Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer’s Disease
<p>Chemical structures of benzazoles. Benzothiazole (<b>a</b>), riluzole (<b>b</b>), thiourea (<b>c</b>), urea (<b>d</b>), dexpramipexole (<b>e</b>), and pramipexole (<b>f</b>). Derivative compounds from riluzole with tioguanidines compound <b>3b</b> (<b>g</b>) and compound <b>3d</b> (<b>h</b>); benzimidazole (<b>i</b>) and benzoxazole (<b>j</b>).</p> "> Figure 2
<p>Chemical structures of benzoxazole derivatives used as AChE and BChE inhibitors. Compounds <b>11</b> (<b>a</b>) [<a href="#B46-molecules-29-04780" class="html-bibr">46</a>], <b>3g</b> (<b>b</b>) [<a href="#B47-molecules-29-04780" class="html-bibr">47</a>], <b>34</b> (<b>c</b>) [<a href="#B48-molecules-29-04780" class="html-bibr">48</a>], <b>5f</b> (<b>d</b>) [<a href="#B49-molecules-29-04780" class="html-bibr">49</a>], <b>32a</b> (<b>e</b>) [<a href="#B50-molecules-29-04780" class="html-bibr">50</a>], <b>33</b> (<b>f</b>) [<a href="#B50-molecules-29-04780" class="html-bibr">50</a>], <b>1g</b> (<b>g</b>) [<a href="#B51-molecules-29-04780" class="html-bibr">51</a>], <b>1a</b> (<b>h</b>) [<a href="#B51-molecules-29-04780" class="html-bibr">51</a>], and <b>1d</b> (<b>i</b>) [<a href="#B51-molecules-29-04780" class="html-bibr">51</a>].</p> "> Figure 3
<p>Chemical structures of benzothiazole compounds used as AChE inhibitors. Compounds <b>10w</b> (<b>a</b>) [<a href="#B53-molecules-29-04780" class="html-bibr">53</a>], <b>7a</b> (<b>b</b>), <b>7b</b> (<b>c</b>), <b>7c</b> (<b>d</b>), <b>7d</b> (<b>e</b>), <b>7e</b> (<b>f</b>) [<a href="#B54-molecules-29-04780" class="html-bibr">54</a>], <b>A5</b> (<b>g</b>), <b>A13</b> (<b>h</b>) [<a href="#B55-molecules-29-04780" class="html-bibr">55</a>], and <b>BPCT</b> (<b>i</b>) [<a href="#B56-molecules-29-04780" class="html-bibr">56</a>].</p> "> Figure 4
<p>Chemical structures of compounds <b>3d</b> (<b>a</b>), <b>3h</b> (<b>b</b>) [<a href="#B61-molecules-29-04780" class="html-bibr">61</a>], <b>2e</b> (<b>c</b>), <b>3c</b> (<b>d</b>), <b>3e</b> (<b>e</b>) [<a href="#B62-molecules-29-04780" class="html-bibr">62</a>], <b>5IIc</b> (<b>f</b>) [<a href="#B63-molecules-29-04780" class="html-bibr">63</a>], <b>4b</b> (<b>g</b>) [<a href="#B64-molecules-29-04780" class="html-bibr">64</a>], <b>7e</b> (<b>h</b>), and of donepezil (<b>i</b>) [<a href="#B65-molecules-29-04780" class="html-bibr">65</a>].</p> "> Figure 5
<p>Chemical structures of compounds <b>A12</b> (<b>a</b>) [<a href="#B67-molecules-29-04780" class="html-bibr">67</a>], <b>A1</b> (<b>b</b>), <b>A2</b> (<b>c</b>), <b>A3</b> (<b>d</b>), <b>A4</b> (<b>e</b>) [<a href="#B68-molecules-29-04780" class="html-bibr">68</a>], <b>16</b> (<b>f</b>), <b>21</b> (<b>g</b>) [<a href="#B69-molecules-29-04780" class="html-bibr">69</a>], <b>11</b> (<b>h</b>) [<a href="#B70-molecules-29-04780" class="html-bibr">70</a>], <b>12d</b> (<b>i</b>), and <b>12k</b> (<b>j</b>) [<a href="#B71-molecules-29-04780" class="html-bibr">71</a>].</p> "> Figure 6
<p>Chemical structures of compounds <b>1b</b> (<b>a</b>), <b>1c</b> (<b>b</b>), <b>1g</b> (<b>c</b>), <b>2c</b> (<b>d</b>), <b>2e</b> (<b>e</b>), <b>2h</b> (<b>f</b>) [<a href="#B72-molecules-29-04780" class="html-bibr">72</a>], <b>15g</b> (<b>g</b>), <b>15b</b> (<b>h</b>) [<a href="#B73-molecules-29-04780" class="html-bibr">73</a>], <b>12</b> (<b>i</b>), and <b>13</b> (<b>j</b>) [<a href="#B74-molecules-29-04780" class="html-bibr">74</a>].</p> "> Figure 7
<p>Chemical structures of compounds <b>5</b> (<b>a</b>) [<a href="#B75-molecules-29-04780" class="html-bibr">75</a>], <b>11</b> (<b>b</b>), <b>14</b> (<b>c</b>) [<a href="#B76-molecules-29-04780" class="html-bibr">76</a>], <b>34</b> (<b>d</b>) [<a href="#B77-molecules-29-04780" class="html-bibr">77</a>], and <b>7c</b> (<b>e</b>) [<a href="#B78-molecules-29-04780" class="html-bibr">78</a>].</p> "> Figure 8
<p>Principal targets to be inhibited by benzazoles as possible multitarget drugs for the treatment of AD. Each row indicated the enzyme or peptide that it inhibited for each benzazole. R<sup>1</sup> indicated the substitution in the benzazole ring in the 2 position. Figure created with <a href="http://BioRender.com" target="_blank">BioRender.com</a>.</p> "> Figure 9
