Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview
Abstract
:1. Introduction
2. Organic Acids in Small Berry Juice
2.1. Citric Acid
2.2. Malic Acid
2.3. Tartaric Acid
3. Methods to Reduce the Acidity of Small Berry Juice
3.1. Chemical Deacidification
3.2. Physical Deacidification
3.2.1. Freezing Deacidification
3.2.2. Ion-Exchange Resin Deacidification
3.2.3. Deacidification via Electrodialysis
3.2.4. Chitosan Deacidification
3.3. Biological Deacidification
3.4. Compound Deacidification
4. Effects of Deacidification Technology on Fruit Juice Quality
5. Discussion and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jara-Palacios, M.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F.; Escudero-Gilete, M. Comparative study of red berry pomaces (blueberry, red raspberry, red currant and blackberry) as source of antioxidants and pigments. Eur. Food Res. Technol. 2018, 245, 1–9. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Goulas, V.; Vicente, A.R.; Terry, L.A. Berry antioxidants: Small fruits providing large benefits. J. Sci. Food Agric. 2013, 94, 825–833. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Ran, X.; Chou, S.; Jiao, X.; Li, E.; Zhang, Q.; Meng, X.; Li, B. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties. Open Chem. 2018, 16, 637–646. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Mulero, M.; Cuevas-Rodríguez, E.O.; Mondor, M.; Arcand, Y.; Hernández-Álvarez, A.J. In vitro gastrointestinal digestion impact on stability, bioaccessibility and antioxidant activity of polyphenols from wild and commercial blackberries (Rubus spp.). Food Funct. 2021, 12, 7358–7378. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ruan, C.; Teixeira da Silva, J.; Guo, H.; Zhao, C. NMR metabolomics of berry quality in sea buckthorn (Hippophae L.). Mol. Breed. 2012, 31, 57–67. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, P.; Kuang, Y. Flavonoids from sea buckthorn: Areview on phytochemistry, phamacokinetics and role in metabolic diseases. Food Biochem. 2021, 13, 124–129. [Google Scholar]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Untea, A.E.; Oancea, A.G.; Vlaicu, P.A.; Varzaru, I.; Saracila, M. Blackcurrant (Fruits, Pomace, and Leaves) Phenolic Characterization before and after In Vitro Digestion, Free Radical Scavenger Capacity, and Antioxidant Effects on Iron-Mediated Lipid Peroxidation. Foods 2024, 13, 1514. [Google Scholar] [CrossRef]
- Gopalan, A.; Reuben, S.C.; Ahmed, S. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef]
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. 2017, 58, 2491–2507. [Google Scholar] [CrossRef]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2019, 16, 100237. [Google Scholar] [CrossRef]
- Ahmad, M.; Masood, S.; Sultana, S. Antioxidant and nutraceutical value of wildmedicinal Rubus berries. Pak. J. Pharm. Sci. 2015, 28, 241–247. [Google Scholar] [PubMed]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Van de Veld, F.; Grace, M.H.; Esposito, D. Quantitative comparison of phytochemicalprofile, antioxidant, and anti-inflammatory properties of blackberryfruits adapted to Argentina. J. Food Compos. Anal. 2016, 47, 82–91. [Google Scholar] [CrossRef]
- Nikolaou, C.; Karabagias, I.; Gatzias, I.; Kontakos, S.; Badeka, A.; Kontominas, M. Differentiation of Fresh Greek Orange Juice of the Merlin Cultivar According to Geographical Origin Based on the Combination of Organic Acid and Sugar Content as well as Physicochemical Parameters Using Chemometrics. Food Anal. Method. 2017, 10, 2217–2228. [Google Scholar] [CrossRef]
