The Art of Inducing Hypoxia
<p>Methods for hypoxia induction in vitro. Only hypoxia mimetics, media height and GOX/CAT system were tested within the study (red border). With CoCl<sub>2</sub>: Cobalt chloride, PHD: Prolyl hydroxylase domain proteins, HIF-1: Hypoxia-inducible factor 1, VHL: Von Hippel–Lindau E3 Ligase, GOX: Glucose oxidase, CAT: Catalase.</p> "> Figure 2
<p>Effect of different hypoxia induction methods in osteogenic cells. SaOS-2 cells were cultivated in common aerobic conditions without additional stimulus (Ctrl), with increased medium height, the enzymatic GOX/CAT system, and 0.1 mM CoCl<sub>2</sub>. (<b>a</b>) Depiction of oxygen levels by Image-IT Hypoxia reagent after 3 h incubation, scale bar 200 µm. Images are pseudo-colored with Fire using the ImageJ software (see legend). CoCl<sub>2</sub> does not reduce oxygen level. (<b>b</b>) HIF-1α protein level after 2 h of hypoxia induction with an exemplary image of one blot. Data are presented as mean ± SEM (<span class="html-italic">N</span> = 3, <span class="html-italic">n</span> = 3).</p> "> Figure 3
<p>Comparison of chemokine release from osteogenic cells by different hypoxia induction methods. Osteogenic cells were cultivated in common aerobic culture conditions without additional stimulus (Ctrl), with increased medium height (MH, 5.4 mm), 0.1 mM CoCl<sub>2</sub> and the enzymatic GOX/CAT system. Gene expression of cytokines (<b>a</b>) CCL2, (<b>b</b>) CCL5, (<b>c</b>) CCL8 and (<b>d</b>) GM-CSF was analyzed after 24 h (N ≥ 3, <span class="html-italic">n</span> = 2). Statistics were made using non-parametric Kruskal–Wallis Tests with * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Data are shown as mean ± SEM.</p> "> Figure 4
<p>Hypoxia induction in THP-1 suspension cells by different hypoxia induction methods. Cells were cultured in common aerobic culture conditions without additional stimulus (Ctrl), with 0.1 mM CoCl<sub>2</sub> or the GOX/CAT system. (a+b) Analysis of pO<sub>2</sub> in response to different media heights and GOX/CAT system with green Image-IT™ hypoxia reagent. (<b>a</b>) Microscopy images were taken after 6 h. Scale bar 200 µm. (<b>b</b>) Accumulation of dye was followed by kinetic measurement over 360 min (<span class="html-italic">N</span> = 3, <span class="html-italic">n</span> = 3). (<b>c</b>) HIF-1α protein level after 2 h of hypoxia induction with exemplary image of one blot (<span class="html-italic">N</span> = 2, <span class="html-italic">n</span> = 2). (<b>d</b>) Expression of cytokines <span class="html-italic">CCL2, CCL5</span>, <span class="html-italic">CCL8</span>, <span class="html-italic">GM-CSF</span>, <span class="html-italic">TNF-α</span> and growth factor <span class="html-italic">VEGFA</span> after 24 h (<span class="html-italic">N</span> = 3, <span class="html-italic">n</span> = 4). Statistics were made using non-parametric Kruskal–Wallis Tests with * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001. Data are shown as mean ± SEM.</p> "> Figure 5
<p>Comparison of different hypoxia induction methods in in vitro fracture hematomas. In vitro hematomas were cultivated in common aerobic culture conditions without additional stimulus (Ctrl), with increased medium height (MH), 0.4 mM CoCl<sub>2</sub> and the enzymatic GOX/CAT system. Gene expression was analyzed for targets <span class="html-italic">VEGFA</span> and <span class="html-italic">RUNX2</span> after 24 h (<span class="html-italic">N</span> = 3, <span class="html-italic">n</span> ≥ 3). Statistics were made using non-parametric Kruskal–Wallis Tests with * <span class="html-italic">p</span> < 0.05, **** <span class="html-italic">p</span> < 0.0001. Data are shown as mean ± SEM.</p> "> Figure 6