<p>Compound <b>4f</b> (<b>a</b>) [<a href="#B93-molecules-29-04780" class="html-bibr">93</a>], compound <b>3d</b> (<b>b</b>) [<a href="#B95-molecules-29-04780" class="html-bibr">95</a>], compound <b>TAC-BIM1</b> (<b>c</b>), compound <b>TAC-BIM2</b> (<b>d</b>) [<a href="#B96-molecules-29-04780" class="html-bibr">96</a>], compound <b>4c</b> (<b>e</b>) and compound <b>4g</b> (<b>f</b>) [<a href="#B97-molecules-29-04780" class="html-bibr">97</a>].</p> ">
Abstract
:1. Introduction
2. Methodology
3. Multitarget Therapy for Alzheimer’s Disease and the Principal Targets
4. Benzazole Compounds as AChE Inhibitors
4.1. Benzoxazole Derivatives as AChE Inhibitors
4.2. Benzothiazole Derivatives as AChE Inhibitors
Compound | In Silico Studies | In Vitro Studies | Refs. |
---|---|---|---|
Compound 14b | Molecular docking on AChE (PDB 1EVE). Amino acids of interactions W84, E199, F330, F331, F290, Y334, W279, and 286. Binding free energy: −9.8 kcal/mol. | IC50 0.34 μM Ki de 0.40 μM Inhibition of βA42 57.5% | [58] |
Compound 19 | Molecular docking on AChE (PDB: 4EY7). Compounds 19 and 20 have interactions in the active site. Amino acids of interactions W86, Y124, S203, W286, H287, L289, and Y371. | IC50 0.0462 μM Ki of 0.11 μM | [59] |
Compound 20 | IC50 0.0576 μM Ki 0.25 μM | [59] | |
Compound 44b | Molecular docking (PDB 2CMF) Amino acids of interaction W84, F330, Y70, D72, W271, Y334, F331, and W279. | IC50 0.017 μM Inhibition of Aβ aggregation of 51.8% | [60] |
4.3. Benzimidazole Derivatives as AChE Inhibitors
Compound | R | AChE Inhibition % (103 M) |
---|---|---|
2a | 0 | 21.8 |
2b | 0 | 5.19 |
2c | -Cl | 5.48 |
2d | -F | 16.2 |
2e | -CH(CH3)2 | 17.51 |
2f | -OCH2C6H5 | 15.75 |
2g | -Br | 13.04 |
2h | -N(C2H5)2 | 10.49 |
2i | -N(CH3)2 | 7.54 |
2j | -OC2H5 | 7.2 |
2k | -CN | 20.45 |
2l | 0 | 33.88 |
2m | 0 | 32.9 |
2n | 0 | 12.21 |
2o | -C6H5 | 6.33 |
5. Benzazole Compounds as BACE1 Inhibitors
5.1. Benzothiazole Derivatives as BACE1 Inhibitors
5.2. Benzimidazoles as BACE1 Inhibitors
6. Benzazole Compounds Targeting Aβ Aggregation
6.1. Benzothiazole Derivatives for Anti-Aβ Aggregation
6.2. Benzimidazoles for Anti-Aβ Aggregation
7. Benzazoles as Multitarget Drugs for AD
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ADI–Dementia Statistics 2024. Available online: https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/ (accessed on 13 January 2024).
- Meyers, E.A.; Sexton, C.; Snyder, H.M.; Carrillo, M.C. Impact of Alzheimer’s Association Support and Engagement in the AD/ADRD Research Community through the COVID-19 Pandemic and Beyond. Alzheimers Dement. 2023, 19, 3222–3225. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.-D.; Wang, Y.-D. β-Amyloid: The Key Peptide in the Pathogenesis of Alzheimer’s Disease. Front. Pharm. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Cheng, X.; Yi, R.; Gao, D.; Xiong, J. The Binding Receptors of Aβ: An Alternative Therapeutic Target for Alzheimer’s Disease. Mol. Neurobiol. 2016, 53, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Pagano, K.; Tomaselli, S.; Molinari, H.; Ragona, L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front. Neurosci. 2020, 14, 619667. [Google Scholar] [CrossRef] [PubMed]
- Levine III, H. Thioflavine T Interaction with Synthetic Alzheimer’s Disease β-Amyloid Peptides: Detection of Amyloid Aggregation in Solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef]
- Biancalana, M.; Koide, S. Molecular Mechanism of Thioflavin-T Binding to Amyloid Fibrils. Biochim. Biophys. Acta (BBA)–Proteins Proteom. 2010, 1804, 1405–1412. [Google Scholar] [CrossRef]
- Gade Malmos, K.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A Primer on the Use of Thioflavin T to Investigate Amyloid Formation. Amyloid 2017, 24, 1–16. [Google Scholar] [CrossRef]
- Pereira, A. Glutamatergic Dysfunction in Cognitive Aging: Riluzole in Mild Alzheimer’s Disease. Available online: https://clinicaltrials.gov/study/NCT01703117?tab=results (accessed on 20 January 2024).