- Karakasova, L.; Ampova, J.; Babanovska-Milenkovska, F.; Durmishi, N.; Stamatovska, V. Comparison of quality characteristics of fresh and of dried strawberries. In Proceedings of the UBT International Conference, Durres, Albania, 28 October 2017. [Google Scholar]
- Koyuncu, M.A.; Dilmaçünal, T. Determination of Vitamin C and organic acid changes in strawberry by HPLC during cold storage. Not. Bot. Hortic. Agrobot. 2010, 38, 95–98. [Google Scholar]
- Li, L.; Ji, M.; Min, C. The flavor and nutritional characteristic of four strawberry varietiescultured in soilless system. Food Sci. Nutr. 2016, 4, 858–868. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, C.L.; Liu, H. Analysis of sugar and acid composition in strawberry juice and its application in adulteration identification. Food Ind. Sci. Technol. 2019, 40, 268–273. [Google Scholar]
- Lerceteau-Köhler, E.; Moing, A.; Guérin, G.; Renaud, C.; Courlit, S.; Camy, D.; Praud, K.; Parisy, V.; Bellec, F.; Maucourt, M.; et al. QTL Analysis for Fruit Quality Traits in Octoploid Strawberry (Fragaria X Ananassa). Acta Hortic. 2004, 663, 331–336. [Google Scholar] [CrossRef]
- Basson, C.E.; Groenewald, J.; Kossmann, J. Sugar and acid-related quality attributes andenzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme. Food Chem. 2010, 121, 1156–1162. [Google Scholar] [CrossRef]
- Cetin, C.; Mustafa, O. Comparison of antioxidant capacity and phytochemical properties ofwild and cultivated red raspberries (Rubus idaeus L.). J. Food Compos. Anal. 2010, 23, 540–544. [Google Scholar]
- Kuang, H.; Li, L.L.; Lv, C.S.; Wang, J.L. Determination of organic acids in six kinds of raspberry fruits in Northeast China by RP-HPLC. Food Sci. 2016, 37, 126–130. [Google Scholar]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y. The Effect of Malic Acid-Lactic Acid Fermentation on the Quality of Seabuckthorn Puree and the Development of Seabuckthorn Fermented Beverage. Master’s Thesis, Hebei Engineering University, Handan, China, 2021. [Google Scholar]
- Djuric, M.; Brkovic, D.; Milosevic, D.; Pavlovic, M.; Curčic, S. Chemical characterisation of the fruit of black chokebeny grown on different types of soil. Rev. Chim. 2015, 66, 178–181. [Google Scholar]
- Tanaka, T.; Tanaka, A. A Chemical Components and Characteristics of Black Chokeberry. J. Jpn. Soc. Food Sci. 2001, 48, 606–610. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, Y.H.; Hu, X.X.; Li, X.Y.; Zhan, C.; Lv, S.S. Research progress of grape organic acids. Grape Wine Home Abroad 2022, 88–95. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Petruševa, D.; Mitrev, S. Rapid and Simple Method for Determination of Target Organic Acids in Wine Using HPLC-DAD Analysis. Food Anal. Method. 2020, 13, 1078–1087. [Google Scholar] [CrossRef]
- Coelho, E.; da Silva Padilha, C.; Miskinis, G.; de Sá, A.G.B.; Pereira, G.; de Azevêdo, L.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef]
- Balmaseda, A.; Bordons, A.; Reguant, C.; Bautista-Gallego, J. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation. Front. Microbiol. 2018, 9, 534. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Kolodziejczyk, P. Evaluation of Saskatoon berry (Amelanchier alnifolia Nutt.) cultivars for their polyphenol content, antioxidant properties, and storage stability. J. Agric. Food Chem. 2008, 56, 9933–9940. [Google Scholar] [CrossRef]
