A Gram-Scale Limonene Production Process with Engineered Escherichia coli
"> Figure 1
<p>The heterologous mevalonate (MVA) pathway and limonene synthase introduced into <span class="html-italic">Escherichia coli</span> for the production of (S)-limonene. Acetoacetyl-CoA synthase from <span class="html-italic">E. coli</span> (atoB), HMG-CoA (hydroxymethylglutaryl-CoA) synthase from <span class="html-italic">Saccharomyces cerevisiae</span> (HMGS), an N-terminal truncated version of HMG-CoA reductase from <span class="html-italic">S. cerevisiae</span> (HMGR), mevalonate kinase (MK), phosphomevalonate kinase (PMK), phosphomevalonate decarboxylase from <span class="html-italic">S. cerevisiae</span> (PMD), isopentenyl diphosphate isomerase from <span class="html-italic">E. coli</span> (idi), a truncated and codon-optimized version of geranyl pyrophosphate synthase from <span class="html-italic">Abies grandis</span> (trGPPS), and a truncated and codon-optimized version of limonene synthase from <span class="html-italic">Mentha spicata</span> without the plastidial targeting sequence (LS).</p> "> Figure 2
<p>Biomass specific yields for different concentrations of the inducer isopropyl β-<span class="html-small-caps">d</span>−1-thiogalactopyranoside (IPTG) after 12 h of cultivation. Two-liquid phase shake flask fermentations with <span class="html-italic">E. coli</span> BL21 (DE3) pJBEI-6410 in M9 minimal medium with 0.5% <span class="html-italic">w</span>/<span class="html-italic">v</span> glucose as the sole carbon source. The error bars relate to biological duplicates.</p> "> Figure 3
<p>Two-liquid phase shake flask fermentations with <span class="html-italic">E. coli</span> BL21 (DE3) pJBEI-6410 in M9 minimal medium with either 0.5% <span class="html-italic">w</span>/<span class="html-italic">v</span> glucose (closed symbols) or glycerol (open symbols) as the sole carbon source. (<b>A</b>) Limonene concentrations (▲, △) in the organic phase and carbon source (<span style="color:#A6A6A6">■</span>, <span style="color:#A6A6A6">□</span>) concentrations were determined at regular intervals. (<b>B</b>) Carbon specific limonene yields after 26 h of cultivation. The error bars relate to biological duplicates.</p> "> Figure 4
<p>Two-liquid phase fed-batch fermentation with <span class="html-italic">E. coli</span> BL21 (DE3) pJBEI-6410 in M9 minimal medium. Cell dry weight (CDW) (■), limonene concentrations (▲) in the organic phase, glycerol (<span style="color:#A6A6A6">▲</span>), acetate (<span style="color:#A6A6A6">▼</span>), and ammonium (<span style="color:#A6A6A6">■</span>) concentrations were determined at regular intervals. The specific activities (<span style="color:#A6A6A6">●</span>) were calculated for distinct time points throughout the fermentation time. The feed rate is displayed as well (dotted line). (<b>A)</b> and (<b>B)</b> display the initial fed-batch fermentation (D = 0.18 h<sup>−1</sup>), whereas (<b>C</b>) and (<b>D</b>) display the optimized fed-batch fermentation with a lower feed rate (D = 0.15 h<sup>−1</sup>) and additional trace element supply. The <span style="color:#221F1F">error bars for CDW relate to two independent measurements.</span></p> "> Figure A1
<p>Two-liquid phase shake flask fermentations with <span class="html-italic">E. coli</span> BL21 (DE3) pJBEI-6410 in M9 minimal medium with either 0.5% <span class="html-italic">w</span>/<span class="html-italic">v</span> glucose (closed symbols, ●) or glycerol (open symbols, ○) as the sole carbon source. Cell dry weights were determined at regular intervals. The error bars relate to biological duplicates.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Influence of Inducer Concentration on Limonene Yields
2.2. Glycerol as the Sole Carbon Source for Fermentative Limonene Production
2.3. Fermentative Limonene Production in a Stirred-tank Reactor
3. Discussion
3.1. Glycerol is a Suitable Carbon Source for Heterologous Limonene Production in Escherichia coli
3.2. Progess to an Economic Limonene Production Process
4. Materials and Methods
4.1. Chemicals and Bacterial Strains
4.2. Cultivation and Fermentative Limonene Production in Shake Flasks
4.3. Fermentative Limonene Production in a Stirred-Tank Reactor
4.4. Quantification of Limonene
4.5. Quantification of Glucose, Glycerol, Acetate, and Ammonia
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fisher, K. Terpenes replacing BTEX in oil field. Available online: http://www.aogr.com/magazine/editors-choice/terpenes-replacing-btex-in-oil-field (accessed on 12 February 2020).
