Research on the Coupling and Coordination of Land Ecological Security and High-Quality Agricultural Development in the Han River Basin
<p>Technology roadmap for LES and HAD evaluation and coupling studies.</p> "> Figure 2
<p>Study area.</p> "> Figure 3
<p>Trend map of LES changes in the HRB.</p> "> Figure 4
<p>Spatial differences in the LES results of the HRB.</p> "> Figure 5
<p>Elliptical distribution of the standard deviation of the LES and the change in the center of gravity in the HRB.</p> "> Figure 6
<p>Temporal distribution of the level of HAD in the HRB.</p> "> Figure 7
<p>Spatial differentiation of the HAD of the HRB.</p> "> Figure 8
<p>Elliptical distribution of the standard deviation of HAD and the change in the center of gravity in the HRB.</p> "> Figure 9
<p>Heatmap of the coupled coordination of LES and high-quality agricultural development in the HRB.</p> "> Figure 10
<p>Trends in the spatial and temporal evolution of the coupled and coordinated LES and HAD in the HRB.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Study Area and Data
3.1. Study Area
3.2. Data Sources
3.3. Establishment of an Evaluation Indicator System
3.3.1. LES Evaluation Indicator System
3.3.2. System of Indicators for Evaluating HAD
4. Methods
4.1. Projective Tracer Modeling for Multi-Intelligent Genetic Algorithms
4.1.1. Projective Tracer Models
4.1.2. Multi-Intelligent Genetic Algorithms (MIGAs)
4.2. Natural Breakpoint Categorization (NBC)
4.3. Coupled Coordination Degree Model (CCDM)
4.3.1. Coupling Degree Model (CDM)
4.3.2. Degree of Coupling Coordination (DCC)
4.4. Obstacle Model (OM)
4.5. Gray Predictive Model First-Order Univariate Model (GM (1, 1))
5. Results
5.1. Characteristics of the Spatial and Temporal Evolution of the LES in the HRB
5.1.1. Model Building and Validation
5.1.2. Changes in the Temporal Dimension of LES in the HRB
5.1.3. Changing Spatial Dimensions of LES
5.2. Characteristics of the Spatial and Temporal Evolution of the HAD in the HRB
5.2.1. Model Building and Validation
5.2.2. Time Series Analysis of the HAD in the HRB
5.2.3. Analysis of the Spatial Distribution of HAD in the HRB
5.3. The DCC and Its Spatial and Temporal Evolution Characteristics
5.4. Analysis of Factors Influencing DCC
5.5. GM (1, 1) Model Predictive Analysis
6. Discussion
7. Conclusions
7.1. Research Conclusions
7.2. Limitations
7.3. Future Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veldkamp, A.; Lambin, E.F. Predicting Land-Use Change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Tong, X.; Chen, L. Evaluating Land Ecological Security and Examining Its Relationships with Driving Factors Using GIS and Generalized Additive Model. Sci. Total Environ. 2018, 633, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, B.; Zuk-Golaszewska, K.; Radawiec, W.; Golaszewski, J. Land Use Indicators in the Context of Land Use Efficiency. Sustainability 2023, 15, 1106. [Google Scholar] [CrossRef]
- Zou, Y.; Meng, J.; Zhu, L.; Han, Z.; Ma, Y. Characterizing Land Use Transition in China by Accounting for the Conflicts Underlying Land Use Structure and Function. J. Environ. Manag. 2024, 349, 119311. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhu, X.; Wang, Y. China’s Agricultural Green Total Factor Productivity Based on Carbon Emission: An Analysis of Evolution Trend and Influencing Factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Chen, W.; Hong, F.; Bai, X.; Guo, W. Response of Hydrological Regimes to Land Use Change: A Case Study of the Han River Basin. J. Water Clim. Chang. 2023, 14, 4708–4728. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, M.; Guo, K.; Liu, Y.; Liu, Y.; Cai, W.; Wu, H.; Chen, Z.; Chen, Y.; Zhang, J. Regional Land Eco-Security Evaluation for the Mining City of Daye in China Using the GIS-Based Grey TOPSIS Method. Land 2021, 10, 118. [Google Scholar] [CrossRef]