- Xiao, Q.; Ye, S.; Wang, H.; Xing, S.; Zhu, W.; Zhang, H.; Zhu, J.; Pu, C.; Zhao, D.; Zhou, Q.; et al. Soluble sugar, organic acid and phenolic composition and flavor evaluation of plum fruits. Food Chem X 2024, 24, 101790. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.M.; Case, R.J.; Rimmer, C.A.; Sander, L.C.; Sharpless, K.E.; Wise, S.A.; Yen, J.H. Determination of organic acids in Vaccinium berry standard reference materials. Anal. Bioanal. Chem. 2010, 398, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. Analysis of Organic Acids in Fruit Products by Anion Exchange Isolation and Gas Chromatographic Determination. J. Assoc. Off. Anal. Chem. 2020, 56, 1257–1263. [Google Scholar] [CrossRef]
- Lv, B.L.; Li, G.Z. Analysis of the differences of organic acids in Rubus from different habitats based on HPLC combined with multivariate statistical methods. Chin. Agric. Sci. Bull. 2023, 39, 129–136. [Google Scholar]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Zhang, A.; Fang, Y.; Meng, J.; Wang, H.; Chen, S.; Zhang, Z. Analysis of low molecular weight organic acids in several complex liquid biological systems via HPLC with switching detection wavelength. J. Food Compos. Anal. 2011, 24, 449–455. [Google Scholar] [CrossRef]
- Vera, E.; Ruales, J.; Dornier, M.; Sandeaux, J.; Persin, F.; Pourcelly, G.; Vaillant, F.; Reynes, M. Comparison of different methods for deacidification of clarified passion fruit juice. J. Food Eng. 2003, 59, 361–367. [Google Scholar] [CrossRef]
- Wu, L.S.; Shi, H.L.; Shang, X.R. Optimum deacidification technology of raspberry wine. Food Ind. 2021, 42, 20–24. [Google Scholar]
- Yu, Y.; Xiao, G.; Xu, Y. Changes of Quality in the Fruits of Prunus mume during Deacidification by Fermentation with Lactobacillus fermentium. J. Food Sci. 2015, 80, 405–410. [Google Scholar] [CrossRef]
- Hayaloglu, A.A.; Demir, N. Physicochemical characteristics, antioxidant activity, organic acid and sugar contents of 12 sweet cherry (Prunus avium L.) cultivars grown in Turkey. J. Food Sci. 2015, 80, C564–C570. [Google Scholar] [CrossRef]
- Yuan, H.B.; Liu, Z.F.; Cheng, H.D.; Chen, Z.D. Study on deacidification technology of seabuckthorn juice resin. Food Sci. Technol. 2011, 36, 67–70. [Google Scholar]
- Li, N.; Wei, Y.; Li, X.; Wang, J.; Zhou, J.; Wang, J. Optimization of deacidification for concentrated grape juice. Food Sci. Nutr. 2019, 7, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.Q.; Xu, Z.B.; Wang, L.; Shen, H. Study on the method of reducing acid in Raspberry wine by soaking. Liquor.-Mak. Sci. Technol. 2019, 99–101. [Google Scholar] [CrossRef]
- Vera, E.; Sandeaux, J.; Persin, F.; Pourcelly, G.; Dornier, M.; Piombo, G.; Ruales, J. Deacidification of clarified tropical fruit juices by electrodialysis. Part II. Characteristics of the deacidified juices. J. Food Eng. 2007, 78, 1439–1445. [Google Scholar] [CrossRef]
- Vera, E.; Sandeaux, J.; Persin, F.; Pourcelly, G.; Dornier, M.; Ruales, J. Modeling of clarified tropical fruit juice deacidification by electrodialysis. J. Membr. Sci. 2009, 326, 472–483. [Google Scholar] [CrossRef]
- Serre, E.; Boutin, Y.; Langevin, M.; Lutin, F.; Pedneault, K.; Lacour, S.; Bazinet, L. Deacidification of cranberry juice protects against disruption of in-vitro intestinal cell barrier integrity. J. Funct. Foods 2016, 26, 208–216. [Google Scholar] [CrossRef]
