Valorization of Yarrow (Achillea millefolium L.) By-Product through Application of Subcritical Water Extraction
<p>Three-dimensional plot for the obtained responses of (<b>a</b>) total phenols (TPH), (<b>b</b>) total flavonoids (TFL), and (<b>c</b>) antioxidant activity as a function of extraction temperature, time, and HCl concentration.</p> "> Figure 1 Cont.
<p>Three-dimensional plot for the obtained responses of (<b>a</b>) total phenols (TPH), (<b>b</b>) total flavonoids (TFL), and (<b>c</b>) antioxidant activity as a function of extraction temperature, time, and HCl concentration.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Phenols Content
2.2. Determination of Total Flavonoids Content
2.3. Determination of Antioxidant Activity
2.4. Analysis of Variance (ANOVA)
2.5. Chemical Composition of Extracts Determined by HPLC-UV
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Sample
3.3. Subcritical Water Extraction
3.4. Experimental Design
3.5. Determination of Total Phenols and Total Flavonoids Content
3.6. Determination of Antioxidant Activity
3.7. HPLC Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akram, M. Mini review on Achillea millefolium Linn. J. Membr. Biol. 2013, 246, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Benedek, B.; Kopp, B. Achillea millefolium L. s.l. revisited: Recent findings confirm the traditional use. Wien. Med. Wochenschr. 2007, 157(13–14), 312–314. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef] [PubMed]
- Jurenitsch, J. Achillea . In Hager’s Handbuch der pharmazeutischen Praxis; Hänsel, R., Keller, K., Rimpler, H., Schneider, G., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1992; Volume 4, pp. 45–54. [Google Scholar]
- Willuhn, G.T. Millefoliiherba . In Teedrogen und Phytopharmaka, 4th ed.; Wiss Wichtl, M., Ed.; Verlags-Ges.: Stuttgart, Germany, 2002; pp. 399–403. [Google Scholar]
- Benedek, B.; Gjoncaj, N.; Saukel, J.; Kopp, B. Distribution of phenolic compounds in Middle European taxa of the Achillea millefolium L. aggregate. Chem. Biodivers. 2007, 4, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H.A. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220. [Google Scholar] [CrossRef]
- Trouillas, P.; Calliste, C.A.; Allais, D.P.; Simon, A.; Marfak, A.; Delage, C.; Duroux, J.J. Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chem. 2003, 80, 399–407. [Google Scholar] [CrossRef]
- Vidovic, S.; Cvetkovic, D.; Ramic, M.; Dunjic, M.; Malbasa, R.; Tepic, A.; Sumic, Z.; Velicanski, A.; Jokic, S. Screening of changes in content of health benefit compounds: Antioxidant activity and microbiological status of medicinal plants during the production of herbal filter tea. Ind. Crops Prod. 2013, 50, 338–345. [Google Scholar] [CrossRef]
- Ramic, M.; Vidovic, S.; Zekovic, Z.; Vladic, J.; Cvejin, A.; Pavlic, B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason. Sonochem. 2015, 23, 360–368. [Google Scholar] [CrossRef]
- Vidović, S.; Šavikin, K.; Acimovic, M.; Vladic, J.; Ćujić, N.; Cvejin, A.; Janković, T. Insight to the current state and challenges in Aronia melanocarpa cultivation, phytochemicals, potential and applications. In Medicinal Plants: Production, Cultivation and Uses; Matthias, A., Laisné, N., Eds.; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cindrić, M.; Zeković, Z. Subcritical water extraction of sage (Salvia officinalis L.) by-products-Process optimization by response surface methodology. J. Supercrit. Fluids 2016, 116, 36–45. [Google Scholar] [CrossRef]