- Peng, W.; Sun, Y.; Liu, C.; Liu, D. Study on Urban Land Ecological Security Pattern and Obstacle Factors in the Beijing–Tianjin–Hebei Region. Sustainability 2023, 15, 43. [Google Scholar] [CrossRef]
- Liu, C.; Wu, X.; Wang, L. Analysis on Land Ecological Security Change and Affect Factors Using RS and GWR in the Danjiangkou Reservoir Area, China. Appl. Geogr. 2019, 105, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Cao, X.; Zhao, L.; Dong, G.; Jia, K. Spatiotemporal Differentiation of Land Ecological Security and Its Influencing Factors: A Case Study in Jinan, Shandong Province, China. Front. Environ. Sci. 2022, 10, 824254. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy Evaluation of the Ecological Security of Land Resources in Mainland China Based on the Pressure-State-Response Framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Chen, X.; DeGloria, S.D.; Wu, J. Integrative Fuzzy Set Pair Model for Land Ecological Security Assessment: A Case Study of Xiaolangdi Reservoir Region, China. Stoch. Environ. Res. Risk Assess. 2010, 24, 639–647. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z. The Spatiotemporal Impact of Digital Economy on High-Quality Agricultural Development: Evidence from China. Sustainability 2024, 16, 2814. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H. Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method. Sustainability 2023, 15, 7589. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Fuchs-Hanusch, D. A Bibliometric-Based Survey on AHP and TOPSIS Techniques. Expert Syst. Appl. 2017, 78, 158–181. [Google Scholar] [CrossRef]
- Ross, A.M.; Rhodes, D.H.; Hastings, D.E. Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value. Syst. Eng. 2008, 11, 246–262. [Google Scholar] [CrossRef]
- Sanchez, L.M.; Fernandez, J.; Sotomayor, R.; Escolar, S.; Garcia, J.D. A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures. New Gener. Comput. 2013, 31, 139–161. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, S.; Du, L.; Fu, J.; Zou, J.; Peng, L.; Ding, R. Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta. Land 2023, 12, 677. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X.; Duan, Z. Coupling and Coordination Analysis in Urban Agglomerations of China: Urbanization and Ecological Security Perspectives. J. Clean. Prod. 2022, 365, 132730. [Google Scholar] [CrossRef]
- Hong, Y.; Yu, H.; Lu, Y.; Peng, L. Balancing Low-Carbon and Eco-Friendly Development: Coordinated Development Strategy for Land Use Carbon Emission Efficiency and Land Ecological Security. Environ. Sci. Pollut. Res. 2024, 31, 9495–9511. [Google Scholar] [CrossRef]
- Guo, D.; Wang, D.; Zhong, X.; Yang, F.; Yang, Y.; Jia, H. The Coupling Coordination and Interaction Mechanism of Land Ecological Security and High-Quality Economic Development in the Beijing–Tianjin–Hebei Region. Sustainability 2023, 15, 15670. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Meng, X.; Cai, Y. The Coupling and Coordination between Food Production Security and Agricultural Ecological Protection in Main Food-Producing Areas of China. Ecol. Indic. 2023, 154, 110785. [Google Scholar] [CrossRef]