- Fidaleo, M.; Ventriglia, G. Application of Design of Experiments to the Analysis of Fruit Juice Deacidification Using Electrodialysis with Monopolar Membranes. Foods 2022, 11, 1770. [Google Scholar] [CrossRef]
- Rozoy, E.; Boudesocque, L.; Bazinet, L. Deacidification of cranberry juice by electrodialysis with bipolar membranes. J. Agric. Food Chem. 2015, 63, 642–651. [Google Scholar] [CrossRef]
- Pelletier, S.; Serre, É.; Mikhaylin, S.; Bazinet, L. Optimization of cranberry juice deacidification by electrodialysis with bipolar membrane: Impact of pulsed electric field conditions. Sep. Purif. Technol. 2017, 186, 106–116. [Google Scholar] [CrossRef]
- Akkuzu, N.; Karakas, C.Y.; Devecioglu, D.; Karbancıoglu Guler, F.; Sagdic, O.; Karadag, A. Emulsion-based edible chitosan film containing propolis extract to extend the shelf life of strawberries. Int. J. Biol. Macromol. 2024, 273 Pt 2, 133108. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Q.R.; Fang, Y.; Gao, Y.X. Research progress of fruit juice deacidification technology. Food Sci. Technol. 2014, 39, 83–87. [Google Scholar]
- Zhou, G.Q.; Sun, L.; Zhang, L.; Liu, H.Y.; Sun, J.Y.; Wang, Y.; Wu, X.H.; Cai, Y. Comparison of deacidification methods of blueberry wine. J. Dalian Polytech. Univ. 2016, 35, 416–419. [Google Scholar]
- Wen, L.K.; Zhao, W.; Zhang, W.; Hu, Y.H. Research progress on acid-lowering technology of fruit wine. Food Sci. 2010, 31, 325–328. [Google Scholar]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef]
- Mendes Ferreira, A.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Cirlini, M.; Calani, L.; Bernini, V.; Neviani, E.; Del Rio, D.; Galaverna, G.; Lazzi, C. In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. Food Chem. 2018, 276, 692–699. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. Int. J. Food Microbiol. 2017, 248, 56–62. [Google Scholar] [CrossRef]
- Tiitinen, K.M.; Yang, B.; Haraldsson, G.G.; Jonsdottir, S.; Kallio, H.P. Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophaë rhamnoides L.) varieties. J. Agric. Food Chem. 2006, 54, 2508–2513. [Google Scholar] [CrossRef]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef]
- Viljakainen, S.; Laakso, S. The use of malolactic Oenococcus oeni (ATCC 39401) for deacidification of media containing glucose, malic acid and citric acid. Eur. Food Res. Technol. 2000, 211, 438–442. [Google Scholar] [CrossRef]
- Lu, S.Y. Screening, Identification and Organic Acid Degradation Characteristics of Acid-Reducing Yeast Strains in Wild Berries. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2021. [Google Scholar]
- Liang, M.; Bao, Y.H.; Xu, F.C. Chemical deacidification technology of indigo fruit wine and its influence on anthocyanin composition. Mod. Food Sci. Technol. 2018, 34, 188–195. [Google Scholar]
- Shi, L.; Zheng, L.; Zhao, C.; Huang, J.; Jin, Q.; Wang, X. Effects of deacidification methods on high free fatty acid containing oils obtained from sea buckthron (Hippophaë rhamnoides L.) berry. Ind. Crops Prod. 2018, 124, 797–805. [Google Scholar] [CrossRef]
- Ngwenya, M.P.; Nkambule, T.P.; Kidane, S.W. Physicochemical attributes and acceptability of marula wine fermented with natural Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Heliyon 2023, 9, e21613. [Google Scholar] [CrossRef] [PubMed]