<p>Functional effects of enzymatically induced hypoxia (GOX/CAT) in in vitro hematomas in comparison to common aerobic culture conditions without additional stimulus (Ctrl). (<b>a</b>) Live–dead staining images from control and GOX/CAT stimulated hematomas after 96 h of incubation in 10x magnification. Arrows are indicating dead cells (red). (<b>b</b>) mitochondrial activity determined by resazurin conversion (<span class="html-italic">N</span> = 4, <span class="html-italic">n</span> = 3). (<b>c</b>) Alkaline phosphatase (ALP) activity (<span class="html-italic">N</span> = 3, <span class="html-italic">n</span> = 3). (<b>d</b>) Secretion of proinflammatory cytokines IL-1β, CCL2, and TNF-α (<span class="html-italic">N</span> = 4, <span class="html-italic">n</span> = 3). Statistics were made using non-parametric Sidak’s multiple comparison tests with * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001. Significance indicators in (<b>b</b>,<b>c</b>) and (<b>d</b>) show significances between GOX/CAT and non-stimulated samples at the same time point. Data are shown as mean ± SEM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Culture of Osteogenic Cells as Representatives for 2D Culture
2.3. Culture of THP-1 Cells as Representatives for Suspension Culture
2.4. Preparation and Culture of Human In Vitro Fracture Hematoma Models
2.5. Hypoxia Induction
2.5.1. Cobalt Chloride (CoCl2)
2.5.2. Glucose Oxidase (GOX)/Catalase (CAT)
2.5.3. Medium Height
2.6. Assessment of Changes in Oxygen Concentrations by Means of Hypoxia IT Dye
2.7. Life-Dead Staining
2.8. Resazurin Conversion Assay
2.9. Alkaline Phosphatase (ALP) Activity Assay
2.10. Semiquantitative Reverse-Trasncription (RT) PCR
2.11. Western Blot
2.12. Enzyme Linked Immunosorbent Assay (ELISA)
2.13. Statistics
3. Results
3.1. Confirmation of Hypoxia Induction in Osteogenic Cells
3.2. Effect of Different Hypoxia Induction Methods on Chemokine Release in Osteogenic Cells
3.3. Induction of Hypoxia in Suspension Cells
3.4. Induction of Hypoxia in In Vitro Fracture Hematomas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | Alkaline Phosphatase |
BMP | Bone morphogenetic protein |
CAT | Catalase |
CCL | (C-C motif) ligand |
CoCl2 | Cobalt chloride |
Ctrl | Control |
DFO | Desferrioxamine |
DMOG | Dimethyloxalylglycine |
EPO | Erythropoietin |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
GOX | Glucose oxidase |
HIF | Hypoxia inducible factor |
hOB | Human osteoblast |
HPRT | Hypoxanthine-guanine phosphoribosyltransferase |
HRE | Hypoxia responsive elements |
IGF | Insulin-like growth factor |
IL | Interleukin |
MH | Increased medium height |
MSC | Mesenchymal stem cell |
PHD | Prolyl hydroxylase |
RUNX2 | Runt-related transcription factor 2 |
TNF | Tumor necrosis factor |
VEGF | Vascular endothelial growth factor |
VHL | Von-Hippel-Lindau E3 Ligase |
References
- Corrò, C.; Novellasdemunt, L.; Li, V.S.W. A brief history of organoids. Am. J. Physiol.-Cell Physiol. 2020, 319, C151–C165. [Google Scholar] [CrossRef]
- Carreau, A.; El Hafny-Rahbi, B.; Matejuk, A.; Grillon, C.; Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell. Mol. Med. 2011, 15, 1239–1253. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.L. Hypoxia—A key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47. [Google Scholar] [CrossRef]
- Nombela-Arrieta, C.; Pivarnik, G.; Winkel, B.; Canty, K.J.; Harley, B.; Mahoney, J.E.; Park, S.-Y.; Lu, J.; Protopopov, A.; Silberstein, L.E. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nature 2013, 15, 533–543. [Google Scholar] [CrossRef]
- Andrew, J.G.; Andrew, S.; Freemont, A.; Marsh, D. Inflammatory cells in normal human fracture healing. Acta Orthop. 1994, 65, 462–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claes, L.; Recknagel, S.; Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143. [Google Scholar] [CrossRef]