- Qin, S.; Han, Z.; Chen, H.; Wang, H.; Guo, C. High-Quality Development of Chinese Agriculture under Factor Misallocation. Int. J. Environ. Res. Public Health 2022, 19, 9804. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhang, Y.; Wang, C.; Yu, K. Does FDI Promote or Inhibit the High-Quality Development of Agriculture in China? An Agricultural GTFP Perspective. Sustainability 2019, 11, 4620. [Google Scholar] [CrossRef]
- Chi, M.; Guo, Q.; Mi, L.; Wang, G.; Song, W. Spatial Distribution of Agricultural Eco-Efficiency and Agriculture High-Quality Development in China. Land 2022, 11, 722. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Gu, S.; Cheng, X.; Xu, Z.; Zhang, Q. Spatio-Temporal Dynamics of Nutrients in the Upper Han River Basin, China. J. Hazard. Mater. 2009, 162, 1340–1346. [Google Scholar] [CrossRef]
- Qi, W.; Li, H.; Zhang, Q.; Zhang, K. Forest Restoration Efforts Drive Changes in Land-Use/Land-Cover and Water-Related Ecosystem Services in China’s Han River Basin. Ecol. Eng. 2019, 126, 64–73. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global Food Security, Biodiversity Conservation and the Future of Agricultural Intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Pan, S.; Yang, J.; Miao, R.; Ren, W.; Yu, Q.; Fu, B.; Jin, F.-F.; Lu, Y.; et al. Optimizing Resource Use Efficiencies in the Food–Energy–Water Nexus for Sustainable Agriculture: From Conceptual Model to Decision Support System. Curr. Opin. Environ. Sustain. 2018, 33, 104–113. [Google Scholar] [CrossRef]
- Lal, R. Sustainable Intensification of China’s Agroecosystems by Conservation Agriculture. Int. Soil Water Conserv. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Görg, C.; Brand, U.; Haberl, H.; Hummel, D.; Jahn, T.; Liehr, S. Challenges for Social-Ecological Transformations: Contributions from Social and Political Ecology. Sustainability 2017, 9, 1045. [Google Scholar] [CrossRef]
- Singh, A.P.; Rahman, Z. Integrating Corporate Sustainability and Sustainable Development Goals: Towards a Multi-Stakeholder Framework. Cogent Bus. Manag. 2021, 8, 1985686. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Y.; Xu, Y.; Yan, J.; Du, Y.; Xie, X.; Wang, Y. Manganese Mobilization from Sediment to Groundwater in Alluvial-Lacustrine Aquifer System along the Lower Reaches of Han River. J. Hydrol. 2023, 627, 130400. [Google Scholar] [CrossRef]
- Yu, J.; Zou, L.; Xia, J.; Chen, X.; Wang, F.; Zuo, L. A Multi-Dimensional Framework for Improving Flood Risk Assessment: Application in the Han River Basin, China. J. Hydrol. Reg. Stud. 2023, 47, 101434. [Google Scholar] [CrossRef]
- An, S.-U.; Choi, A.; Baek, J.-W.; Lee, H.; Park, J.; Mok, J.-S.; Lee, J.S.; Kang, C.-K.; Hyun, J.-H. Spatial-Temporal Impacts of Invasive Spartina Anglica on the Rates and Pathways of Organic Carbon Mineralization and Resulting C-Fe-S Cycles in the Intertidal Wetland of the Han River Estuary, Yellow Sea. Mar. Pollut. Bull. 2024, 206, 116681. [Google Scholar] [CrossRef] [PubMed]
- Van, C.T.; Tuan, N.C.; Son, N.T.; Tri, D.Q.; Anh, L.N.; Tran, D.D. Flood Vulnerability Assessment and Mapping: A Case of Ben Hai-Thach Han River Basin in Vietnam. Int. J. Disaster Risk Reduct. 2022, 75, 102969. [Google Scholar] [CrossRef]