- Matthews, D.C.; Mao, X.; Dowd, K.; Tsakanikas, D.; Jiang, C.S.; Meuser, C.; Andrews, R.D.; Lukic, A.S.; Lee, J.; Hampilos, N.; et al. Riluzole, a Glutamate Modulator, Slows Cerebral Glucose Metabolism Decline in Patients with Alzheimer’s Disease. Brain 2021, 144, 3742–3755. [Google Scholar] [CrossRef]
- Hascup, K.N.; Findley, C.A.; Britz, J.; Esperant-Hilaire, N.; Broderick, S.O.; Delfino, K.; Tischkau, S.; Bartke, A.; Hascup, E.R. Riluzole Attenuates Glutamatergic Tone and Cognitive Decline in AβPP/PS1 Mice. J. Neurochem. 2021, 156, 513–523. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/jnc.15224 (accessed on 2 February 2024). [CrossRef]
- Anzini, M.; Chelini, A.; Mancini, A.; Cappelli, A.; Frosini, M.; Ricci, L.; Valoti, M.; Magistretti, J.; Castelli, L.; Giordani, A.; et al. Synthesis and Biological Evaluation of Amidine, Guanidine, and Thiourea Derivatives of 2-Amino(6-Trifluoromethoxy)Benzothiazole as Neuroprotective Agents Potentially Useful in Brain Diseases. J. Med. Chem. 2010, 53, 734–744. [Google Scholar] [CrossRef]
- Antonini, A.; Barone, P.; Ceravolo, R.; Fabbrini, G.; Tinazzi, M.; Abbruzzese, G. Role of Pramipexole in the Management of Parkinson’s Disease. CNS Drugs 2010, 24, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Burns, J.; Welch, P.; Bothwell, R. Safety and Tolerability of R(+) Pramipexole in Mild-to-Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 49, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Allergy and Infectious Diseases (NIAID). An Open-Label, Proof-of-Concept Study to Evaluate the Safety and Efficacy of Dexpramipexole (KNS-760704) in Subjects with Hypereosinophilic Syndrome. 2017. Available online: https://clinicaltrials.gov/ (accessed on 13 January 2024).
- Panch, S.R.; Bozik, M.E.; Brown, T.; Makiya, M.; Prussin, C.; Archibald, D.G.; Hebrank, G.T.; Sullivan, M.; Sun, X.; Wetzler, L.; et al. Dexpramipexole as an Oral Steroid-Sparing Agent in Hypereosinophilic Syndromes. Blood 2018, 132, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M.B.H. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 2012, 13, 483–494. [Google Scholar] [CrossRef]
- Schneider, L.S.; Geffen, Y.; Rabinowitz, J.; Thomas, R.G.; Schmidt, R.; Ropele, S.; Weinstock, M. Low-Dose Ladostigil for Mild Cognitive Impairment. Neurology 2019, 93, e1474–e1484. [Google Scholar] [CrossRef]
- Lahmy, V.; Meunier, J.; Malmström, S.; Naert, G.; Givalois, L.; Kim, S.H.; Villard, V.; Vamvakides, A.; Maurice, T. Blockade of Tau Hyperphosphorylation and Aβ1–42 Generation by the Aminotetrahydrofuran Derivative ANAVEX2-73, a Mixed Muscarinic and Σ1 Receptor Agonist, in a Nontransgenic Mouse Model of Alzheimer’s Disease. Neuropsychopharmacol 2013, 38, 1706–1723. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-K.; Chao, S.-P.; Hu, C.-J. Clinical Trials of New Drugs for Alzheimer Disease. J. Biomed. Sci. 2020, 27, 1–13. [Google Scholar] [CrossRef]
- Biohaven Pharmaceuticals, Inc. A Randomized, Double-Blind, Placebo-Controlled Trial of Adjunctive Troriluzole in Obsessive Compulsive Disorder. 2022. Available online: https://clinicaltrials.gov/study/NCT03299166 (accessed on 13 January 2024).
- Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s Disease Drug Development Pipeline: 2019. Alzheimers Dement (N Y) 2019, 5, 272–293. [Google Scholar] [CrossRef]
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520907397. [Google Scholar] [CrossRef]
- Wang, N.; Qiu, P.; Cui, W.; Yan, X.; Zhang, B.; He, S. Recent Advances in Multi-Target Anti-Alzheimer Disease Compounds (2013 Up to the Present). Curr. Med. Chem. 2019, 26, 5684–5710. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.-M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Maurer, S.V.; Williams, C.L. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front. Immunol. 2017, 8, 1489. [Google Scholar] [CrossRef] [PubMed]
- Fuenzalida, M.; Pérez, M.Á.; Arias, H.R. Role of Nicotinic and Muscarinic Receptors on Synaptic Plasticity and Neurological Diseases. Curr. Pharm. Des. 2016, 22, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of Acetylcholinesterase Activity: From Alzheimer’s Disease to Anti-Cancer Drugs. Curr. Med. Chem. 2017, 24, 3283–3309. [Google Scholar] [CrossRef] [PubMed]
- Trang, A.; Khandhar, P.B. Physiology, Acetylcholinesterase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Jasiecki, J.; Targońska, M.; Wasąg, B. The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer’s Disease Pathogenesis. Int. J. Mol. Sci. 2021, 22, 2033. [Google Scholar] [CrossRef]
- Schapira, A.H.V. Chapter 18–Neuroprotection in Parkinson’s Disease. In Blue Books of Neurology; Schapira, A.H.V., Lang, A.E.T., Fahn, S., Eds.; MOVEMENT DISORDERS 4; Butterworth-Heinemann: Oxford, UK, 2010; pp. 301–320. [Google Scholar]
- Behl, T.; Kaur, D.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Andronie-Cioara, F.L.; Toma, M.M.; Bungau, S.; Bumbu, A.G. Role of Monoamine Oxidase Activity in Alzheimer’s Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021, 26, 3724. [Google Scholar] [CrossRef]
- Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; et al. Monoamine Oxidase B Is Elevated in Alzheimer Disease Neurons, Is Associated with γ-Secretase and Regulates Neuronal Amyloid β-Peptide Levels. Alz. Res. Therapy 2017, 9, 57. [Google Scholar] [CrossRef]
- Quartey, M.O.; Nyarko, J.N.K.; Pennington, P.R.; Heistad, R.M.; Klassen, P.C.; Baker, G.B.; Mousseau, D.D. Alzheimer Disease and Selected Risk Factors Disrupt a Co-Regulation of Monoamine Oxidase-A/B in the Hippocampus, but Not in the Cortex. Front. Neurosci. 2018, 12, 419. [Google Scholar] [CrossRef]
- Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med. Princ. Pract. 2015, 24, 1–10. [Google Scholar] [CrossRef]
- Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; et al. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry 2021, 89, 745–756. [Google Scholar] [CrossRef]
- Mucke, L.; Selkoe, D.J. Neurotoxicity of Amyloid β-Protein: Synaptic and Network Dysfunction. Cold Spring Harb. Perspect. Med. 2012, 2, a006338. [Google Scholar] [CrossRef] [PubMed]
- Shankar, G.M.; Bloodgood, B.L.; Townsend, M.; Walsh, D.M.; Selkoe, D.J.; Sabatini, B.L. Natural Oligomers of the Alzheimer Amyloid-Beta Protein Induce Reversible Synapse Loss by Modulating an NMDA-Type Glutamate Receptor-Dependent Signaling Pathway. J. Neurosci. 2007, 27, 2866–2875. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hong, S.; Shepardson, N.E.; Walsh, D.M.; Shankar, G.M.; Selkoe, D. Soluble Oligomers of Amyloid Beta Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake. Neuron 2009, 62, 788–801. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front. Chem. 2018, 6, 178. [Google Scholar] [CrossRef] [PubMed]
- Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 Inhibitors: Current Status and Future Directions in Treating Alzheimer’s Disease. Med. Res. Rev. 2020, 40, 339–384. [Google Scholar] [CrossRef]
- Lauretti, E.; Dincer, O.; Praticò, D. Glycogen Synthase Kinase-3 Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta (BBA)–Mol. Cell Res. 2020, 1867, 118664. [Google Scholar] [CrossRef]
- Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; et al. Altered Insulin Signaling in Alzheimer’s Disease Brain–Special Emphasis on PI3K-Akt Pathway. Front. Neurosci. 2019, 13, 629. [Google Scholar] [CrossRef]
