Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is imperative to develop high-efficiency polymer electrolytes to advance energy storage technologies. The goal of this research is to use the exceptional properties of ionic liquids such as their superior ionic conductivity, thermal stability, and adjustable physical and chemical characteristics to improve polymer electrolytes through doping. This study explores the incorporation of ionic liquids into polymer matrices to create novel ionic-liquid-doped polymer electrolytes (ILDPEs). We synthesized a ILDPEs using Poly(ethyl methacrylate) (PEMA) as the host polymer with salt sodium iodide (NaI) doped with a new ionic liquid (1-hexyl-3-methylimidazolium iodide) synthesized using solution cast technique. Impedance spectroscopy revealed that doping ionic liquid enhances the ionic conductivity of the PEMA + NaI complex. Ionic conductivity significantly increased upon the addition of the ionic liquid (IL), reaching a maximum value of 7.7 × 10–4 S/cm at room temperature. The ionic transference number (tion) for the polymer electrolyte with the highest ionic conductivity was calculated using Wagner polarization method while electrochemical stability window was calculated by linear Sweep Voltammetry. The crystalline nature of the ILDPEs films was studied using Polarizing Optical Microscopy (POM). To confirm the complex formation and bonding structure, Fourier-transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) were also employed. Finally, dye-synthesized solar cell (DSSC) and electric double-layer capacitor (EDLC) were fabricated using the highest ionic conducting polymer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the findings of the research will be made available upon request by the corresponding author. Ethical and privacy concerns prevent the general public from accessing the figures.

References

  1. A.S. Al-Ezzi, M.N.M. Ansari, Appl. Syst. Innov. 5, 67 (2022)

    Article  Google Scholar 

  2. S. Rana, R. Kumar, R.S. Bharj, Chem. Eng. J. 463, 142336 (2023)

    Article  CAS  Google Scholar 

  3. K. Karuppasamy, J. Theerthagiri, D. Vikraman, C.-J. Yim, S. Hussain, R. Sharma, T. Maiyalagan, J. Qin, H.-S. Kim, Polymers 12, 918 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. P. Manafi, H. Nazockdast, M. Karimi, M. Sadighi, L. Magagnin, J. Power Sour. 481, 228622 (2021)

    Article  CAS  Google Scholar 

  5. M.M. Varishetty, M. Kenji, N. Tarannum, S.R. Damaraju, M. Jonnalagadda, Energy Adv. 2, 1702 (2023)

    Article  CAS  Google Scholar 

  6. R. Nadimicherla, M. Chandra Sekhar, V. Madhu Mohan, W. Chen, J. Mater. Sci. Mater. Electron. 35, 1013 (2024)

    Article  CAS  Google Scholar 

  7. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Green Chem. 22, 7168 (2020)

    Article  CAS  Google Scholar 

  8. S. Rawat, P.K. Singh, S.P. Pandey, R.C. Singh, Macromol. Symp. 413, 2300050 (2024)

    Article  CAS  Google Scholar 

  9. A. Jahangir, P.K. Singh, R.C. Singh, V.D. Punetha, S. Rawat, Macromol. Symp. 413, 2300139 (2024)

    Article  CAS  Google Scholar 

  10. M. Llaver, M.N. Oviedo, E.F. Fiorentini, P.Y. Quintas, R.G. Wuilloud, Trends Environ. Anal. Chem. 31, e00131 (2021)

    Article  CAS  Google Scholar 

  11. V. Nain, H.S. Shyam, D. Gupta, S. Singh, Macromol. Symp. 413, 2300091 (2024)

    Article  CAS  Google Scholar 

  12. D.M. Correia, L.C. Fernandes, P.M. Martins, C. García-Astrain, C.M. Costa, J. Reguera, S. Lanceros-Méndez, Adv. Funct. Mater. 30, 1909736 (2020)

    Article  CAS  Google Scholar 

  13. S. Konwar, A. Singh, P.K. Singh, R.C. Singh, S. Rawat, P.S. Dhapola, D. Agarwal, M. Yahya, High Perform. Polym. 35, 63 (2023)

    Article  CAS  Google Scholar 

  14. S.S. Negi, S. Rawat, P.K. Singh, S.P. Pandey, T. Yadav, M. Srivastava, R.C. Singh, Macromol. Symp. 413, 2300104 (2024)

    Article  CAS  Google Scholar 

  15. N. Lakshmi, S. Chandra, Bull. Mater. Sci. 25, 197 (2002)

    Article  CAS  Google Scholar 

  16. R. Rossi, D. Pant, B.E. Logan, J. Power Sour. 476, 228715 (2020)

    Article  CAS  Google Scholar 

  17. D. Han, X. Liu, T.S. Bjørheim, T. Uda, Adv. Energy Mater. 11, 2003149 (2021)

    Article  CAS  Google Scholar 

  18. A. Bouriche, L. Alachaher-Bedjaoui, A. Barrera, J.-N. Staelens, U. Maschke, Polymers 15, 3934 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. P. Singh, A. Sachdeva, C. Bhargava, M.A. Alheety, J. Sharma, Macromol. Symp. 407, 2200107 (2023)

    Article  CAS  Google Scholar 

  20. J. Mihály, R. Deák, I.C. Szigyártó, A. Bóta, T. Beke-Somfai, Z. Varga, Biochim. Biophys. Acta BBA - Biomembr. 1859, 459 (2017)

    Article  Google Scholar 

  21. L.-F. Liao, C.-F. Lien, D.-L. Shieh, F.-C. Chen, J.-L. Lin, Phys. Chem. Chem. Phys. 4, 4584 (2002)

    Article  CAS  Google Scholar 

  22. V. Ţucureanu, A. Matei, A.M. Avram, Crit. Rev. Anal. Chem. 46, 502 (2016)

    Article  PubMed  Google Scholar 

  23. X. Jiang, S. Li, G. Xiang, Q. Li, L. Fan, L. He, K. Gu, Food Chem. 212, 585 (2016)

    Article  PubMed  CAS  Google Scholar 

  24. N.A. Zakaria, M.I.N. Isa, N.S. Mohamed, R.H.Y. Subban, J. Appl. Polym. Sci. (2012). https://doi.org/10.1002/app.36940

    Article  Google Scholar 

  25. A.M. Zulkifli, N.I.A.M. Said, S. BakrAziz, E.M.A. Dannoun, S. Hisham, S. Shah, A. Abu Bakar, Z.H. Zainal, H.A. Tajuddin, J. Mohammed Hadi, M.A. Brza, S. Raza Saeed, P.O. Amin, Molecules 25, 4115 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are appreciative of the financial support for research activities provided by the CSTUP (CST/D-1041), Lucknow, Government of India.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

To this manuscript, each author has contributed equally.

Corresponding authors

Correspondence to Ibrahim Zakariya’u, Suneyana Rawat or Pramod K. Singh.

Ethics declarations

Conflict of interest

There are not any declared conflicts.

Ethical approval

The authors' original data and results are included in the study, which were not submitted for publication anywhere else.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakariya’u, I., Rawat, S., Kathuria, S. et al. Efficient, stable dye-sensitized solar cell using ionic liquid–solid polymer electrolyte. J Mater Sci: Mater Electron 35, 1563 (2024). https://doi.org/10.1007/s10854-024-13301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13301-0

Navigation