- Xie, H.; He, Y.; Choi, Y.; Chen, Q.; Cheng, H. Warning of Negative Effects of Land-Use Changes on Ecological Security Based on GIS. Sci. Total Environ. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Yang, R.; Du, W.; Yang, Z. Spatiotemporal Evolution and Influencing Factors of Urban Land Ecological Security in Yunnan Province. Sustainability 2021, 13, 2936. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, W.; Zhang, J. Assessment of Land Ecological Security from 2000 to 2020 in the Chengdu Plain Region of China. Land 2023, 12, 1448. [Google Scholar] [CrossRef]
- Cui, X.; Cai, T.; Deng, W.; Zheng, R.; Jiang, Y.; Bao, H. Indicators for Evaluating High-Quality Agricultural Development: Empirical Study from Yangtze River Economic Belt, China. Soc. Indic. Res. 2022, 164, 1101–1127. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gu, T.; Shi, Y. The Influence of New Quality Productive Forces on High-Quality Agricultural Development in China: Mechanisms and Empirical Testing. Agriculture 2024, 14, 1022. [Google Scholar] [CrossRef]
- Xiang, H.; Zhou, C.; Cuidong; Song, H. High-Quality Agricultural Development in the Central China: Empirical Analysis Based on the Dongting Lake Area. Geomatica 2024, 76, 100010. [Google Scholar] [CrossRef]
- Wang, G.; Mi, L.; Hu, J.; Qian, Z. Spatial Analysis of Agricultural Eco-Efficiency and High-Quality Development in China. Front. Environ. Sci. 2022, 10, 847719. [Google Scholar] [CrossRef]
- Bickel, P.J.; Kur, G.; Nadler, B. Projection Pursuit in High Dimensions. Proc. Natl. Acad. Sci. USA 2018, 115, 9151–9156. [Google Scholar] [CrossRef]
- Lee, E.-K.; Cook, D.; Klinke, S.; Lumley, T. Projection Pursuit for Exploratory Supervised Classification. J. Comput. Graph. Stat. 2005, 14, 831–846. [Google Scholar] [CrossRef]
- Loperfido, N. Skewness-Based Projection Pursuit: A Computational Approach. Comput. Stat. Data Anal. 2018, 120, 42–57. [Google Scholar] [CrossRef]
- Collins, G.; Francom, D.; Rumsey, K. Bayesian Projection Pursuit Regression. Stat. Comput. 2023, 34, 29. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J. A Multi-Agent Genetic Algorithm for Community Detection in Complex Networks. Phys. Stat. Mech. Its Appl. 2016, 449, 336–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhou, Q.; Tang, F.; Zhang, B.; Huang, N.; Nath, B. Continuous Change Detection and Classification—Spectral Trajectory Breakpoint Recognition for Forest Monitoring. Land 2022, 11, 504. [Google Scholar] [CrossRef]
- Santos, F.; Dubovyk, O.; Menz, G. Monitoring Forest Dynamics in the Andean Amazon: The Applicability of Breakpoint Detection Methods Using Landsat Time-Series and Genetic Algorithms. Remote Sens. 2017, 9, 68. [Google Scholar] [CrossRef]
- Chen, P.; Shi, X. Dynamic Evaluation of China’s Ecological Civilization Construction Based on Target Correlation Degree and Coupling Coordination Degree. Environ. Impact Assess. Rev. 2022, 93, 106734. [Google Scholar] [CrossRef]
- Di, Z.; Xue-qin, W. Research on Coupling Degree and Coupling Path between China’s Carbon Emission Efficiency and Industrial Structure Upgrade. J. Nat. Resour. 2019, 34, 2305–2316. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Hu, M. Dynamic Simulation and Assessment of the Coupling Coordination Degree of the Economy–Resource–Environment System: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jiang, D.; Fu, J.; Lin, G.; Zhang, J. Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model. Sustainability 2020, 12, 2009. [Google Scholar] [CrossRef]
- Xia, X.; Lin, K.; Ding, Y.; Dong, X.; Sun, H.; Hu, B. Research on the Coupling Coordination Relationships between Urban Function Mixing Degree and Urbanization Development Level Based on Information Entropy. Int. J. Environ. Res. Public Health 2021, 18, 242. [Google Scholar] [CrossRef]
