Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China
<p>Research framework.</p> "> Figure 2
<p>Land use and land cover in the Jianghan Plain.</p> "> Figure 3
<p>Ecosystem services in the Jianghan Plain. (<b>a</b>) Habitat quality (1 represents the place with the highest habitat quality, 0 reflects the place with the lowest habitat quality); (<b>b</b>) water yield (mm/yr); (<b>c</b>) carbon storage (t.ha<sup>−2</sup>yr<sup>−1</sup>); (<b>d</b>) integrated ecosystem service).</p> "> Figure 4
<p>Ecological sensitivity in Jianghan Plain. (<b>a</b>) Habitat sensitivity; (<b>b</b>) water sensitivity; (<b>c</b>) soil erosion sensitivity(t.hm<sup>−2</sup>); (<b>d</b>) integrated ecological sensitivity).</p> "> Figure 5
<p>(<b>a</b>) Ecological importance and (<b>b</b>) ecological sources.</p> "> Figure 6
<p>Resistance indicators and integrated resistance surface. (<b>a</b>) Degree of relief; (<b>b</b>) slope; (<b>c</b>) distance from first-class roads; (<b>d</b>) distance from second-class roads; (<b>e</b>) basic resistance of land-cover types; (<b>f</b>) distance to pollution sources; (<b>g</b>) integrated resistance value.</p> "> Figure 7
<p>(<b>a</b>) Location of optimal ecological corridors and potential corridors and (<b>b</b>)length of ecological corridors.</p> "> Figure 8
<p>The centrality of habitat corridors and ecological sources.</p> "> Figure 9
<p>(<b>a</b>)Improvement scores (ISs) and barriers of ecological corridors in the Jianghan Plain and (<b>b</b>)the improvement potential level of each corridor.</p> "> Figure 10
<p>(<b>a</b>) Priority and (<b>b</b>) pinch points of ecological corridors on the Jianghan Plain.</p> "> Figure 11
<p>Composite map for improvement potential level and priority; L means low level; M means medium level; H means high level; V means very high level; L&L means the improvement potential level of the corridor is at low level and, at the same time, the priority level of this corridor is at a low level.</p> "> Figure A1
<p>Land use structure of the ecological corridors.</p> "> Figure A2
<p>Top 40 pinch points and top 40 barriers in Jianghan Pl.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area
2.1.2. Data Sources
2.2. Research Framework
2.2.1. Identifying Ecological Sources
2.2.2. Ecological Services
Habitat Quality
Water Yield
Carbon Storage
2.3. Ecological Sensitivity
2.3.1. Habitat Sensibility
2.3.2. Water Sensibility
2.3.3. Soil Erosion Sensitivity
2.3.4. Integrated Resistance Surface
2.3.5. Extraction of Ecological Corridors
3. Results
3.1. Spatial Pattern of Ecological Services, Ecological Sensitivity, and Ecological Sources
3.2. Integrated Resistance
3.3. Location of Optimal Ecological Corridors and Potential Corridors
3.4. Centrality of Ecological Corridors and Sources
3.5. Locations of Barriers and Priority Area
4. Discussion
4.1. Discussion on ESP Construction
4.2. Discussion on Robustness of the Results
4.3. Discussion on Weakness of this Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Evaluation Indicators | Evaluation Model | Model Parameters | Parameters Sources | Reference |
---|---|---|---|---|
Habitat Quality | Habitat Quality module in InVEST model | Distance between the habitat and threat sources | Calculated using Land use/cover map | Li et al. (2021) [83] |
Level of legal in each cell | Default value | |||
Relative impact of each threat | Assignment values according to previous studies | |||
Relative sensitivity of each habitat type to threat | ||||
Carbon Storage | Carbon storage and sequestration module in InVEST model | Carbon pools | Tang et al. (2020) [103] | |
Land use/cover | Derived from Land use/cover map | |||
Water Yield | Water yield module in InVEST model | Land use/cover | Yang et al. (2019) [92] | |
Precipitation | Calculated using Meteorological data | |||
Average annual reference evapotranspiration | ||||
Root restricting layer depth | Calculated using Soil data | |||
Plant available water content | ||||
Z parameter | Assignment values according to previous studies | |||
Watersheds/ sub watersheds | Calculated using DEM | |||