- Renninger, N.S.; Ryder, J.; Fisher, K. Jet fuel compositions and methods of making and using same. WO2008133658, 6 November 2008. [Google Scholar]
- Chuck, C.J.; Donnelly, J. The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl. Energy 2014, 118, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, C. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chem. Commun. 2015, 51, 17249–17252. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.F.; Bessière, Y. Limonene. Nat. Prod. Rep. 1989, 6, 291–309. [Google Scholar] [CrossRef]
- Cornelissen, S.; Julsing, M.K.; Volmer, J.; Riechert, O.; Schmid, A.; Bühler, B. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol. Bioeng. 2013, 110, 1282–1292. [Google Scholar] [CrossRef]
- Alonso-Gutierrez, J.; Chan, R.; Batth, T.S.; Adams, P.D.; Keasling, J.D.; Petzold, C.J.; Lee, T.S. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 2013, 19, 33–41. [Google Scholar] [CrossRef]
- Belanger, J.T. Perillyl Alcohol: Applications in Oncology. Altern. Med. Rev. 1998, 3, 448–457. [Google Scholar]
- Rosenthal, K.; Lütz, S. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr. Opin. Green Sustain. Chem. 2018, 11, 58–64. [Google Scholar] [CrossRef]
- Kemper, K.; Hirte, M.; Reinbold, M.; Fuchs, M.; Brück, T. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems. Beilstein J. Org. Chem. 2017, 13, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.J.J.; Pitera, D.J.; Withers, S.T.; Newman, J.D.; Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 2003, 21, 796–802. [Google Scholar] [CrossRef]
- Willrodt, C.; David, C.; Cornelissen, S.; Bühler, B.; Julsing, M.K.; Schmid, A. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol. J. 2014, 9, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Schewe, H.; Holtmann, D.; Schrader, J. P450BM-3-catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system. Appl. Microbiol. Biotechnol. 2009, 83, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Studier, F.W.; Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986, 189, 113–130. [Google Scholar] [CrossRef]
- Calos, M.P. DNA sequence for a low-level promoter of the lac repressor gene and an ‘up’ promoter mutation. Nature 1978, 274, 762–765. [Google Scholar] [CrossRef]
- Lee, P.C.; Mijts, B.N.; Schmidt-Dannert, C. Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2004, 65, 538–546. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, J.H.; Kim, N.H.; Yeom, S.J.; Kim, S.W.; Oh, D.K. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2011, 90, 489–497. [Google Scholar] [CrossRef]
- Jang, H.-J.; Yoon, S.-H.; Ryu, H.-K.; Kim, J.-H.; Wang, C.-L.; Kim, J.-Y.; Oh, D.-K.; Kim, S.-W. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb. Cell Fact. 2011, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Kopp, J.; Slouka, C.; Ulonska, S.; Kager, J.; Fricke, J.; Spadiut, O.; Herwig, C. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3). Bioengineering 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Wurm, D.J.; Hausjell, J.; Ulonska, S.; Herwig, C.; Spadiut, O. Mechanistic platform knowledge of concomitant sugar uptake in Escherichia coli BL21(DE3) strains. Sci. Rep. 2017, 7, 45072. [Google Scholar] [CrossRef]
- Durnin, G.; Clomburg, J.; Yeates, Z.; Alvarez, P.J.J.; Zygourakis, K.; Campbell, P.; Gonzalez, R. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. Bioeng. 2009, 103, 148–161. [Google Scholar] [CrossRef]
- Clomburg, J.M.; Gonzalez, R. Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals. Trends Biotechnol. 2013, 31, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chubukov, V.; Mingardon, F.; Schackwitz, W.; Baidoo, E.E.K.; Alonso-Gutierrez, J.; Hu, Q.; Lee, T.S.; Keasling, J.D.; Mukhopadhyay, A. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl. Environ. Microbiol. 2015, 81, 4690–4696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straathof, A.J.J.; Panke, S.; Schmid, A. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 2002, 13, 548–556. [Google Scholar] [CrossRef]