- Terwel, D.; Bothmer, J.; Wolf, E.; Meng, F.; Jolles, J. Affected Enzyme Activities in Alzheimer’s Disease Are Sensitive to Antemortem Hypoxia. J. Neurol. Sci. 1998, 161, 47–56. [Google Scholar] [CrossRef]
- Khan, Y.; Khan, S.; Rehman, W.; Hussain, R.; Maalik, A.; Ali, F.; Khan, M.U.; Sattar, A.; Assiri, M.A. Hybrid Molecules of Thiadiazole-Based Benzothioate and Benzenesulfonothioate: Synthesis, Structural Analysis, and Evaluation as Potential Inhibitors of Thymidine Phosphorylase and β-Glucuronidase through in Vitro and in Silico Approaches. J. Mol. Struct. 2023, 1294, 136439. [Google Scholar] [CrossRef]
- Temiz-Arpaci, O.; Arisoy, M.; Sac, D.; Doganc, F.; Tasci, M.; Senol, F.S.; Orhan, I.E. Biological Evaluation and Docking Studies of Some Benzoxazole Derivatives as Inhibitors of Acetylcholinesterase and Butyrylcholinesterase. Z. Für Nat. C 2016, 71, 409–413. [Google Scholar] [CrossRef]
- Altintop, M.; Akalin Çïftçï, G.; Edip Temel, H. Synthesis and Evaluation of New Benzoxazole Derivatives as Potential Antiglioma Agents. J. Res. Pharm. 2018, 22, 547–558. [Google Scholar] [CrossRef]
- Srivastava, P.; Tripathi, P.N.; Sharma, P.; Rai, S.N.; Singh, S.P.; Srivastava, R.K.; Shankar, S.; Shrivastava, S.K. Design and Development of Some Phenyl Benzoxazole Derivatives as a Potent Acetylcholinesterase Inhibitor with Antioxidant Property to Enhance Learning and Memory. Eur. J. Med. Chem. 2019, 163, 116–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-R.; Ren, S.-T.; Wang, L.; Wang, Y.-X.; Liu, S.-H.; Liu, W.-W.; Shi, D.-H.; Cao, Z.-L. Synthesis and Anticholinesterase Activities of Novel Glycosyl Benzoxazole Derivatives. J. Chem. Res. 2020, 44, 363–366. [Google Scholar] [CrossRef]
- Lalut, J.; Payan, H.; Davis, A.; Lecoutey, C.; Legay, R.; Sopkova-de Oliveira Santos, J.; Claeysen, S.; Dallemagne, P.; Rochais, C. Rational Design of Novel Benzisoxazole Derivatives with Acetylcholinesterase Inhibitory and Serotoninergic 5-HT4 Receptors Activities for the Treatment of Alzheimer’s Disease. Sci. Rep. 2020, 10, 3014. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Erol, M.; Temiz Arpaci, O.; Sezer Senol, F.; Erdogan Orhan, I. Evaluation of Activity of Some 2,5-Disubstituted Benzoxazole Derivatives against Acetylcholinesterase, Butyrylcholinesterase and Tyrosinase: ADME Prediction, DFT and Comparative Molecular Docking Studies. Polycycl. Aromat. Compd. 2022, 42, 412–423. [Google Scholar] [CrossRef]
- Tacrine. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Nepovimova, E.; Svobodova, L.; Dolezal, R.; Hepnarova, V.; Junova, L.; Jun, D.; Korabecny, J.; Kucera, T.; Gazova, Z.; Motykova, K.; et al. Tacrine–Benzothiazoles: Novel Class of Potential Multitarget Anti-Alzheimeŕs Drugs Dealing with Cholinergic, Amyloid and Mitochondrial Systems. Bioorganic Chem. 2021, 107, 104596. [Google Scholar] [CrossRef]
- Keri, R.S.; Quintanova, C.; Marques, S.M.; Esteves, A.R.; Cardoso, S.M.; Santos, M.A. Design, Synthesis and Neuroprotective Evaluation of Novel Tacrine–Benzothiazole Hybrids as Multi-Targeted Compounds against Alzheimer’s Disease. Bioorganic Med. Chem. 2013, 21, 4559–4569. [Google Scholar] [CrossRef]
- Turan-Zitouni, G.; Hussein, W.; Sağlık, B.; Baysal, M.; Kaplancıklı, Z. Fighting Against Alzheimer’s Disease: Synthesis of New Pyrazoline and Benzothiazole Derivatives as New Acetylcholinesterase and MAO Inhibitors. Lett. Drug Des. Discov. 2017, 14, 414–427. [Google Scholar] [CrossRef]
- Demir Özkay, Ü.; Can, Ö.D.; Sağlık, B.N.; Turan, N. A Benzothiazole/Piperazine Derivative with Acetylcholinesterase Inhibitory Activity: Improvement in Streptozotocin-Induced Cognitive Deficits in Rats. Pharmacol. Rep. 2017, 69, 1349–1356. [Google Scholar] [CrossRef]
- Demir Özkay, Ü.; Can, Ö.D.; Ozkay, Y.; Ozturk, Y. Effect of Benzothiazole/Piperazine Derivatives on Intracerebroventricular Streptozotocin-Induced Cognitive Deficits. Pharmacol. Rep. PR 2012, 64, 834–847. [Google Scholar] [CrossRef]
- Erdogan, M.; Kilic, B.; Sagkan, R.I.; Aksakal, F.; Ercetin, T.; Gulcan, H.O.; Dogruer, D.S. Design, Synthesis and Biological Evaluation of New Benzoxazolone/Benzothiazolone Derivatives as Multi-Target Agents against Alzheimer’s Disease. Eur. J. Med. Chem. 2021, 212, 113124. [Google Scholar] [CrossRef] [PubMed]