Soil Erosion Sensitivity | CSLE model | Slope length L/slope steepness S | Liu et al. (2020); Gao et al. (2021) [97,104] | |
Rainfall erosivity R | Calculated using Meteorological Data | |||
Soil erodibility K | Calculated using Soil data | |||
Cover management C/engineering practices P/tillage practices T | Assignment values according to previous studies | |||
Water Sensitivity | The distance to water body | Classification of distance to water body | Calculated using land-use and land cover map | Yimin et al. (2018); Xiao et al. (2020) [93,94] |
Distance to wastewater sources or sewage treatment plant (m) | Classification of distance to wastewater sources or sewage treatment plant | Calculated using wastewater sources map and sewage treatment plant distribution map | ||
Distance to polluting air sources(m) | Classification of distance to polluting air sources | Calculated using polluting air sources map | ||
Habitat Sensitivity | The distance to major roads | Classification of distance to major roads | Calculated using transportation planning map | Rayfield et al. (2010); Yimin et al. (2018) [94,105] |
The distance to nature reserves | Classification of distance to nature reserves | Calculated using nature reserve distribution map | ||
Land use types | Classification of Land use types | Reclassified using land use/cover map | ||
NDVI | Classification of NDVI value | Reclassified using NDVI |
Rank | Land Cover Type | Latitude | Longitude | County |
---|---|---|---|---|
1 | Lake | 112.63 | 31.11 | Zhongxiang |
2 | Lake | 112.62 | 31.10 | Zhongxiang |
3 | Paddy filed | 112.62 | 31.10 | Zhongxiang |
4 | Paddy filed | 112.62 | 31.09 | Zhongxiang |
5 | Shrubland | 113.21 | 30.89 | Jingshan |
6 | Shrubland | 113.21 | 30.88 | Jingshan |
7 | Shrubland | 113.21 | 30.88 | Jingshan |
8 | Pond | 113.27 | 30.83 | Tianmen |
9 | open woodland | 113.27 | 30.83 | Tianmen |
10 | open woodland | 113.26 | 30.82 | Tianmen |
11 | River | 113.51 | 30.80 | Yingcheng |
12 | River | 113.51 | 30.77 | Yingcheng |
13 | Pond | 113.70 | 30.62 | Hanchuan |
14 | River | 113.64 | 30.57 | Hanchuan |
15 | River | 113.64 | 30.55 | Hanchuan |
16 | Pond | 112.66 | 30.61 | Qianjiang |
17 | River | 113.64 | 30.54 | Hanchuan |
18 | River | 112.66 | 30.61 | Qianjiang |
19 | Beach land | 111.96 | 30.64 | Dangyang |
20 | River | 112.55 | 30.59 | Shayang |
21 | River | 113.61 | 30.50 | Hanchuan |
22 | River | 112.57 | 30.56 | Shayang |
23 | Irrigated land | 112.57 | 30.55 | Shayang |
24 | Paddy filed | 113.64 | 30.43 | Hanchuan |
25 | Irrigated land | 113.63 | 30.43 | Hanchuan |
26 | River | 113.34 | 30.43 | Xiantao |
27 | River | 112.86 | 30.46 | Qianjiang |
28 | River | 113.26 | 30.43 | Xiantao |
29 | Beach land | 112.86 | 30.46 | Qianjiang |
30 | Paddy filed | 113.61 | 30.40 | Xiantao |
31 | Paddy filed | 113.60 | 30.40 | Xiantao |
32 | River | 113.39 | 30.41 | Xiantao |
33 | River | 113.47 | 30.39 | Xiantao |
34 | River | 113.47 | 30.39 | Xiantao |
35 | River | 113.47 | 30.39 | Xiantao |
36 | River | 113.45 | 30.39 | Tianmen |
37 | River | 113.47 | 30.39 | Xiantao |
38 | Lake | 112.25 | 30.46 | Jingzhou |
39 | River | 112.84 | 30.41 | Qianjiang |
40 | Irrigated land | 112.81 | 31.19 | Zhongxiang |
Rank | Land Cover Type | Latitude | Longitude | County |
---|---|---|---|---|
1 | Paddy filed | 113.26 | 31.20 | Jingshan |
2 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
3 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
4 | Paddy filed | 112.61 | 31.10 | Zhongxiang |
5 | Mine | 112.62 | 31.10 | Zhongxiang |
6 | Paddy filed | 112.61 | 31.10 | Zhongxiang |
7 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
8 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
9 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
10 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
11 | Rural construction land | 112.61 | 31.10 | Zhongxiang |
12 | Paddy filed | 112.62 | 31.10 | Zhongxiang |
13 | Urban construction land | 113.47 | 30.86 | Yingcheng |
14 | Paddy filed | 113.70 | 30.74 | Hanchuan |
15 | Rural construction land | 113.64 | 30.43 | Hanchuan |
16 | Rural construction land | 113.64 | 30.43 | Hanchuan |
17 | Paddy filed | 112.14 | 30.45 | Jingzhou |