- Ali Sadat, S.; Vakilalroaya Fini, M.; Hashemi-Dezaki, H.; Nazififard, M. Barrier Analysis of Solar PV Energy Development in the Context of Iran Using Fuzzy AHP-TOPSIS Method. Sustain. Energy Technol. Assess. 2021, 47, 101549. [Google Scholar] [CrossRef]
- Tseng, F.-M.; Yu, H.-C.; Tzeng, G.-H. Applied Hybrid Grey Model to Forecast Seasonal Time Series. Technol. Forecast. Soc. Change 2001, 67, 291–302. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z. The Kernel-Based Nonlinear Multivariate Grey Model. Appl. Math. Model. 2018, 56, 217–238. [Google Scholar] [CrossRef]
- Peng-cheng, L.I.; Chun, H.A.N.; Yue-min, W.; Jia-rong, W. Improved RAGA-PPC Model and Its Application to River Health Assessment. J. Yangtze River Sci. Res. Inst. 2016, 33, 18. [Google Scholar] [CrossRef]
- Yu, X.; Lou, W. An Exploration of Prediction Performance Based on Projection Pursuit Regression in Conjunction with Data Envelopment Analysis: A Comparison with Artificial Neural Networks and Support Vector Regression. Mathematics 2023, 11, 4775. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land Use/Cover Predictions Incorporating Ecological Security for the Yangtze River Delta Region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Dong, G.; Liu, Z.; Niu, Y.; Jiang, W. Identification of Land Use Conflicts in Shandong Province from an Ecological Security Perspective. Land 2022, 11, 2196. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Wei, X.; Ma, L.; Lin, M.; Meng, X.; Huang, Q. Analysis of Socio-Hydrological Evolution Processes Based on a Modeling Approach in the Upper Reaches of the Han River in China. Water 2021, 13, 2458. [Google Scholar] [CrossRef]
- Tian, H.; Hui, T.; Changlai, X.; Honggen, X.; Xiujuan, L.; Jianli, Q.; Longtan, Q.; Weilong, Z.; Hong, Z. Groundwater Vulnerability Assessment of Nitrate Pollution in the Ankang Basin: Using an Optimized DRASTIC-LY Method. J. Water Health 2023, 21, 1177–1192. [Google Scholar] [CrossRef]
- Lu, S.; Guan, X.; He, C.; Zhang, J. Spatio-Temporal Patterns and Policy Implications of Urban Land Expansion in Metropolitan Areas: A Case Study of Wuhan Urban Agglomeration, Central China. Sustainability 2014, 6, 4723–4748. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, N.; Zhu, H. Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China. Int. J. Environ. Res. Public Health 2023, 20, 1225. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Abula, B.; Lu, Q.; Liu, Y.; Zhou, Y. Regional Business Environment, Agricultural Opening-Up and High-Quality Development: Dynamic Empirical Analysis from China’s Agriculture. Agronomy 2022, 12, 974. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M. The Impact of Agricultural Digitization on the High-Quality Development of Agriculture: An Empirical Test Based on Provincial Panel Data. Land 2022, 11, 2152. [Google Scholar] [CrossRef]
- Xu, G.; Li, J.; Schwarz, P.M.; Yang, H.; Chang, H. Rural Financial Development and Achieving an Agricultural Carbon Emissions Peak: An Empirical Analysis of Henan Province, China. Environ. Dev. Sustain. 2022, 24, 12936–12962. [Google Scholar] [CrossRef]
- Li, B.; Li, W.; Zhang, Y. Prediction and Analysis of Agricultural Eco-Efficiency in Henan Province Based on GM-BP Neural Network. J. Grey Syst. 2022, 34, 78–96. [Google Scholar]