- Demir Özkay, Ü.; Can, Ö.D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Özkay, Y.; Ilgın, S.; Atlı, Ö. Design, Synthesis, and AChE Inhibitory Activity of New Benzothiazole–Piperazines. Bioorganic Med. Chem. Lett. 2016, 26, 5387–5394. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Su, T.; Shan, W.; Luo, Z.; Sun, Y.; He, F.; Li, X. Inhibition of Cholinesterase Activity and Amyloid Aggregation by Berberine-Phenyl-Benzoheterocyclic and Tacrine-Phenyl-Benzoheterocyclic Hybrids. Bioorganic Med. Chem. 2012, 20, 3038–3048. [Google Scholar] [CrossRef]
- Acar Cevik, U.; Saglik, B.N.; Levent, S.; Osmaniye, D.; Kaya Cavuşoglu, B.; Ozkay, Y.; Kaplancikli, Z.A. Synthesis and AChE-Inhibitory Activity of New Benzimidazole Derivatives. Molecules 2019, 24, 861. [Google Scholar] [CrossRef]
- Alpan, A.S.; Parlar, S.; Carlino, L.; Tarikogullari, A.H.; Alptüzün, V.; Güneş, H.S. Synthesis, Biological Activity and Molecular Modeling Studies on 1H-Benzimidazole Derivatives as Acetylcholinesterase Inhibitors. Bioorganic Med. Chem. 2013, 21, 4928–4937. [Google Scholar] [CrossRef]
- Yoon, Y.K.; Ali, M.A.; Wei, A.C.; Choon, T.S.; Khaw, K.-Y.; Murugaiyah, V.; Osman, H.; Masand, V.H. Synthesis, Characterization, and Molecular Docking Analysis of Novel Benzimidazole Derivatives as Cholinesterase Inhibitors. Bioorganic Chem. 2013, 49, 33–39. [Google Scholar] [CrossRef]
- Alpan, A.S.; Sarıkaya, G.; Çoban, G.; Parlar, S.; Armagan, G.; Alptüzün, V. Mannich-Benzimidazole Derivatives as Antioxidant and Anticholinesterase Inhibitors: Synthesis, Biological Evaluations, and Molecular Docking Study. Arch. Der Pharm. 2017, 350, e1600351. [Google Scholar] [CrossRef]
- Faraji, L.; Shahkarami, S.; Nadri, H.; Moradi, A.; Saeedi, M.; Foroumadi, A.; Ramazani, A.; Haririan, I.; Ganjali, M.R.; Shafiee, A.; et al. Synthesis of Novel Benzimidazole and Benzothiazole Derivatives Bearing a 1,2,3-Triazole Ring System and Their Acetylcholinesterase Inhibitory Activity. J. Chem. Res. 2017, 41, 30–35. [Google Scholar] [CrossRef]
- Can, N.Ö.; Çevik, U.A.; Sağlık, B.N.; Özkay, Y.; Atlı, Ö.; Baysal, M.; Özkay, Ü.D.; Can, Ö.D. Pharmacological and Toxicological Screening of Novel Benzimidazole-Morpholine Derivatives as Dual-Acting Inhibitors. Molecules 2017, 22, 1374. [Google Scholar] [CrossRef]
- Sarıkaya, G.; Çoban, G.; Parlar, S.; Tarikogullari, A.H.; Armagan, G.; Erdoğan, M.A.; Alptüzün, V.; Alpan, A.S. Multifunctional Cholinesterase Inhibitors for Alzheimer’s Disease: Synthesis, Biological Evaluations, and Docking Studies of o/p-Propoxyphenylsubstituted-1H-Benzimidazole Derivatives. Arch. Der Pharm. 2018, 351, 1800076. [Google Scholar] [CrossRef]
- El Khatabi, K.; El-Mernissi, R.; Aanouz, I.; Ajana, M.; Lakhlifi, T.; Shahinozzaman, M.; Bouachrine, M. Benzimidazole Derivatives in Identifying Novel Acetylcholinesterase Inhibitors: A Combination of 3D-QSAR, Docking and Molecular Dynamics Simulation. Phys. Chem. Res. 2022, 10, 237–249. [Google Scholar] [CrossRef]
- Hussain, R.; Ullah, H.; Rahim, F.; Sarfraz, M.; Taha, M.; Iqbal, R.; Rehman, W.; Khan, S.; Shah, S.A.A.; Hyder, S.; et al. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules 2022, 27, 6087. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.; Bibi, S.; Ali, S.; Ammara, A.; Ahmad, M.; Khan, A.; Al-Harrasi, A.; Ullah, F.; Ali, M. New Multitarget Directed Benzimidazole-2-Thiol-Based Heterocycles as Prospective Anti-Radical and Anti-Alzheimer’s Agents. Drug Dev. Res. 2021, 82, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Zaib, S.; Ahmad, M.; Gardiner, J.M.; Ahmad, A.; Hameed, A.; Furtmann, N.; Gütschow, M.; Bajorath, J.; Iqbal, J. Novel Structural Hybrids of Pyrazolobenzothiazines with Benzimidazoles as Cholinesterase Inhibitors. Eur. J. Med. Chem. 2014, 78, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Adalat, B.; Rahim, F.; Taha, M.; Alshamrani, F.J.; Anouar, E.H.; Uddin, N.; Shah, S.A.A.; Ali, Z.; Zakaria, Z.A. Synthesis of Benzimidazole–Based Analogs as Anti Alzheimer’s Disease Compounds and Their Molecular Docking Studies. Molecules 2020, 25, 4828. [Google Scholar] [CrossRef]