18 | Rural construction land | 113.60 | 30.34 | Xiantao |
19 | Rural construction land | 113.60 | 30.34 | Xiantao |
20 | Mine | 113.49 | 30.33 | Xiantao |
21 | Mine | 113.50 | 30.33 | Xiantao |
22 | Mine | 113.50 | 30.33 | Xiantao |
23 | Mine | 113.50 | 30.33 | Xiantao |
24 | Mine | 113.50 | 30.33 | Xiantao |
25 | Mine | 113.50 | 30.33 | Xiantao |
26 | Mine | 113.51 | 30.33 | Xiantao |
27 | Mine | 113.51 | 30.33 | Xiantao |
28 | Mine | 113.52 | 30.33 | Xiantao |
29 | Mine | 113.52 | 30.33 | Xiantao |
30 | Paddy filed | 113.23 | 30.09 | Honghu |
31 | Paddy filed | 112.36 | 30.08 | Jiangling |
32 | Rural construction land | 112.37 | 30.08 | Jiangling |
33 | Rural construction land | 112.37 | 30.08 | Jiangling |
34 | Rural construction land | 112.37 | 30.08 | Jiangling |
35 | Mine | 112.36 | 30.07 | Jiangling |
36 | Mine | 112.37 | 30.07 | Jiangling |
37 | Rural construction land | 111.91 | 29.88 | Gongan |
38 | Paddy filed | 112.19 | 29.69 | Gongan |
39 | Paddy filed | 112.38 | 29.63 | Shishou |
40 | Mine | 113.24 | 31.20 | Jingshan |
References
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating Habitat Isolation in Landscape Planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Aronson, J.; Clewell, A.F.; Blignaut, J.N.; Milton, S.J. Ecological Restoration: A New Frontier for Nature Conservation and Economics. J. Nat. Conserv. 2006, 14, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Xia, C.; Suo, X.; Wei, Z. A Framework for Calculating the Net Benefits of Ecological Restoration Programs in China. Ecosyst. Serv. 2021, 50, 101325. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory Spatial Planning and National Governance System in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Zhu, X.; Zhang, B. Ecological Security Pattern: A New Idea for Balancing Regional Development and Ecological Protection. A Case Study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Nature Conservation Planning in Europe: Developing Ecological Networks. Landsc. Urban Plan. 1995, 32, 169–183. [Google Scholar] [CrossRef]
- Fábos, J.G. Greenway Planning in the United States: Its Origins and Recent Case Studies. Landsc. Urban Plan. 2004, 68, 321–342. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y. Urban Ecological Corridors Construction: A Review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Hu, Y.; Wu, K. Can the Establishment of Ecological Security Patterns Improve Ecological Protection? An Example of Nanchang, China. Sci. Total. Environ. 2020, 740, 140051. [Google Scholar] [CrossRef] [PubMed]
- Jongman, R.H.G.; Külvik, M.; Kristiansen, I. European Ecological Networks and Greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Modica, G.; Praticò, S.; Laudari, L.; Ledda, A.; Di Fazio, S.; De Montis, A. Implementation of Multispecies Ecological Networks at the Regional Scale: Analysis and Multi-Temporal Assessment. J. Environ. Manag. 2021, 289, 112494. [Google Scholar] [CrossRef] [PubMed]
- Gurrutxaga, M.; Rubio, L.; Saura, S. Key Connectors in Protected Forest Area Networks and the Impact of Highways: A Transnational Case Study from the Cantabrian Range to the Western Alps (SW Europe). Landsc. Urban Plan. 2011, 101, 310–320. [Google Scholar] [CrossRef]
- Delnevo, N.; van Etten, E.J.; Byrne, M.; Petraglia, A.; Carbognani, M.; Stock, W.D. Habitat Fragmentation Restricts Insect Pollinators and Pollen Quality in a Threatened Proteaceae Species. Biol. Conserv. 2020, 252, 108824. [Google Scholar] [CrossRef]
- Fichera, C.R.; Laudari, L.; Modica, G. Application, Validation and Comparison in Different Geographical Contexts of an Integrated Model for the Design of Ecological Networks. J. Agric. Eng. 2013, 46, 52–61. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-Based Approach for Incorporating the Connectivity of Ecological Networks into Regional Planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Integrating Landscape Connectivity in Broad-Scale Forest Planning through a New Graph-Based Habitat Availability Methodology: Application to Capercaillie (Tetrao Urogallus) in Catalonia (NE Spain). Eur. J. For. Res. 2008, 127, 23–31. [Google Scholar] [CrossRef]