- Xu, P.; Shu, L.; Li, Y.; Zhou, S.; Zhang, G.; Wu, Y.; Yang, Z. Pretreatment and Composting Technology of Agricultural Organic Waste for Sustainable Agricultural Development. Heliyon 2023, 9, e16311. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Z.; Khan, A.; Ke, S. Organizational Support, Market Access, and Farmers’ Adoption of Agricultural Green Production Technology: Evidence from the Main Kiwifruit Production Areas in Shaanxi Province. Environ. Sci. Pollut. Res. 2024, 31, 11912–11932. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ding, R.; Shi, W.; Li, J. Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China. Agriculture 2024, 14, 439. [Google Scholar] [CrossRef]
- Su, X.; Zhou, Y.; Li, Q. Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China. Int. J. Environ. Res. Public Health 2021, 18, 8383. [Google Scholar] [CrossRef]
- Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. [Google Scholar] [CrossRef]
- Song, W.; Feng, Y.; Wang, Z. Ecological Restoration Programs Dominate Vegetation Greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef]
- Gong, C.; Wan, Y. A Study of Fiscal Expenditure Structure and Green Economic Growth Effects: A Sample from Asian Economies. J. Environ. Public Health 2022, 2022, 2180532. [Google Scholar] [CrossRef]
Criterion Layer | Index Layer | Calculation | Attribute |
---|---|---|---|
Pressure | X1 Population density | Total urban population/Area | – |
X2 Urbanization rate | Urban resident population/Total resident population | – | |
X3 Economic density | Economic output/Area size | + | |
X4 Natural population growth rate | Statistical data | – | |
X5 GDP per capita | Total GDP/Total regional population | – | |
State | X6 Cultivated land area per capita | Total arable land/Total population | + |
X7 Construction land area per capita | Total built-up land area/Total population | – | |
X8 Green coverage | Area covered by vegetation/Total area of the region | + | |
X9 Parkland area per capita | Total parkland area/Total population | + | |
X10 water resources per capita | Total water resources/Total population | + | |
Response | X11 Centralized urban sewage treatment rate | Statistical data | + |
X12 Comprehensive industrial solid waste utilization rate | Statistical data | + | |
X13 Nonhazardous domestic waste disposal rate | Statistical data | + | |
X14 Percentage of tertiary sector | Statistical data | + | |
X15 Energy consumption per unit of GDP | Statistical data | – |
Criterion Layer | Index Layer | Calculation | Attribute |
---|---|---|---|
Quality and efficiency level | Y1 Agricultural productivity | Value added of agriculture, forestry, and fisheries/Total output of agriculture, forestry, and fisheries | + |
Y2 Agricultural economic effects | Gross agricultural output/Total sown food area | + | |
Y3 Rate of return on fiscal expenditures | Value added of primary sector/Local fiscal expenditure | + | |
Y4 Labor productivity | Gross value of agricultural, forestry, livestock, and fisheries production/Rural workers | + | |
Security of supply | Y5 Level of mechanization per capita | Gross value of agricultural, forestry, livestock, and fisheries production/Rural workers | + |
Y6 Effective irrigation rate | Area of land effectively irrigated/Total cultivated area | + | |
Y7 Electrification level | Rural electricity consumption/Rural population | + | |
Y8 Funding for agricultural science and technology activities | Internal expenditure on R&D funding in RMB 10,000,000 × (gross output value of agriculture, forestry, animal husbandry, and fisheries/gross domestic product) | + | |
Co-ordinated development | Y9 Level of urban‒rural income coordination | Per capita disposable income of urban residents/Per capita disposable income of rural residents | - |