- Brizuela, N.S.; Bravo-Ferrada, B.M.; Curilén, Y.; Delfederico, L.; Caballero, A.; Semorile, L.; Pozo-Bayón, M.Á.; Tymczyszyn, E.E. Advantages of Using Blend Cultures of Native L. plantarum and O. oeni Strains to Induce Malolactic Fermentation of Patagonian Malbec Wine. Front. Microbiol. 2018, 9, 2109. [Google Scholar] [CrossRef]
- Kim, S.H. Optimal condition for deacidification fermentation of wild grape wine by mixed culture. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 17–23. [Google Scholar]
- Del Mónaco, S.M.; Barda, N.B.; Rubio, N.C.; Caballero, A.C. Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification. J. Appl. Microbiol. 2014, 117, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Cioch-Skoneczny, M.; Grabowski, M.; Satora, P.; Skoneczny, S.; Klimczak, K. The Use of Yeast Mixed Cultures for Deacidification and Improvement of the Composition of Cold Climate Grape Wines. Molecules 2021, 26, 2628. [Google Scholar] [CrossRef]
- Wang, O.; Wei, Y.; Tang, M.M.; Zhou, F.; Ji, B.P. Study on fresh fruit analysis and deacidification technology of Schisandra chinensis fruit juice. J. China Food 2015, 15, 163–169. [Google Scholar]
- Kunicka-Styczyńska, A. Glucose, l-Malic Acid and pH Effect on Fermentation Products in Biological Deacidification. Czech. J. Food Sci. 2009, 27, S319–S322. [Google Scholar] [CrossRef]
- Li, T.Z. Study on the Deacidification Effect of Different Methods on Schisandra chinensis Juice. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2014. [Google Scholar]
- Qiu, X.M.; Wang, Y.; Dong, M.S. Screening and fermentation performance of excellent acid-reducing yeast. Food Sci. 2014, 35, 160–164. [Google Scholar]
- Ricci, A.; Cirlini, M.; Maoloni, A.; Del Rio, D.; Calani, L.; Bernini, V.; Galaverna, G.; Neviani, E.; Lazzi, C. Use of Dairy and Plant-Derived Lactobacilli as Starters for Cherry Juice Fermentation. Nutrients 2019, 11, 213. [Google Scholar] [CrossRef]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules 2018, 24, 51. [Google Scholar] [CrossRef]
- Ma, R.; Wang, X.; Han, C.R.; Zhuang, X.G. Study on the deacidification effect of Lactobacillus acidophilus on indigo juice. Packag. Eng. 2019, 40, 27–32. [Google Scholar]
- Zhang, F.Y.; Pu, B.; Liu, X.Y. Study on the deacidification of kiwifruit wine. Food Ind. Sci. Technol. 2014, 35, 207–210. [Google Scholar]
- Bae, H.M.; Haile, M.; Kang, W.H. Evaluation of antioxidant, organic acid, and volatile compounds in coffee pulp wine fermented with native yeasts isolated from coffee cherries. Food Sci. Technol. Int. 2021, 28, 716–727. [Google Scholar] [CrossRef]
- Deng, A.Y.; Guan, T.W.; Wang, P.H. Study on two-step rapid deacidification technology of lemon fruit wine. Food Ind. Sci. Technol. 2017, 38, 95–99. [Google Scholar]
- Ma, Q.; Xu, J.; Zuo, Y. Research progress of apricot wine processing technology and quality analysis. Food Ferment. Ind. 2020, 46, 310–314. [Google Scholar]
- McDougall, G.J.; Austin, C.; Van Schayk, E.; Martin, P. Salal (Gaultheria shallon) and aronia (Aronia melanocarpa) fruits from Orkney: Phenolic content, composition and effect of wine-making. Food Chem. 2016, 205, 239–247. [Google Scholar] [CrossRef]
- Fritsch, C.; Jänsch, A.; Ehrmann, M.A.; Toelstede, S.; Vogel, R.F. Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr. Microbiol. 2017, 74, 247–256. [Google Scholar] [CrossRef]