- Dallat, M.A.T.; Soerjomataram, I.; Hunter, R.F.; Tully, M.A.; Cairns, K.J.; Kee, F. Urban Greenways Have the Potential to Increase Physical Activity Levels Cost-Effectively. Eur. J. Public Health 2014, 24, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Gobster, P.H.; Westphal, L.M. The Human Dimensions of Urban Greenways: Planning for Recreation and Related Experiences. Landsc. Urban Plan. 2004, 68, 147–165. [Google Scholar] [CrossRef]
- Librett, J.J.; Yore, M.M.; Schmid, T.L. Characteristics of Physical Activity Levels Among Trail Users in a U.S. National Sample. Am. J. Prev. Med. 2006, 31, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Larson, L.R.; Keith, S.J.; Fernandez, M.; Hallo, J.C.; Shafer, C.S.; Jennings, V. Ecosystem Services and Urban Greenways: What’s the Public’s Perspective? Ecosyst. Serv. 2016, 22, 111–116. [Google Scholar] [CrossRef]
- Shafer, C.S.; Lee, B.K.; Turner, S. A Tale of Three Greenway Trails: User Perceptions Related to Quality of Life. Landsc. Urban Plan. 2000, 49, 163–178. [Google Scholar] [CrossRef]
- Keith, S.J.; Larson, L.R.; Shafer, C.S.; Hallo, J.C.; Fernandez, M. Greenway Use and Preferences in Diverse Urban Communities: Implications for Trail Design and Management. Landsc. Urban Plan. 2018, 172, 47–59. [Google Scholar] [CrossRef]
- Elliot, T.; Bertrand, A.; Babí Almenar, J.; Petucco, C.; Proença, V.; Rugani, B. Spatial Optimisation of Urban Ecosystem Services through Integrated Participatory and Multi-Objective Integer Linear Programming. Ecol. Model. 2019, 409, 108774. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and Classifying Ecosystem Services for Decision Making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Betancur, L.; Vilardy, Q.S.P.; Torres, R.D. Ecosystem Services as a Promising Paradigm to Protect Environmental Rights of Indigenous Peoples in Latin America: The Constitutional Court Landmark Decision to Protect Arroyo Bruno in Colombia. Environ. Manag. 2021. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Lin, W.-C.; Wang, Y.-C.; Lien, W.-Y.; Huang, T.; Hsu, C.-C.; Schmeller, D.S.; Crossman, N.D. Systematically Designating Conservation Areas for Protecting Habitat Quality and Multiple Ecosystem Services. Environ. Model. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
- Burgos-Ayala, A.; Jiménez-Aceituno, A.; Rozas-Vásquez, D. Integrating Ecosystem Services in Nature Conservation for Colombia. Environ. Manag. 2020, 66, 149–161. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Babí Almenar, J.; Bolowich, A.; Elliot, T.; Geneletti, D.; Sonnemann, G.; Rugani, B. Assessing Habitat Loss, Fragmentation and Ecological Connectivity in Luxembourg to Support Spatial Planning. Landsc. Urban Plan. 2019, 189, 335–351. [Google Scholar] [CrossRef]
- Serna-Chavez, H.M.; Schulp, C.J.E.; van Bodegom, P.M.; Bouten, W.; Verburg, P.H.; Davidson, M.D. A Quantitative Framework for Assessing Spatial Flows of Ecosystem Services. Ecol. Indic. 2014, 39, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Palomo, I.; Martín-López, B.; Potschin, M.; Haines-Young, R.; Montes, C. National Parks, Buffer Zones and Surrounding Lands: Mapping Ecosystem Service Flows. Ecosyst. Serv. 2013, 4, 104–116. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Zhang, X.; Tong, H.; Zhang, W.; Liu, Y. Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation. Sustainability 2021, 13, 5732. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y.; Xu, J. Research Progress and Prospect on Regional Ecological Security Pattern Construction. Geogr. Res. 2017, 36, 407–417. [Google Scholar] [CrossRef]