- Vladić, J.; Ambrus, R.; Szabó-Révész, P.; Vasić, A.; Cvejin, A.; Pavlić, B.; Vidović, S. Recycling of filter tea industry by-products: Production of A. millefolium powder using spray drying technique. Ind. Crops Prod. 2016, 80, 197–206. [Google Scholar] [CrossRef]
- Cabane, B.; Vuilleumier, R. The physics of liquid water. Comptes Rendus Geosci. 2005, 337, 159–171. [Google Scholar] [CrossRef]
- Kruse, A.; Dinjus, E. Hot compressed water as reaction medium and reactant. Properties and synthesis reactions. J. Supercrit. Fluids 2007, 39, 362–380. [Google Scholar] [CrossRef]
- Gil-Chávez, J.G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A 2010, 1217, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crops Prod. 2015, 76, 946–954. [Google Scholar] [CrossRef]
- Vladić, J.; Canli, O.; Pavlić, B.; Zeković, Z.; Vidović, S.; Kaplan, M. Optimization of Saturejamontana subcritical water extraction process and chemical characterization of volatile fraction of extracts. J. Supercrit. Fluid 2017, 120, 86–94. [Google Scholar] [CrossRef]
- Vladić, J.; Nastić, N.; Stanojković, T.; Žižak, Ž.; Čakarević, J.; Popović, L.; Vidovic, S. Subcritical water for recovery of polyphenols from comfrey root and biological activities of extracts. Acta Chim. Slov. 2019, 66, 473–783. [Google Scholar]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Ju, Z.; Howard, L.R. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J. Food Sci. 2005, 70, S270–S276. [Google Scholar] [CrossRef]
- Yang, Y.C.; Yang, Z.W.; Zhang, Z.H.; Li, J.; Zu, Y.G.; Fu, Y.J. Effect of acid hydrolysis in the microwave-assisted extraction of phenolic compounds from Geranium sibiricum Linne with the guidance of antibacterial activity. J. Med. Plants Res. 2016, 7, 819–830. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. TrAC Trend Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Naffati, A.; Vladić, J.; Pavlić, B.; Radosavljević, R.; Gavarić, A.; Vidović, S. Recycling of filter tea industry by-products: Application of subcritical water extraction for recovery of bioactive compounds from A. uva-ursi herbal dust. J. Supercrit. Fluids 2017, 121, 1–9. [Google Scholar] [CrossRef]
- Singh, P.P.; Saldaña, M.D. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Vidović, S.; Nastić, N.; Gavarić, A.; Cindrić, M.; Vladić, J. Development of green extraction process to produce antioxidant-rich extracts from purple coneflower. Sep. Sci. Technol. 2019, 54, 1174–1181. [Google Scholar] [CrossRef]
- Euterpio, M.A.; Cavaliere, C.; Capriotti, A.L.; Crescenzi, C. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: Curcumin from the turmeric rhizome. Anal. Bioanal. Chem. 2011, 401, 2977. [Google Scholar] [CrossRef]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef]
- Ravber, M.; Knez, Ž.; Škerget, M. Optimization of hydrolysis of rutin in subcritical water using response surface methodology. J. Supercrit. Fluids 2015, 104, 145–152. [Google Scholar] [CrossRef]
- Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol. 2011, 58, 203–209. [Google Scholar] [CrossRef]
- Eghdami, A.; Sadeghi, F. Determination of total phenolic and flavonoids contents in methanolic and aqueous extract of Achillea millefolium. Org. Chem. J. 2010, 2, 81–84. [Google Scholar]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Mandic, A.; Vidović, S. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface methodology. J. Supercrit. Fluids 2017, 128, 79–88. [Google Scholar] [CrossRef]
- Zeković, Z.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cvejin, A.; Elgndi, M.A.; Pavlić, B. Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology. J. Supercrit. Fluid 2014, 95, 560–566. [Google Scholar] [CrossRef]