- Yang, Q.Q. Study on the Technology and Properties of Wild Cherry Berry Juice Fermented by Lactic Acid Bacteria. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2019. [Google Scholar]
- Ryu, E.; Yoon, H.; Jung, J. Characteristics of Lactic Acid Fermentation of Black Raspberry Juice Using the Lactobacillus plantarum GBL17 Strain. Korean J. Food Cook. Sci. 2015, 31, 773–780. [Google Scholar] [CrossRef]
Fruit | Species | Citric Acid (g/kg) | Malic Acid (g/kg) | Tartaric Acid (g/kg) | Fumaric Acid (g/kg) | Oxalic Acid (g/kg) | Total Organic Acids (mmol/kg) |
---|---|---|---|---|---|---|---|
Strawberry | Rosaceae | 9.3 ± 0.39 | 0.98 ± 0.15 | - | 51.7 ± 6.51 | 7.9 ± 0.36 | 57.4 ± 1.9 |
Blackberry | Rosaceae | 5.6 ± 0.42 | 2.05 ± 0.22 | - | 34.1 ± 2.54 | 28.2 ± 2.45 | 45.1 ± 3.1 |
Rowanberry | Rosaceae | 1.2 ± 0.06 | 30.28 ± 0.90 | 0.37 ± 0.03 | 28.0 ± 1.17 | 16.1 ± 1.03 | 235.0 ± 7.2 |
American cranberry | Ericaceae | 14.7 ± 0.86 | 0.71 ± 0.15 | 1.968 ± 0.142 | 35.8 ± 3.24 | 17.7 ± 0.70 | 93.9 ± 7.1 |
Highbush blueberry | Ericaceae | 10.3 ± 0.47 | 0.59 ± 0.06 | - | - | 27.2 ± 3.84 | 57.7 ± 8.0 |
Black mulberry | Moraceae | 4.5 ± 0.42 | 0.74 ± 0.06 | - | 67.7 ± 2.36 | 13.6 ± 1.00 | 29.6 ± 2.6 |
Goji berry | Solanaceae | 2.1 ± 0.28 | 1.38 ± 0.13 | - | 11.6 ± 1.45 | 27.5 ± 3.7 | 21.5 ± 2.4 |
Sweet cherry | Rosaceae | 0.37 ± 0.17 | 110.55 ± 261.81 | - | 112.43 ± 263.51 | - | 72.17 ± 13.33 |
Red raspberry | Rosaceae | 10.8 ± 0.62 | 0.94 ± 0.07 | 0.085 ± 0.013 | 35.5 ± 2.48 | 14.2 ± 1.42 | 5.15 ± 1.27 |
Bilberry | Ericaceae | 5.7 ± 0.32 | 2.71 ± 0.15 | 1.852 ± 0.028 | - | 71.3 ± 4.29 | 62.5 ± 2.8 |
Sample | Acid Reduction Method | Acid Reduction Rate | |
---|---|---|---|
Sea buckthorn juice | Physical deacidification | D941 anion-exchange resin adsorption | Organic acids decreased by 70% |
Cranberry juice | Deacidification via electrodialysis | Organic acids decreased by 22.84% | |
Schisandra chinensis juice | Amberlite IRA 67 resin and Lewait MP62-ENG resin | Citric acid decreased by 90% | |
Dry wild grape wine | Chemical deacidification | Calcium carbonate mixed with potassium bicarbonate | Tartaric acid decreased by 77.8% |
Schisandra chinensis juice | CaCO3, K2CO3, KHCO3, Na2CO3 | 1g Na2CO3 reduced the total acids by 1.30g/L | |
Blueberry wine | Biological deacidification | Deacidification with Saccharomyces cerevisiae | L-malic acid decreased by 30% |
Cherry juice, apple juice, black raspberry juice | Lactobacillus plantarum fermentation for deacidification | Tartaric acid decreased by 92% | |
Lonicera caerulea L. juice | Fermentation of Lactobacillus acidophilus for deacidification | Organic acids decreased by 86.32%, malic acid decreased by 49.37%, citric acid decreased by 36.05% | |
Prunus mume | Lactobacillus fermentation for deacidification | Titratable acid decreased by 71.4% | |
Wine | Compound deacidification | Lactobacillus plantarum and Oenococcus oeni | L-malic acid decreased by 85% |
Wild wine | Saccharomyces cerevisiae (SMR-3) mixed with Schizosaccharomyces | Organic acids decreased by 50%, malic acid decreased by 81.12% | |
Grape Juice | non-Saccharomyces cerevisiae (Pichia kudriavzevii NI15) mixed with Saccharomyces cerevisiae | Organic acids decreased by 40% | |
Wine | Saccharomyces cerevisiae MH020215 mixed with Zygo saccharomyces bailiii 749 | Tartaric acid decreased by 43%, organic acids decreased by 12.5% | |
Kiwifruit wine | Combination of Na2CO3 and chitosan for deacidification | Organic acids decreased by 44.27% | |