- Yuan, W.; Chang-wei, Z. Landscape Ecological Security Pattern in Central Guizhou Urban Agglomeration. J. Ecol. Rural. Environ. 2019, 35, 1111–1117. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking Ecosystem Services and Circuit Theory to Identify Ecological Security Patterns. Sci. Total. Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-S.; Zou, C.-X.; Shen, W.-S.; Shen, R.-P.; Xu, D.-L. Construction of Ecological Security Patterns Based on Ecological Red Line: A Case Study of Jiangxi Province. GEOGRAPHICAL RESEARCH 2016, 35, 250–258. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking Ecological Background and Demand to Identify Ecological Security Patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, N.; Han, R.; Guo, L. Establishing Ecological Security Patterns Based on Reconstructed Ecosystem Services Value in Rapidly Urbanizing Areas: A Case Study in Zhuhai City, China. Sustainability 2020, 12, 6629. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Y.; Li, X.; Song, R. Construction of Ecological Security Pattern based on the Importance of Ecosystem Services and Environmental Sensitivity in Karst Mountainous Areas: A Case Study in Hechi, Guangxi. Acta Ecol. Sin. 2021, 41. [Google Scholar] [CrossRef]
- Hepcan, Ç.C.; Özkan, M.B. Establishing Ecological Networks for Habitat Conservation in the Case of Çeşme–Urla Peninsula, Turkey. Environ. Monit. Assess. 2011, 174, 157–170. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban Green Space Network Development for Biodiversity Conservation: Identification Based on Graph Theory and Gravity Modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Qian, J.; Guo, Y.; Hu, Y. Improving Ecological Security Pattern Based on the Integrated Observation of Multiple Source Data: A Case Study of Wannian County, Jiangxi Province. Resour. Sci. 2020, 40, 2010–2021. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A Comparison of Tools for Modeling Freshwater Ecosystem Services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wei, L.; Wang, Y.; Lu, Y. Construction of Ecological Security Pattern Based on the Importance of Ecosystem Service Functions and Ecological Sensitivity Assessment: A Case Study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Ma, C.; Wang, Q.; Zhou, A. Sustainable Use Zoning of Land Resources Considering Ecological and Geological Problems in Pearl River Delta Economic Zone, China. Sci. Rep. 2019, 9, 16052. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Feng, C.; Liu, F.; Li, J. Biodiversity Conservation in China: A Review of Recent Studies and Practices. Environ. Sci. Ecotechnol. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment. China National Biodiversity Conservation Strategy and Action Plan (2011–2030); Ministry of Ecology and Environment: Beijing, China, 2010. [Google Scholar]
- Lai, Y.; Huang, G.; Chen, S.; Lin, S.; Lin, W.; Lyu, J. Land Use Dynamics and Optimization from 2000 to 2020 in East Guangdong Province, China. Sustainability 2021, 13, 3473. [Google Scholar] [CrossRef]
- Yin, J.; Li, H.; Wang, D.; Liu, S. Optimization of Rural Settlement Distributions Based on the Ecological Security Pattern: A Case Study of Da’an City in Jilin Province of China. Chin. Geogr. Sci. 2020, 30, 824–838. [Google Scholar] [CrossRef]
- Ouyang, X.; Wang, Z.; Zhu, X. Construction of the Ecological Security Pattern of Urban Agglomeration under the Framework of Supply and Demand of Ecosystem Services Using Bayesian Network Machine Learning: Case Study of the Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China. Sustainability 2019, 11, 6416. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Gao, R.; Ru, W.; Kong, D.; Ji, Z.; Zhang, G. Using Satellite Tracking to Identify the Factors Affecting the Spring Migration Timing of Whooper Swans (Cygnus Cygnus). Acta Ecol. Sin. 2021, 15. [Google Scholar] [CrossRef]
- Gibbs, J. Wetland Loss and Biodiversity Conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Shi, P. Using Ecosystem Service Supply and Ecosystem Sensitivity to Identify Landscape Ecology Security Patterns in the Lanzhou-Xining Urban Agglomeration, China. J. Mt. Sci. 2020, 17, 2758–2773. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, S. Optimizing the Ecological Networks Based on the Supply and Demand of Ecosystem Services in Xiamen-Zhangzhou-Quanzhou Region. J. Nat. Resour. 2021, 2, 342–355. [Google Scholar] [CrossRef]
- Parks, S.A.; Mckelvey, K.S.; Schwartz, M.K. Effects of Weighting Schemes on the Identification of Wildlife Corridors Generated with Least-Cost Methods. Conserv. Biol. 2013, 27, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Dickson, B.; Albano, C.; Gray, M.; McClure, M.; Theobald, D.; Anantharaman, R.; Shah, V.; Beier, P.; Fargione, J.; Hall, K.; et al. Circuit-Theory Applications to Connectivity Science and Conservation. Conserv. Biol. 2018, 33. [Google Scholar] [CrossRef] [PubMed]