Y10 Level of urban‒rural consumption coordination | Per capita disposable income of urban residents/Per capita disposable income of rural residents | - | |
Y11 Industrial harmonization index | Secondary and tertiary industry output/Primary industry output | - | |
Y12 Level of regional coordination | Agricultural GDP per capita in metropolitan areas/Provincial agricultural GDP per capita | + | |
Green development | Y13 Fertilizer application intensity | Fertilizer application/Cultivated land area | - |
Y14 Pesticide application intensity | Pesticide application/Cultivated land area | - | |
Y15 Intensity of application of agricultural films | Agricultural film use/Area sown to crops | - | |
Y16 Comprehensive livestock and poultry manure utilization rate | Statistical data | + | |
Shared development | Y17 Enrichment level of the rural population | Per capita expenditure on education, culture, and recreation/Per capita consumption expenditure | + |
Y18 Rural Engel coefficient | Food expenditure/Consumption expenditure per rural inhabitant | - | |
Y19 Level of rural health care | Statistical data | + | |
Y20 Level of farmers’ income | Per capita net income of farmers | + |
Interval of DCC | Level | Status of DCC |
---|---|---|
[0.0~0.1) | 1 | Extreme disorder |
[0.1~0.2) | 2 | Severe disorder |
[0.2~0.3) | 3 | Moderate disorder |
[0.3~0.4) | 4 | Mildly disorder |
[0.4~0.5) | 5 | Nearly disorder |
[0.5~0.6) | 6 | Barely coordinated |
[0.6~0.7) | 7 | Elementary coordination |
[0.7~0.8) | 8 | Intermediate coordination |
[0.8~0.9) | 9 | Good coordination |
[0.9~1.0] | 10 | Quality coordination |
Variance Ratio (C) | Small Residual Probability (p) | Model Accuracy |
---|---|---|
(0, 0.35) | (0.95, 1.00) | Excellent |
(0.35, 0.50) | (0.80, 0.95) | Pass |
(0.50, 0.65) | (0.70, 0.80) | Barely Pass |
(0.65, 1.00) | (0, 0.70) | Substandard |
Year | Inspection Indicators | |||||||
---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K1’ | K2’ | K3′ | |
2010 | 0.6253 | 0.4541 | 0.521 | 0.4521 | 0.785 | 1 | 0.5459 | 0.521 |
2011 | 0.652 | 0.4421 | 0.5121 | 0.4451 | 0.761 | 1 | 0.5579 | 0.5121 |
2012 | 0.6211 | 0.3854 | 0.5102 | 0.4325 | 0.751 | 1 | 0.6146 | 0.5102 |
2013 | 0.61235 | 0.2854 | 0.501 | 0.4251 | 0.749 | 1 | 0.7146 | 0.501 |
2014 | 0.6105 | 0.5842 | 0.4855 | 0.431 | 0.732 | 1 | 0.4158 | 0.4855 |
2015 | 0.6108 | 0.5645 | 0.474 | 0.4115 | 0.712 | 1 | 0.4355 | 0.474 |
2016 | 0.5884 | 0.4875 | 0.472 | 0.405 | 0.681 | 1 | 0.5125 | 0.472 |
2017 | 0.5654 | 0.4658 | 0.445 | 0.395 | 0.632 | 1 | 0.5342 | 0.445 |
2018 | 0.5455 | 0.4458 | 0.435 | 0.384 | 0.748 | 1 | 0.5542 | 0.435 |
2019 | 0.5355 | 0.4658 | 0.432 | 0.375 | 0.751 | 1 | 0.5342 | 0.432 |
2020 | 0.5344 | 0.4785 | 0.415 | 0.365 | 0.755 | 1 | 0.5215 | 0.415 |
2021 | 0.5385 | 0.5021 | 0.411 | 0.362 | 0.702 | 1 | 0.4979 | 0.411 |
2022 | 0.5125 | 0.481 | 0.398 | 0.359 | 0.757 | 1 | 0.519 | 0.398 |
Scenarios | Projection Vectors | |||||||
---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | a1′ | a2′ | a3′ | |
Scenario 1 | 0.352 | 0.432 | 0.489 | 0.383 | −0.251 | |||
Scenario 2 | 0.465 | 0.485 | 0.452 | 0.395 | −0.274 | −0.0056 | ||
Scenario 3 | 0.463 | 0.515 | 0.438 | 0.418 | −0.285 | 0.0081 | −0.521 | 0.443 |
Year | Inspection Indicators | |||||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T1′ | T2′ | T3′ | |
2010 | 0.485 | 0.689 | 0.369 | 0.445 | 0.747 | 1 | 0.311 | 0.369 |