- Sun, C.; Theodoropoulos, C.; Scrutton, N.S. Techno-economic assessment of microbial limonene production. Bioresour. Technol. 2020, 300, 122666. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, S.; Cao, J.; Qiao, J.; Zhao, G.-R. Systematic Optimization of Limonene Production in Engineered Escherichia coli. J. Agric. Food Chem. 2019, 67, 7087–7097. [Google Scholar] [CrossRef]
- Willrodt, C.; Hoschek, A.; Bühler, B.; Schmid, A.; Julsing, M.K. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production. Biotechnol. Bioeng. 2016, 113, 1305–1314. [Google Scholar] [CrossRef]
- Chacón, M.G.; Marriott, A.; Kendrick, E.G.; Styles, M.Q.; Leak, D.J. Esterification of geraniol as a strategy for increasing product titre and specificity in engineered Escherichia coli. Microb. Cell Fact. 2019, 18, 105. [Google Scholar] [CrossRef]
- Willrodt, C.; Hoschek, A.; Bühler, B.; Schmid, A.; Julsing, M.K. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation. Biotechnol. Bioeng. 2015, 112, 1738–1750. [Google Scholar] [CrossRef]
- Korman, T.P.; Opgenorth, P.H.; Bowie, J.U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 2017, 8, 15526. [Google Scholar] [CrossRef]
- Dirkmann, M.; Nowack, J.; Schulz, F. An in Vitro Biosynthesis of Sesquiterpenes Starting from Acetic Acid. ChemBioChem 2018, 19, 2146–2151. [Google Scholar] [CrossRef]
- Dudley, Q.M.; Nash, C.J.; Jewett, M.C. Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synth. Biol. 2019, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.-C.; Saha, R.; Zhang, F.; Pakrasi, H.B. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803. Sci. Rep. 2017, 7, 17503. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhao, Y.; Li, S.; Zhao, Y.; Li, J.; Hu, Z.; Zhang, C.; Xiao, D.; Yu, A. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. Biotechnol. Biofuels 2019, 12, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, S.; Zhu, L.; Qiu, X.; Zhu, C.; Zhu, L. Advances in the Metabolic Engineering of Escherichia coli for the Manufacture of Monoterpenes. Catalysts 2019, 9, 433. [Google Scholar] [CrossRef] [Green Version]
- Brennan, T.C.R.; Turner, C.D.; Krömer, J.O.; Nielsen, L.K. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Searle, P.L. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 1984, 109, 549. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compound (S)-limonene in DINP are available from the authors. |
Strain | Plasmid System | Medium | Setup | cLimonene [mg·L−1] | STY [mg·L−1 h−1] | Reference |
---|---|---|---|---|---|---|
E. coli DH1 | pJBEI-6409 | EZ-Rich / glucose | Batch—Shake flask | 435 | 6 | [8] |
E. coli BL21 (DE3) | pBAD:LS, pET24:AGPPS2 | M9 / glycerol | Fed-batch—STR | 1350 | 23 | [13] |
E. coli BW25113 (DE3) | pMAP6, pISP6, pNLSt1 | YM9 / glucose | Fed-batch—Shake flask | 1290 | 15 | [27] |
E. coli BL21 (DE3) | pJBEI-6410 | M9 / glycerol | Fed-batch—STR | 3630 | 151 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolf, J.; Julsing, M.K.; Rosenthal, K.; Lütz, S. A Gram-Scale Limonene Production Process with Engineered Escherichia coli. Molecules 2020, 25, 1881. https://doi.org/10.3390/molecules25081881
Rolf J, Julsing MK, Rosenthal K, Lütz S. A Gram-Scale Limonene Production Process with Engineered Escherichia coli. Molecules. 2020; 25(8):1881. https://doi.org/10.3390/molecules25081881
Chicago/Turabian StyleRolf, Jascha, Mattijs K. Julsing, Katrin Rosenthal, and Stephan Lütz. 2020. "A Gram-Scale Limonene Production Process with Engineered Escherichia coli" Molecules 25, no. 8: 1881. https://doi.org/10.3390/molecules25081881
APA StyleRolf, J., Julsing, M. K., Rosenthal, K., & Lütz, S. (2020). A Gram-Scale Limonene Production Process with Engineered Escherichia coli. Molecules, 25(8), 1881. https://doi.org/10.3390/molecules25081881