; Beckert, R.; Dunsch, L. Charged states of 1, 3, 5-triazine molecules as models for star-shaped molecular architecture: A DFT and spectroelectrochemcial study. J. Phys. Chem. B 2011, 115, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Tandon, P. A comparative ab initio and DFT study of polyaniline leucoemeraldine base and its oligomers. J. Phys. Chem. B 2009, 113, 14629–14639. [Google Scholar] [CrossRef] [PubMed]
- Petrova, J.N.; Romanova, J.R.; Madjarova, G.K.; Ivanova, A.N.; Tadjer, A.V. Fully doped oligomers of emeraldine salt: Polaronic versus bipolaronic configuration. J. Phys. Chem. B 2011, 115, 3765–3776. [Google Scholar] [CrossRef] [PubMed]
- Salzner, U. Quantitatively Correct UV-vis Spectrum of Ferrocene with TDB3LYP. J. Chem. Theory Comput. 2013, 9, 4064–4073. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Ayub, K.; Ullah, Z.; Hanif, M.; Nawaz, R.; Shah, A.A.; Bilal, S. Theoretical insight of polypyrrole ammonia gas sensor. Synth. Met. 2013, 172, 14–20. [Google Scholar] [CrossRef]
- Ullah, H.; Shah, A.A.; Bilal, S.; Ayub, K. DFT Study of Polyaniline NH3, CO2 and CO Gas Sensors: Comparison with Recent Experimental data. J. Phys. Chem. C 2013, 117, 23701–23711. [Google Scholar] [CrossRef]
- Ullah, H.; Shah, A.A.; Ayub, K.; Bilal, S. Density Functional Theory Study of Poly (o-phenylenediamine) Oligomers. J. Phys. Chem. C 2013, 117, 4069–4078. [Google Scholar] [CrossRef]
- Zamoshchik, N.; Salzner, U.; Bendikov, M. Nature of charge carriers in long doped oligothiophenes: The effect of counterions. J. Phys. Chem. C 2008, 112, 8408–8418. [Google Scholar] [CrossRef]
- Bibi, S.; Ullah, H.; Ahmad, S.M.; Ali Shah, A.-U.-H.; Bilal, S.; Tahir, A.A.; Ayub, K. Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 2015, 119, 15994–16003. [Google Scholar] [CrossRef]
- Poverenov, E.; Zamoshchik, N.; Patra, A.; Ridelman, Y.; Bendikov, M. Unusual Doping of Donor–Acceptor-Type Conjugated Polymers Using Lewis Acids. J. Am. Chem. Soc. 2014, 136, 5138–5149. [Google Scholar] [CrossRef]
- Patra, A.; Wijsboom, Y.H.; Zade, S.S.; Li, M.; Sheynin, Y.; Leitus, G.; Bendikov, M. Poly (3, 4-ethylenedioxyselenophene). J. Am. Chem. Soc. 2008, 130, 6734–6736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv. Mater. 2014, 26, 5880–5885. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-C.; Strover, L.T.; Yao, X.; Chen, X.-Q.; Xiao, W.-J.; Liu, L.-N.; Wang, J.; Visoly-Fisher, I.; Katz, E.A.; Li, W.-S. UV-cross-linkable donor–acceptor polymers bearing a photostable conjugated backbone for efficient and stable organic photovoltaics. ACS Appl. Mater. Interfaces 2018, 10, 35430–35440. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Liu, F.; Russell, T.P.; Jo, W.H. Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient polymer solar cells. Energy Environ. Sci. 2013, 6, 3301–3307. [Google Scholar] [CrossRef]
Species | HOMO | LUMO | Band Gap | Optical Gap | λ | EPVG | Eb |
---|---|---|---|---|---|---|---|
PC71BM | −5.57 | −3.03 | 2.54 | 2.33 | 0.120 | 0.21 | |
PDCBT | −4.98 | −2.69 | 2.29 | 1.90 | 0.155 | 0.39 | |
PPDT2FBT | −4.90 | −2.91 | 1.99 | 1.64 | 0.122 | 0.35 | |
PDPP3T | −4.77 | −3.27 | 1.50 | 1.25 | 0.155 | 0.25 | |
PDCBT:PC71BM | −4.97 | −3.06 | 1.91 | 1.93 | 1.95 | ||
PPDT2FBT:PC71BM | −5.0 | −3.17 | 1.83 | 1.60 | 1.87 | ||
PDPP3T:PC71BM | −4.76 | −3.27 | 1.49 | 1.29 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattar, F.; Zhou, X.; Ullah, Z. High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach. Molecules 2024, 29, 5370. https://doi.org/10.3390/molecules29225370
Sattar F, Zhou X, Ullah Z. High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach. Molecules. 2024; 29(22):5370. https://doi.org/10.3390/molecules29225370
Chicago/Turabian StyleSattar, Fazli, Xiaozhuang Zhou, and Zakir Ullah. 2024. "High-Efficiency Triple-Junction Polymer Solar Cell: A Theoretical Approach" Molecules 29, no. 22: 5370. https://doi.org/10.3390/molecules29225370