- Mo, J.; Chen, T.; Yang, H.; Guo, Y.; Li, Q.; Qiao, Y.; Lin, H.; Feng, F.; Liu, W.; Chen, Y.; et al. Design, Synthesis, in Vitro and in Vivo Evaluation of Benzylpiperidine-Linked 1,3-Dimethylbenzimidazolinones as Cholinesterase Inhibitors against Alzheimer’s Disease. J. Enzym. Inhib. Med. Chem. 2020, 35, 330–343. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, C.-F.; Li, X.; Wu, G.-S.; Xie, S.; Hu, Q.-N.; Deng, Z.; Zhu, M.X.; Luo, H.-R.; Hong, X. Synthesis, Biological Evaluation and Molecular Modeling of Substituted 2-Aminobenzimidazoles as Novel Inhibitors of Acetylcholinesterase and Butyrylcholinesterase. Bioorganic Med. Chem. 2013, 21, 4218–4224. [Google Scholar] [CrossRef]
- Xu, W.; Chen, G.; Zhu, W.; Zuo, Z. Molecular Docking and Structure-Activity Relationship Studies on Benzothiazole Based Non-Peptidic BACE-1 Inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 6203–6207. [Google Scholar] [CrossRef]
- Gurjar, A.S.; Solanki, V.S.; Meshram, A.R.; Vishwakarma, S.S. Exploring Beta Amyloid Cleavage Enzyme-1 Inhibition and Neuroprotective Role of Benzimidazole Analogues as Anti-Alzheimer Agents. J. Chin. Chem. Soc. 2020, 67, 864–873. [Google Scholar] [CrossRef]
- Al-Tel, T.H.; Semreen, M.H.; Al-Qawasmeh, R.A.; Schmidt, M.F.; El-Awadi, R.; Ardah, M.; Zaarour, R.; Rao, S.N.; El-Agnaf, O. Design, Synthesis, and Qualitative Structure–Activity Evaluations of Novel β-Secretase Inhibitors as Potential Alzheimer’s Drug Leads. J. Med. Chem. 2011, 54, 8373–8385. [Google Scholar] [CrossRef]
- Ali, S.; Asad, M.H.H.B.; Maity, S.; Zada, W.; Rizvanov, A.A.; Iqbal, J.; Babak, B.; Hussain, I. Fluoro-Benzimidazole Derivatives to Cure Alzheimer’s Disease: In-Silico Studies, Synthesis, Structure-Activity Relationship and in Vivo Evaluation for β Secretase Enzyme Inhibition. Bioorg Chem. 2019, 88, 102936. [Google Scholar] [CrossRef] [PubMed]
- Cifelli, J.L.; Chung, T.S.; Liu, H.; Prangkio, P.; Mayer, M.; Yang, J. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress. ACS Chem. Neurosci. 2016, 7, 682–688. [Google Scholar] [CrossRef]
- Pradhan, K.; Das, G.; Kar, C.; Mukherjee, N.; Khan, J.; Mahata, T.; Barman, S.; Ghosh, S. Rhodamine-Based Metal Chelator: A Potent Inhibitor of Metal-Catalyzed Amyloid Toxicity. ACS Omega 2020, 5, 18958–18967. [Google Scholar] [CrossRef] [PubMed]
- Bank, R.P.D. RCSB PDB–5OQV: Near-Atomic Resolution Fibril Structure of Complete Amyloid-Beta(1–42) by Cryo-EM. Available online: https://www.rcsb.org/structure/5oqv (accessed on 1 March 2024).
- Murugan, N.A.; Zaleśny, R.; Ågren, H. Unusual Binding-Site-Specific Photophysical Properties of a Benzothiazole-Based Optical Probe in Amyloid Beta Fibrils. Phys. Chem. Chem. Phys. 2018, 20, 20334–20339. [Google Scholar] [CrossRef] [PubMed]
- Fourriere, L.; Gleeson, P.A. Amyloid β Production along the Neuronal Secretory Pathway: Dangerous Liaisons in the Golgi? Traffic 2021, 22, 319–327. [Google Scholar] [CrossRef]
- Florio, D.; Iacobucci, I.; Ferraro, G.; Mansour, A.M.; Morelli, G.; Monti, M.; Merlino, A.; Marasco, D. Role of the Metal Center in the Modulation of the Aggregation Process of Amyloid Model Systems by Square Planar Complexes Bearing 2-(2′-Pyridyl)Benzimidazole Ligands. Pharmaceuticals 2019, 12, 154. [Google Scholar] [CrossRef]
- Yellol, G.S.; Yellol, J.G.; Kenche, V.B.; Liu, X.M.; Barnham, K.J.; Donaire, A.; Janiak, C.; Ruiz, J. Synthesis of 2-Pyridyl-Benzimidazole Iridium(III), Ruthenium(II), and Platinum(II) Complexes. Study of the Activity as Inhibitors of Amyloid-β Aggregation and Neurotoxicity Evaluation. Inorg. Chem. 2015, 54, 470–475. [Google Scholar] [CrossRef]
- Chander Sharma, P.; Sharma, D.; Sharma, A.; Bansal, K.K.; Rajak, H.; Sharma, S.; Thakur, V.K. New Horizons in Benzothiazole Scaffold for Cancer Therapy: Advances in Bioactivity, Functionality, and Chemistry. Appl. Mater. Today 2020, 20, 100783. [Google Scholar] [CrossRef]
- Targeting Disease with Benzoxazoles: A Comprehensive Review of Recent Developments|Medicinal Chemistry Research. Available online: https://link.springer.com/article/10.1007/s00044-024-03190-7 (accessed on 3 October 2024).