- Koh, I.; Rowe, H.; Holland, J. Graph and Circuit Theory Connectivity Models of Conservation Biological Control Agents. Ecol. Appl. 2013, 23, 1554–1573. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape Connectivity: A Graph-Theoretic Perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Sawyer, S.C.; Epps, C.W.; Brashares, J.S. Placing Linkages among Fragmented Habitats: Do Least-Cost Models Reflect How Animals Use Landscapes? J. Appl. Ecol. 2011, 48, 668–678. [Google Scholar] [CrossRef]
- LaPoint, S.; Gallery, P.; Wikelski, M.; Kays, R. Animal Behavior, Cost-Based Corridor Models, and Real Corridors. Landsc. Ecol. 2013, 28, 1615–1630. [Google Scholar] [CrossRef] [Green Version]
- McRae, B.; Dickson, B.; Keitt, T.; Shah, V.; McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Hanks, E.; Hooten, M. Circuit Theory and Model-Based Inference for Landscape Connectivity. J. Am. Stat. Assoc. 2013, 108. [Google Scholar] [CrossRef]
- Christensen, A.; Brandt, J.; Svenningsen, S. Landscape Ecology; Springer: Berlin, Germany, 2017; pp. 1–10. ISBN 978-0-470-65963-2. [Google Scholar]
- McRae, B.; Shah, V. Circuitscape User Guide; The University of California: Santa Barbara, CA, USA, 2009. [Google Scholar]
- Islam, M.S.; Quinn, M. A Composite Graph Theoretic Approach to Modeling Landscape Connectivity for Wildlife Movement in Western Canada. J. Environ. Inform. Lett. 2021. [Google Scholar] [CrossRef]
- Gong, S. Historical Variation and Sustainable Utilization of the Jianghan-Dongting Plain’s Wetlands. Resour. Environ. Yangtze Basin 2002, 11, 569–574. [Google Scholar]
- Chen, S.; Pi, M. Old News of Hubei; Wuhan Press: Wuhan, China, 1989; ISBN 978-7-5430-0293-7. [Google Scholar]
- He, Y. Historical Changes of Rare Animals in China; Hunan Normal University Press: Hunan, China, 1997; Volume 2, ISBN 978-7-81031-580-7. [Google Scholar]
- Lu, W. Current Status and Conservation Countermeasures for National Grade I Protected Wildlife Fauna in Hubei Province. Hubei For. Sci. Technol. 2007, 54–58. [Google Scholar]
- Jiang, Z.; Liu, S.; Wu, Y.; Jiang, X.; Zhou, K. China’s Mammal Diversity (2nd Edition). Biodivers. Sci. 2017, 8, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Zhang, H.; Zhou, Q.; Liu, X. Amphibian Resources in Hubei Province. Sichuan J. Zool. 2011, 30, 144–147. [Google Scholar] [CrossRef]
- Scientific Data.
- Harmonized World Soil Database v1.2|FAO SOILS PORTAL|Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 6 August 2021).
- Resources and Environmental Science Data Center.
- Meteorological Data Center of China Meteorological Administration 2021.
- The Shuttle Radar Topography Mission.
- Yu, K. Security Patterns and Surface Model in Landscape Ecological Planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting Landscape Connectivity of Highly Urbanized Area: An Ecological Network Approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Samways, M.J.; Bazelet, C.S.; Pryke, J.S. Provision of Ecosystem Services by Large Scale Corridors and Ecological Networks. Biodivers. Conserv. 2010, 19, 2949–2962. [Google Scholar] [CrossRef]
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping Green Infrastructure Based on Ecosystem Services and Ecological Networks: A Pan-European Case Study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- Haaren, C.; Lovett, A.; Albert, C. Theories and Methods for Ecosystem Services Assessment in Landscape Planning; Springer: Berlin, Germany, 2019; pp. 19–42. ISBN 978-94-024-1679-4. [Google Scholar]
- Thoresen, J.; Vermeire, M.-L.; Venter, Z.; Wolfaard, G.; Krumins, J.A.; Cramer, M.; Hawkins, H.-J. Fire and Herbivory Shape Soil Arthropod Communities through Habitat Heterogeneity and Nutrient Cycling in Savannas. Glob. Ecol. Conserv. 2021, 25, e01413. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Mary Ann, C.; Xu, T. Spatio-Temporal Changes in Wildlife Habitat Quality in the Middle and Lower Reaches of the Yangtze River from 1980 to 2100 Based on the InVEST Model. J. Resour. Ecol. 2021, 12, 43–55. [Google Scholar] [CrossRef]