2011 | 0.461 | 0.685 | 0.354 | 0.475 | 0.725 | 1 | 0.315 | 0.354 |
2012 | 0.455 | 0.605 | 0.352 | 0.481 | 0.711 | 1 | 0.395 | 0.352 |
2013 | 0.429 | 0.654 | 0.344 | 0.491 | 0.704 | 1 | 0.346 | 0.344 |
2014 | 0.41 | 0.645 | 0.341 | 0.505 | 0.688 | 1 | 0.355 | 0.341 |
2015 | 0.405 | 0.638 | 0.332 | 0.488 | 0.654 | 1 | 0.362 | 0.332 |
2016 | 0.389 | 0.585 | 0.328 | 0.471 | 0.662 | 1 | 0.415 | 0.328 |
2017 | 0.375 | 0.574 | 0.324 | 0.455 | 0.641 | 1 | 0.426 | 0.324 |
2018 | 0.361 | 0.562 | 0.318 | 0.448 | 0.633 | 1 | 0.438 | 0.318 |
2019 | 0.378 | 0.524 | 0.385 | 0.432 | 0.613 | 1 | 0.476 | 0.385 |
2020 | 0.381 | 0.511 | 0.374 | 0.428 | 0.585 | 1 | 0.489 | 0.374 |
2021 | 0.357 | 0.485 | 0.398 | 0.424 | 0.584 | 1 | 0.515 | 0.398 |
2022 | 0.345 | 0.477 | 0.381 | 0.415 | 0.532 | 1 | 0.523 | 0.381 |
Scenario | Projection Vectors | |||||||
---|---|---|---|---|---|---|---|---|
b1 | b2 | b3 | b4 | b5 | b1′ | b2′ | b3′ | |
Scenario 1 | 0.475 | 0.285 | 0.335 | −0.415 | 0.521 | |||
Scenario 2 | 0.451 | 0.344 | 0.371 | −0.325 | 0.514 | −0.0044 | ||
Scenario 3 | 0.388 | 0.351 | 0.388 | −0.338 | 0.476 | 0.0061 | −0.348 | 0.329 |
City | Top Five Indicator Level Barrier Factors | ||||
---|---|---|---|---|---|
Wuhan | Y9 | Y3 | X8 | X10 | X6 |
Xiangyang | Y9 | Y3 | X9 | X10 | Y1 |
Shiyan | Y9 | Y3 | X9 | X10 | Y6 |
Xiaogan | Y9 | Y3 | X8 | X10 | Y5 |
Jingmen | Y9 | Y3 | X9 | X10 | X4 |
Xiantao | Y9 | Y3 | X9 | X1 | X4 |
Tianmen | Y9 | Y3 | X9 | X10 | X4 |
Qianjiang | Y9 | Y3 | X9 | X10 | X4 |
Suizhou | Y9 | Y6 | X9 | X10 | X5 |
Shennongjia | Y9 | Y2 | Y3 | X4 | X1 |
Hanzhong | Y9 | Y6 | Y3 | X9 | X12 |
Ankang | Y9 | Y6 | Y3 | X9 | X10 |
ShangLuo | Y9 | Y6 | Y3 | X9 | X10 |
Xuoyang | Y5 | Y6 | Y3 | X10 | X12 |
Sanmenxia | Y5 | Y6 | X9 | X10 | X12 |
Zhumadian | Y5 | Y6 | X9 | X10 | X5 |
Nanyang | Y5 | Y16 | X9 | X10 | X5 |
Year | Real Value | Projected Value | Residual | Relative Error |
---|---|---|---|---|
2010 | 0.103 | 0.103 | 0 | 0 |
2011 | 0.200 | 0.225 | −0.025 | −0.125 |
2012 | 0.171 | 0.203 | −0.032 | −0.187 |
2013 | 0.354 | 0.258 | 0.096 | 0.271 |
2014 | 0.520 | 0.455 | 0.065 | 0.125 |
2015 | 0.644 | 0.577 | 0.067 | 0.104 |
2016 | 0.588 | 0.506 | 0.082 | 0.139 |
2017 | 0.655 | 0.532 | 0.123 | 0.188 |
2018 | 0.558 | 0.642 | −0.084 | −0.151 |
2019 | 0.569 | 0.648 | −0.079 | −0.139 |
2020 | 0.685 | 0.612 | 0.073 | 0.107 |
2021 | 0.688 | 0.620 | 0.068 | 0.099 |
2022 | 0.689 | 0.610 | 0.079 | 0.115 |
2025 | 0.682 | |||
2028 | 0.696 | |||
2030 | 0.744 | |||
2035 | 0.792 | |||
2040 | 0.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Liu, Y.; Zhou, Y.; Liu, J. Research on the Coupling and Coordination of Land Ecological Security and High-Quality Agricultural Development in the Han River Basin. Land 2024, 13, 1666. https://doi.org/10.3390/land13101666
Su Y, Liu Y, Zhou Y, Liu J. Research on the Coupling and Coordination of Land Ecological Security and High-Quality Agricultural Development in the Han River Basin. Land. 2024; 13(10):1666. https://doi.org/10.3390/land13101666
Chicago/Turabian StyleSu, Yuelong, Yucheng Liu, Yong Zhou, and Jiakang Liu. 2024. "Research on the Coupling and Coordination of Land Ecological Security and High-Quality Agricultural Development in the Han River Basin" Land 13, no. 10: 1666. https://doi.org/10.3390/land13101666
APA StyleSu, Y., Liu, Y., Zhou, Y., & Liu, J. (2024). Research on the Coupling and Coordination of Land Ecological Security and High-Quality Agricultural Development in the Han River Basin. Land, 13(10), 1666. https://doi.org/10.3390/land13101666