Cherry wine | Combination of Na2CO3 and potassium tartrate for deacidification | Organic acids decreased by 38.7% | |
Indigo fruit wine | Combination of Na2CO3 and CaCO3 for deacidification | Organic acids decreased by 48% | |
Lemon fruit wine | Weak basic anion-exchange resin D311 combined with Leuconostoc mesenteroides fermentation for deacidification | Organic acids decreased by 61% |
Advantages | Disadvantages | ||
---|---|---|---|
Chemical Deacidification | CaCO3, K2CO3, KHCO3, Na2CO3 | Fruit juice treated via sodium carbonate deacidification has a strong aroma and suitable taste. | The added chemicals release carbon dioxide, which affects the quality of the juice, easily results in flocculent precipitation, and leads to a poor juice taste and serious aroma loss. |
Physical Deacidification | Freezing Deacidification | Does not introduce exogenous substances. | Mostly used to reduce the content of tartaric acid in fruit wine; its application range is narrow. |
Ion-Exchange Resin Deacidification | Selective separation technology does not introduce impurities, ensures the quality of fruit juice/wine, and is convenient for industrial operation. | The cost is high, and it is not suitable for a wide range of applications. | |
Deacidification via Electrodialysis | Deacidification is fast, and foreign substances are not added to the fruit juice/wine. | Causes certain loss of flavor substances in fruit juice/wine, the cost is high, and the dialysis membrane is easily fouled. | |
Chitosan Deacidification | Chitosan has a large specific surface area, strong adsorption, and a good deacidification effect. | Mainly adsorbs malic acid and citric acid but has poor adsorption effects on other organic acids, so its application has certain limitations. | |
Biological Deacidification | Malic–Lactic Acid Fermentation (MLF) | Effectively reduces the malic acid content and improves the quality of fruit juice/wine. | Malic–lactic acid fermentation is not suitable for fruit juices/wines with a high sugar content. |
Compound Deacidification | Physical–Chemical Deacidification, Chemical–Biological Deacidification, Physical–Biological Deacidification | Reasonable combinations can effectively improve the deacidification rate while improving the flavor and taste of fruit juice/wine. | High costs and complicated procedures render it unsuitable for large-scale industrial application, and many aspects need continuous improvement and innovation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, Y.; Shen, X.; Zhao, R.; Li, Z.; Wu, J.; Shen, H.; Yao, X. Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview. Molecules 2024, 29, 4779. https://doi.org/10.3390/molecules29194779
Wang F, Wang Y, Shen X, Zhao R, Li Z, Wu J, Shen H, Yao X. Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview. Molecules. 2024; 29(19):4779. https://doi.org/10.3390/molecules29194779
Chicago/Turabian StyleWang, Fei, Yao Wang, Xinting Shen, Rui Zhao, Zhebin Li, Jiawu Wu, Huifang Shen, and Xinmiao Yao. 2024. "Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview" Molecules 29, no. 19: 4779. https://doi.org/10.3390/molecules29194779
APA StyleWang, F., Wang, Y., Shen, X., Zhao, R., Li, Z., Wu, J., Shen, H., & Yao, X. (2024). Research Progress on Methods for the Deacidification of Small Berry Juice: An Overview. Molecules, 29(19), 4779. https://doi.org/10.3390/molecules29194779