- Nelson, E.; Polasky, S.; Lewis, D.J.; Plantinga, A.J.; Lonsdorf, E.; White, D.; Bael, D.; Lawler, J.J. Efficiency of Incentives to Jointly Increase Carbon Sequestration and Species Conservation on a Landscape. Proc. Natl. Acad. Sci. USA 2008, 105, 9471–9476. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, C. Spatiotemporal Analysis of Precipitation Trends during 1961–2010 in Hubei Province, Central China. Theor. Appl. Climatol. 2016, 124, 385–399. [Google Scholar] [CrossRef]
- Lu, F.; hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of National Ecological Restoration Projects on Carbon Sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, C.; Du, H.; Liu, Z.; Shen, L.; Wei, Q.; Rosenthal, H. Drastic Decline in Spawning Activity of Chinese Sturgeon Acipenser Sinensis Gray 1835 in the Remaining Spawning Ground of the Yangtze River since the Construction of Hydrodams. J. Appl. Ichthyol. 2015, 31. [Google Scholar] [CrossRef]
- Li, B.; Chen, N.; Wang, W.; Wang, C.; Schmitt, R.J.P.; Lin, A.; Daily, G.C. Eco-Environmental Impacts of Dams in the Yangtze River Basin, China. Sci. Total. Environ. 2021, 774, 145743. [Google Scholar] [CrossRef] [PubMed]
- Department of Ecology and Environment of Hubei Province. Hubei Nature Reserve List; Department of Ecology and Environment of Hubei Province: Hubei, China, 2018. [Google Scholar]
- Zhang, X.; Guo, Q.; Shen, X.; Yu, S.; Qiu, G. Water Quality, Agriculture and Food Safety in China: Current Situation, Trends, Interdependencies, and Management. J. Integr. Agric. 2015, 14, 2365–2379. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. VEST User’s Guide; McGill University: Montreal, QC, Canada, 2018. [Google Scholar]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China: Applicability of the InVEST Model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, W.; Guo, J.; Ou, M.; Pueppke, S.G.; Ou, W.; Tao, Y. An Evaluation Framework for Designing Ecological Security Patterns and Prioritizing Ecological Corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- Yimin, L.; Guan, C.; Zhu, J. GIS-Based Ecological Sensitivity Analysis in Xingyun Lake Basin. Res. Soil Water Conserv. 2017, 24, 266–271. [Google Scholar]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil Erosion Modelling: A Global Review and Statistical Analysis. Sci. Total. Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Li, D.; Li, X.; Li, J.; Xie, S. A Multi-Criteria Spatial Approach for Mapping Urban Ecosystem Services Demand. Ecol. Indic. 2020, 112, 106119. [Google Scholar] [CrossRef]
- Liu, B.; Xie, Y.; Li, Z.; Liang, Y.; Zhang, W.; Fu, S.; Yin, S.; Wei, X.; Zhang, K.; Wang, Z.; et al. The Assessment of Soil Loss by Water Erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Blair, C.; J. Michael, S.; Michael, E.S.; Keith, H.; Larry, H. Landscape Linkages and Biodiversity; Island Press: Washington, DC, USA, 1991; ISBN 978-1-59726-868-4. [Google Scholar]
- Harris, L.D.; Scheck, J. From Implications to Applications: The Dispersal Corridor Principle Applied to the Conservation of Biological Diversity. In Nature Conservation 2: The Role of Corridors; Saunders, D.A., Hobbs, R.J., Eds.; Surrey Beaty and Sons: Chipping Norton, Australia; pp. 189–220.
- Zhang, H.; Gao, J.; Ma, M.; Shao, F.; Wang, Q.; Li, G.; Qiu, J.; Zhou, K. Influence of Road on Breeding Habitat of Nipponia Nippon Based on MaxEnt Model. Chin. J. Appl. Ecol. 2017, 28, 1352–1359. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, K.; Li, D. The Width of Ecological Corridor in Landscape Planning. Acta Ecol. Sin. 2005, 9, 2406–2412. [Google Scholar]
- Zhao, X.; Yue, Q.; Pei, J.; Pu, J.; Huang, P.; Wang, Q. Ecological Security Pattern Construction in Karst Area Based on Ant Algorithm. Int. J. Environ. Res. Public Health 2021, 18, 6863. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of Cropland Expansion on Carbon Storage: A Case Study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H. Influence of Landscape Pattern Change on Soil Erosion in Han River Basin. Acta Ecol. Sin. 2021, 6, 2248–2260. [Google Scholar] [CrossRef]