- Pálešová, N.; Bláhová, L.; Janoš, T.; Řiháčková, K.; Pindur, A.; Šebejová, L.; Čupr, P. Exposure to Benzotriazoles and Benzothiazoles in Czech Male Population and Its Associations with Biomarkers of Liver Function, Serum Lipids and Oxidative Stress. Int. Arch. Occup. Environ. Health 2024, 97, 523–536. [Google Scholar] [CrossRef]
- Ozadali-Sari, K.; Tüylü Küçükkılınç, T.; Ayazgok, B.; Balkan, A.; Unsal-Tan, O. Novel Multi-Targeted Agents for Alzheimer’s Disease: Synthesis, Biological Evaluation, and Molecular Modeling of Novel 2-[4-(4-Substitutedpiperazin-1-Yl)Phenyl]Benzimidazoles. Bioorganic Chem. 2017, 72, 208–214. [Google Scholar] [CrossRef]
- Gulcan, H.O.; Mavideniz, A.; Sahin, M.F.; Orhan, I.E. Benzimidazole-Derived Compounds Designed for Different Targets of Alzheimer’s Disease. Curr. Med. Chem. 2019, 26, 3260–3278. [Google Scholar] [CrossRef] [PubMed]
- Dabur, M.; Loureiro, J.A.; Pereira, M.C. Fluorinated Molecules and Nanotechnology: Future ‘Avengers’ against the Alzheimer’s Disease? Int. J. Mol. Sci. 2020, 21, 2989. [Google Scholar] [CrossRef] [PubMed]
- Marín, I.D.G.; López, R.H.C.; Martínez, O.A.; Padilla-Martínez, I.I.; Correa-Basurto, J.; Rosales-Hernández, M.C. New Compounds from Heterocyclic Amines Scaffold with Multitarget Inhibitory Activity on Aβ Aggregation, AChE, and BACE1 in the Alzheimer Disease. PLoS ONE 2022, 17, e0269129. [Google Scholar] [CrossRef]
- Karaca, Ş.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Ilgın, S.; Özkay, Y.; Karaburun, A.Ç.; Kaplancıklı, Z.A.; Gundogdu-Karaburun, N. Synthesis of Novel Benzothiazole Derivatives and Investigation of Their Enzyme Inhibitory Effects against Alzheimer’s Disease. RSC Adv. 2022, 12, 23626–23636. [Google Scholar] [CrossRef]
- Rosales Hernández, M.C.; Fragoso Morales, L.G.; Correa Basurto, J.; Olvera Valdez, M.; García Báez, E.V.; Román Vázquez, D.G.; Anaya García, A.P.; Cruz, A. In Silico and In Vitro Studies of Benzothiazole-Isothioureas Derivatives as a Multitarget Compound for Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12945. [Google Scholar] [CrossRef]
- Unsal-Tan, O.; Ozadali-Sari, K.; Ayazgok, B.; Küçükkılınç, T.T.; Balkan, A. Novel 2-Arylbenzimidazole Derivatives as Multi-Targeting Agents to Treat Alzheimer’s Disease. Med. Chem. Res. 2017, 26, 1506–1515. [Google Scholar] [CrossRef]
- Chaves, S.; Hiremathad, A.; Tomás, D.; Keri, R.S.; Piemontese, L.; Santos, M.A. Exploring the Chelating Capacity of 2-Hydroxyphenyl-Benzimidazole Based Hybrids with Multi-Target Ability as Anti-Alzheimer’s Agents. New J. Chem. 2018, 42, 16503–16515. [Google Scholar] [CrossRef]
- Salehi, N.; Mirjalili, B.B.F.; Nadri, H.; Abdolahi, Z.; Forootanfar, H.; Samzadeh-Kermani, A.; Küçükkılınç, T.T.; Ayazgok, B.; Emami, S.; Haririan, I.; et al. Synthesis and Biological Evaluation of New N-Benzylpyridinium-Based Benzoheterocycles as Potential Anti-Alzheimer’s Agents. Bioorganic Chem. 2019, 83, 559–568. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, V.; Anand, P.; Kumar, V.; Ranjan Dwivedi, A.; Kumar, V. Advancements in the Development of Multi-Target Directed Ligands for the Treatment of Alzheimer’s Disease. Bioorganic Med. Chem. 2022, 61, 116742. [Google Scholar] [CrossRef]
- Sang, Z.; Wang, K.; Dong, J.; Tang, L. Alzheimer’s Disease: Updated Multi-Targets Therapeutics Are in Clinical and in Progress. Eur. J. Med. Chem. 2022, 238, 114464. [Google Scholar] [CrossRef] [PubMed]
- López-López, E.; Medina-Franco, J.L. Toward Structure–Multiple Activity Relationships (SMARts) Using Computational Approaches: A Polypharmacological Perspective. Drug Discov. Today 2024, 29, 104046. [Google Scholar] [CrossRef] [PubMed]
AZD2184 | Pt Compound |
Thioflavin T | Pd, Au Compounds |
Compound Rh-BT | Pt, Au, Ir Compounds |
Compound BTA-3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales Hernández, M.C.; Olvera-Valdez, M.; Velazquez Toledano, J.; Mendieta Wejebe, J.E.; Fragoso Morales, L.G.; Cruz, A. Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer’s Disease. Molecules 2024, 29, 4780. https://doi.org/10.3390/molecules29194780
Rosales Hernández MC, Olvera-Valdez M, Velazquez Toledano J, Mendieta Wejebe JE, Fragoso Morales LG, Cruz A. Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer’s Disease. Molecules. 2024; 29(19):4780. https://doi.org/10.3390/molecules29194780
Chicago/Turabian StyleRosales Hernández, Martha Cecilia, Marycruz Olvera-Valdez, Jazziel Velazquez Toledano, Jessica Elena Mendieta Wejebe, Leticia Guadalupe Fragoso Morales, and Alejandro Cruz. 2024. "Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer’s Disease" Molecules 29, no. 19: 4780. https://doi.org/10.3390/molecules29194780
APA StyleRosales Hernández, M. C., Olvera-Valdez, M., Velazquez Toledano, J., Mendieta Wejebe, J. E., Fragoso Morales, L. G., & Cruz, A. (2024). Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer’s Disease. Molecules, 29(19), 4780. https://doi.org/10.3390/molecules29194780