- Gavaric, A.; Ramic, M.; Vladic, J.; Pavlic, B.; Radosavljevic, R.; Vidovic, S. Recovery of antioxidant compounds from aronia filter tea factory by–product: Novel versus conventional extraction approaches. Acta Chim. Slov. 2018, 65, 438–447. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Nicoué, E.É.; Savard, S.; Belkacemi, K. Anthocyanins in wild blueberries of Quebec: Extraction and identification. J. Agric. Food Chem. 2007, 55, 5626–5635. [Google Scholar] [CrossRef]
- Kanmaz Özkaynak, E.; Saral, Ö. The effect of extraction parameters on antioxidant activity of subcritical water extracts obtained from mandarin peel. GIDA 2017, 42, 405–412. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- He, L.; Xu, H.; Liu, X.; He, W.; Yuan, F.; Hou, Z.; Gao, Y. Identification of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant capacities by HPLC–ABTS+ assay. Food Res. Int. 2011, 44, 1161–1167. [Google Scholar] [CrossRef]
- Teixido, E.; Santos, F.J.; Puignou, L.; Galceran, M.T. Analysis of 5-hydroxymethylfurfural in foods by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1135, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Durling, L.J.K.; Busk, L.; Hellman, B.E. Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol. 2009, 47, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT–Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Herrero, M.; Castro-Puyana, M.; Rocamora-Reverte, L.; Ferragut, J.A.; Cifuentes, A.; Ibáñez, E. Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves. Food Res. Int. 2012, 47, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Narita, Y.; Inouye, K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 2012, 135, 943–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.M.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar]
- Markham, K.R. Methods in Plant Biochemistry; Harborne, J.B., Dey, P.M., Eds.; Academic Press: London, UK, 1989; pp. 193–237. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Independent Variable | Symbol | Level | ||
---|---|---|---|---|
Low (−1) | Middle (0) | High (+1) | ||
Temperature (°C) | X1 | 120 | 160 | 200 |
Time (min) | X2 | 10 | 20 | 30 |
HCl concentration (%) | X3 | 0 | 0.75 | 1.5 |
Run | X1[T] | X2 [t] | X3 [c(HCl)] | TPH | TFL | ABTS |
---|---|---|---|---|---|---|
[°C] | [min] | [%] | [mg GAE/g] 2 | [mg CE/g] 3 | [µg TEX/mL] 4 | |
1 | 0 | −1 | 1 | 86.977 | 28.48 | 1637.90 |
2 | −1 | 0 | −1 | 101.67 | 79.19 | 1410.60 |
3 | −1 | −1 | 0 | 52.42 | 27.29 | 890.92 |
4 | 0 | 0 | 0 | 98.64 | 35.17 | 1754.68 |
5 | 0 | 0 | 0 | 86.77 | 32.57 | 1665.47 |
6 | 1 | −1 | 0 | 107.90 | 31.94 | 1853.57 |
7 | 1 | 1 | 0 | 101.08 | 28.52 | 1658.63 |
8 | 0 | 0 | 0 | 93.66 | 31.66 | 1753.15 |
9 | 1 | 0 | −1 | 128.20 | 63.47 | 1601.37 |
10 | 1 | 0 | 1 | 107.00 | 31.14 | 1720.50 |
11 | 0 | 1 | −1 | 94.09 | 53.17 | 1558.57 |
12 | 0 | −1 | −1 | 93.61 | 53.93 | 1715.86 |
13 | −1 | 0 | 1 | 73.81 | 34.81 | 1125.66 |
14 | 0 | 1 | 1 | 92.16 | 26.32 | 1757.99 |
15 | −1 | 1 | 0 | 54.54 | 28.46 | 1002.37 |
Variable | Coefficients | Standard Error | F-Value | p-Value |
---|---|---|---|---|
TPH Content | ||||
Intercept | 93.02 | 5.85 | ||
[T] | 20.22 | 3.58 | 31.87 | 0.0024 |
[t] | 0.12 | 3.58 | 1.107−3 | 0.9747 |
[c (HCl)] | −7.20 | 3.58 | 4.05 | 0.1005 |
[T]2 | −1.54 | 5.27 | 0.085 | 0.7820 |
[t]2 | −12.50 | 5.27 | 5.62 | 0.0638 |
[c (HCl)]2 | 11.19 | 5.27 | 4.50 | 0.0873 |
[T]× [t] | −2.24 | 5.06 | 0.19 | 0.6773 |
[T]× [c (HCl)] | 1.66 | 5.06 | 0.11 | 0.7558 |
[t]× [c (HCl)] | 1.18 | 5.06 | 0.054 | 0.8257 |
TFL Content | ||||