- Rayfield, B.; Fortin, M.-J.; Fall, A. The Sensitivity of Least-Cost Habitat Graphs to Relative Cost Surface Values. Landsc. Ecol. 2010, 25, 519–532. [Google Scholar] [CrossRef]
Data Name | Data Source | Time | Units/Resolution |
---|---|---|---|
Depth to bedrock map of China | Scientific data [72] | 2018 | 100 m × 100 m |
Soil types | Harmonized World Soil Database version 1.2 (HWSD V1.2) [73] | 1:1,000,000 | |
Land-use/land cover data | Resource and Environment Science and Data Center [74] | 2020 | 30 m × 30 m |
Ecological red line of Hubei | Department of Natural Resource of Hubei Province | 2020 | 1:250,000 |
Road | Baidu Map; Open Street Map | 2020 | 1:250,000 |
Meteorological data | Meteorological Data Center of China Meteorological Administration [75] | 2019 | Daily |
Digital elevation model | Shuttle Radar Topography Mission [76] | 2008 | 30 m × 30 m |
List of pollution factories in Hubei, 2017 | Department of Ecological and Environment of Hubei Province; Ovitalmap. | 2017 |
Score | 7 | 5 | 3 | 1 | |
---|---|---|---|---|---|
Habitat Sensibility | Distance to major road (m) | [0, 1000) | [1000, 2000) | [2000, 3000) | [3000, +∞) |
Distance to natural reserves (m) | [0, 3000) | [3000, 6000) | [6000, 9000) | [9000, +∞) | |
land-cover type | Forestlands; water bodies; wetland | Grass; cropland | Barren | Urban or built-up | |
NDVI | [0.7, 1] | [0.5, 0.7) | [0.3, 0.5) | [0, 0.3) |
Score | 7 | 5 | 3 | 1 | |
---|---|---|---|---|---|
Water sensibility | Distance to rivers, lakes, etc. (m) | [0, 500) | [500, 1000) | [1000, 1500) | [1500, +∞) |
Distance to wastewater sources or sewage treatment plant (m) | [0, 3000) | [3000, 6000) | [6000, 9000) | [9000, +∞) | |
Distance to polluting air sources (m) | [0, 4000) | [4000, 8000) | [8000, 12000) | [12000, ∞) |
Resistance Types | Factors | Weight | Resistance Value | |
---|---|---|---|---|
Land Use and Land Cover | Paddy filed | 0.3 | 100 | |
Irrigated land | 90 | |||
Forestland | 1 | |||
Shrubland | 1 | |||
Open woodland | 1 | |||
Other forestlands | 1 | |||
High-density grassland | 50 | |||
Middle-density grassland | 60 | |||
Low-density grassland | 70 | |||
River | 10 | |||
Lake | 10 | |||
Pond | 10 | |||
Beach land | 10 | |||
Urban construction land | 800 | |||
Rural construction land | 700 | |||
Mine | 1000 | |||
Swampland | 50 | |||
Bare | 50 | |||
Rock | 50 | |||
Topological Factors | Relief/m | [0, 25] | 0.15 | 100 |
(25, 50] | 80 | |||
(50, 75] | 60 | |||
(75, 100] | 40 | |||
(100, 239] | 1 | |||
Slope/° | [0, 8] | 0.15 | 100 | |
(8, 15] | 80 | |||
(15, 25] | 60 | |||
(25, 35] | 40 | |||
(35, 47] | 1 | |||
Road | Distance to road I (railroad, national highway, provincial highway) | [0, 200] | 0.15 | 100 |
(200, 400] | 80 | |||
(400, 800] | 60 | |||
(800, 1600] | 40 | |||
(1600, 3200] | 20 | |||
(3200, + ∞) | 1 | |||
Distance to road II (country highway) | [0, 150] | 0.15 | 100 | |
(150, 250] | 80 | |||
(250, 450] | 60 | |||
(450, 800] | 40 | |||
(800, 1000] | 20 | |||
(1000, + ∞) | 1 | |||
Pollution Sources | Distance to pollution sources (m) | [0, 2000) | 0.1 | 100 |
[2000, 4000) | 80 | |||
[6000, 8000) | 60 | |||
[8000, 10,000) | 40 | |||
[10,000, + ∞) | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Zhou, Y.; Li, Q. Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China. Int. J. Environ. Res. Public Health 2021, 18, 8383. https://doi.org/10.3390/ijerph18168383
Su X, Zhou Y, Li Q. Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China. International Journal of Environmental Research and Public Health. 2021; 18(16):8383. https://doi.org/10.3390/ijerph18168383
Chicago/Turabian StyleSu, Xueping, Yong Zhou, and Qing Li. 2021. "Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China" International Journal of Environmental Research and Public Health 18, no. 16: 8383. https://doi.org/10.3390/ijerph18168383
APA StyleSu, X., Zhou, Y., & Li, Q. (2021). Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China. International Journal of Environmental Research and Public Health, 18(16), 8383. https://doi.org/10.3390/ijerph18168383