Intercept | 33.13 | 3.20 | ||
[T] | −1.84 | 1.96 | 0.88 | 0.3920 |
[t] | −0.65 | 1.96 | 0.11 | 0.7551 |
[c (HCl)] | −16.13 | 1.96 | 67.69 | 0.0040 |
[T]2 | 3.80 | 2.89 | 1.73 | 0.2453 |
[t]2 | −7.88 | 2.89 | 7.45 | 0.0413 |
[c (HCl)]2 | 15.22 | 2.89 | 27.92 | 0.0033 |
[T]× [t] | 1.15 | 2.77 | 1.73 | 0.2453 |
[T]× [c (HCl)] | 3.01 | 2.77 | 1.18 | 0.3267 |
[t]× [c (HCl)] | −0.35 | 2.77 | 0.16 | 0.9043 |
ABTS | ||||
Intercept | 1724.43 | 82.68 | ||
[T] | 300.57 | 50.63 | 35.24 | 0.0019 |
[t] | −14.97 | 50.63 | 0.087 | 0.7793 |
[c (HCl)] | −5.66 | 50.63 | 0.012 | 0.9154 |
[T]2 | −287.94 | 74.53 | 14.93 | 0.0118 |
[t]2 | −85.12 | 74.53 | 1.30 | 0.3051 |
[c (HCl)]2 | 28.04 | 74.53 | 0.14 | 0.7222 |
[T]× [t] | −76.60 | 71.60 | 1.14 | 0.3336 |
[T]× [c (HCl)] | 101.02 | 71.60 | 1.99 | 0.2174 |
[t]× [c (HCl)] | 69.57 | 71.60 | 0.94 | 0.3759 |
Response | Sum of Squares | DF 1 | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
TPH content | |||||
Model | 4854.44 | 9 | 539.38 | 5.26 | 0.0411 |
Residual | 512.94 | 5 | 102.59 | ||
Lack of fit | 441.96 | 3 | 147.32 | 4.15 | 0.2002 |
Pure error | 70.97 | 2 | 35.49 | ||
Total | 5367.37 | 14 | |||
TFL content | |||||
Model | 3352.65 | 9 | 372.52 | 12.12 | 0.0067 |
Residual | 153.72 | 5 | 30.74 | ||
Lack of fit | 147.08 | 3 | 49.03 | 14.78 | 0.0640 |
Pure error | 6.63 | 2 | 3.32 | ||
Total | 3506.37 | 14 | |||
ABTS | |||||
Model | 1.141 × 106 | 9 | 1.267 × 105 | 6.18 | 0.0295 |
Residual | 1.026 × 106 | 5 | 20,518.99 | ||
Lack of fit | 97,378.83 | 3 | 32,459.61 | 12.45 | 0.0753 |
Pure error | 5216.13 | 2 | 2608.07 | ||
Total | 1.243 ×106 | 14 |
Run | Temperature | Time | c (HCl) | HMF | Chlorogenic Acid |
---|---|---|---|---|---|
[°C] | [min] | [%] | (µg/mL) | (µg/mL) | |
1 | 160 (0) | 10 (−1) | 1.5 (1) | 33.4 | |
2 | 120 (−1) | 20 (0) | 0 (−1) | 5.8 | 30.4 |
3 | 120 (−1) | 10 (−1) | 0.75 (0) | 19.1 | 28.4 |
4 | 160 (0) | 20 (0) | 0.75 (0) | 39.3 | |
5 | 160 (0) | 20 (0) | 0.75 (0) | 33.6 | |
6 | 200 (1) | 10 (−1) | 0.75 (0) | 0.0 | |
7 | 200 (1) | 30 (1) | 0.75 (0) | 0.0 | |
8 | 160 (0) | 20 (0) | 0.75 (0) | 37.0 | |
9 | 200 (1) | 20 (0) | 0 (−1) | 20.7 | |
10 | 200 (1) | 20 (0) | 1.5 (1) | 0.0 | |
11 | 160 (0) | 30 (1) | 0 (−1) | 11.3 | |
12 | 160 (0) | 10 (−1) | 0 (−1) | 12.5 | 16.8 |
13 | 120 (−1) | 20 (0) | 1.5 (1) | 28.8 | |
14 | 160 (0) | 30 (1) | 1.5 (1) | 33.2 | |
15 | 120 (−1) | 30 (1) | 0.75 (0) | 23.5 | 21.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladić, J.; Jakovljević, M.; Molnar, M.; Vidović, S.; Tomić, M.; Drinić, Z.; Jokić, S. Valorization of Yarrow (Achillea millefolium L.) By-Product through Application of Subcritical Water Extraction. Molecules 2020, 25, 1878. https://doi.org/10.3390/molecules25081878
Vladić J, Jakovljević M, Molnar M, Vidović S, Tomić M, Drinić Z, Jokić S. Valorization of Yarrow (Achillea millefolium L.) By-Product through Application of Subcritical Water Extraction. Molecules. 2020; 25(8):1878. https://doi.org/10.3390/molecules25081878
Chicago/Turabian StyleVladić, Jelena, Martina Jakovljević, Maja Molnar, Senka Vidović, Milan Tomić, Zorica Drinić, and Stela Jokić. 2020. "Valorization of Yarrow (Achillea millefolium L.) By-Product through Application of Subcritical Water Extraction" Molecules 25, no. 8: 1878. https://doi.org/10.3390/molecules25081878
APA StyleVladić, J., Jakovljević, M., Molnar, M., Vidović, S., Tomić, M., Drinić, Z., & Jokić, S. (2020). Valorization of Yarrow (Achillea millefolium L.) By-Product through Application of Subcritical Water Extraction. Molecules, 25(8), 1878. https://doi.org/10.3390/molecules25081878