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, M.; Rhee, C.; Utsunomiya, T.; Zhang, N.; Ueno, M.; Yao, Z.; Goodman, S.B. Modulation of the Inflammatory Response and Bone Healing. Front. Endocrinol. 2020, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Croes, M.; Oner, F.C.; Kruyt, M.C.; Blokhuis, T.J.; Bastian, O.; Dhert, W.; Alblas, J. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS ONE 2015, 10, e0132781. [Google Scholar] [CrossRef]
- Wenger, R.; Kurtcuoglu, V.; Scholz, C.; Marti, H.; Hoogewijs, D. Frequently asked questions in hypoxia research. Hypoxia 2015, 3, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.P. Intracellular diffusion gradients of o2 and atp. Am. J. Physiol.-Cell Physiol. 1986, 250, C663–C675. [Google Scholar] [CrossRef]
- Spencer, J.A.; Ferraro, F.; Roussakis, E.; Klein, A.; Wu, J.; Runnels, J.M.; Zaher, W.; Mortensen, L.; Alt, C.; Turcotte, R.; et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014, 508, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 2008, 8, 967–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ast, T.; Mootha, V.K. Oxygen and mammalian cell culture: Are we repeating the experiment of Dr. Ox? Nat. Metab. 2019, 1, 858–860. [Google Scholar] [CrossRef] [PubMed]
- Flamme, I.; Fröhlich, T.; von Reutern, M.; Kappel, A.; Damert, A.; Risau, W. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech. Dev. 1997, 63, 51–60. [Google Scholar] [CrossRef]
- Wiesener, M.S.; Jürgensen, J.S.; Rosenberger, C.; Scholze, C.K.; Hörstrup, J.H.; Warnecke, C.; Mandriota, S.; Bechmann, I.; Frei, U.A.; Pugh, C.W.; et al. Widespread hypoxia-inducible expression of hif-2alpha in distinct cell populations of different organs. FASEB J. 2003, 17, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, P.; Wiesener, M.S.; Chang, G.-W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.; Wykoff, C.C.; Pugh, C.; Maher, E.; Ratcliffe, P. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399, 271–275. [Google Scholar] [CrossRef]
- Gossage, L.; Eisen, T.; Maher, E.R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 2014, 15, 55–64. [Google Scholar] [CrossRef]
- Sarada, S.; Himadri, P.; Mishra, C.; Geetali, P.; Ram, M.S.; Ilavazhagan, G. Role of Oxidative Stress and NFkB in Hypoxia-Induced Pulmonary Edema. Exp. Biol. Med. 2008, 233, 1088–1098. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 2001, 13, 167–171. [Google Scholar] [CrossRef]
- Camp, J.P.; Capitano, A.T. Induction of Zone-Like Liver Function Gradients in HepG2 Cells by Varying Culture Medium Height. Biotechnol. Prog. 2007, 23, 1485–1491. [Google Scholar] [CrossRef]
- Mueller, S.; Millonig, G.; Waite, G. The GOX/CAT system: A novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Adv. Med Sci. 2009, 54, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Epstein, A.C.; Gleadle, J.M.; McNeill, L.A.; Hewitson, K.S.; O’Rourke, J.; Mole, D.R.; Mukherji, M.; Metzen, E.; Wilson, M.I.; Dhanda, A.; et al. C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell 2001, 107, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Böcker, W.; Yin, Z.; Drosse, I.; Haasters, F.; Rossmann, O.; Wierer, M.; Popov, C.; Locher, M.; Mutschler, W.; Docheva, D.; et al. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J. Cell. Mol. Med. 2008, 12, 1347–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehnert, S.; Fentz, A.-K.; Schreiner, A.; Birk, J.; Wilbrand, B.; Ziegler, P.; Reumann, M.K.; Wang, H.; Falldorf, K.; Nussler, A.K. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2− and H2O2. Sci. Rep. 2017, 7, 14544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspera-Werz, R.H.; Ehnert, S.; Heid, D.; Zhu, S.; Chen, T.; Braun, B.; Sreekumar, V.; Arnscheidt, C.; Nussler, A.K. Nicotine and Cotinine Inhibit Catalase and Glutathione Reductase Activity Contributing to the Impaired Osteogenesis of SCP-1 Cells Exposed to Cigarette Smoke. Oxidative Med. Cell. Longev. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffenberger, M.; Bartsch, J.; Hoff, P.; Ponomarev, I.; Barnewitz, D.; Thöne-Reineke, C.; Buttgereit, F.; Gaber, T.; Lang, A. Hypoxia and mesenchymal stromal cells as key drivers of initial fracture healing in an equine in vitro fracture hematoma model. PLoS ONE 2019, 14, e0214276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Okail, M.S. Cobalt chloride, a chemical inducer of hypoxia-inducible factor-1α in u251 human glioblastoma cell line. J. Saudi Chem. Soc. 2010, 14, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Maes, C.; Carmeliet, G.; Schipani, E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat. Rev. Rheumatol. 2012, 8, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Brusevold, I.J.; Husvik, C.; Schreurs, O.; Schenck, K.; Bryne, M.; Søland, T.M. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur. J. Oral Sci. 2010, 118, 168–176. [Google Scholar] [CrossRef]
- Ryan, S.; Taylor, C.; McNicholas, W.T. Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome. Circulation 2005, 112, 2660–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, K.; Rao, K.; Bolton, D.M.; Patel, O.; Ischia, J.J. Targeting hif-1α to prevent renal ischemia-reperfusion injury: Does it work? Int. J. Cell Biol. 2018, 2018, 9852791. [Google Scholar] [CrossRef] [Green Version]
- Halberg, N.; Khan, T.; Trujillo, M.E.; Wernstedt-Asterholm, I.; Attie, A.D.; Sherwani, S.; Wang, Z.V.; Landskroner-Eiger, S.; Dineen, S.; Magalang, U.J.; et al. Hypoxia-Inducible Factor 1α Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Mol. Cell. Biol. 2009, 29, 4467–4483. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.-Y.; Sharkis, S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007, 110, 3056–3063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolar, P.; Gaber, T.; Perka, C.; Duda, G.N.; Buttgereit, F. Human Early Fracture Hematoma Is Characterized by Inflammation and Hypoxia. Clin. Orthop. Relat. Res. 2011, 469, 3118–3126. [Google Scholar] [CrossRef] [Green Version]
- Pavlacky, J.; Polak, J. Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front. Endocrinol. 2020, 11, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Song, L.-P.; Jiang, Y.; Liu, W.; Yu, Y.; Chen, G.-Q. Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms. Apoptosis 2006, 11, 67–77. [Google Scholar] [CrossRef]
- Ishikawa, M.; Ito, H.; Kitaori, T.; Murata, K.; Shibuya, H.; Furu, M.; Yoshitomi, H.; Fujii, T.; Yamamoto, K.; Matsuda, S. MCP/CCR2 Signaling Is Essential for Recruitment of Mesenchymal Progenitor Cells during the Early Phase of Fracture Healing. PLoS ONE 2014, 9, e104954. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Lee, M.W.; Ko, Y.J.; Park, H.J.; Park, Y.J.; Kim, D.-I.; Jung, H.L.; Sung, K.W.; Koo, H.H.; Yoo, K.H. Application of human mesenchymal stem cells cultured in different oxygen concentrations for treatment of graft-versus-host disease in mice. Biomed. Res. 2016, 37, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Filardi, E.; Nieto, C.; Domínguez-Soto, Á.; Barroso, R.; Sánchez-Mateos, P.; Puig-Kroger, A.; López-Bravo, M.; Joven, J.; Ardavín, C.; Fernandez, J.L.R.; et al. CCL2 Shapes Macrophage Polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-Dependent Gene Expression Profile. J. Immunol. 2014, 192, 3858–3867. [Google Scholar] [CrossRef] [Green Version]
- Hoff, P.; Gaber, T.; Strehl, C.; Jakstadt, M.; Hoff, H.; Schmidt-Bleek, K.; Lang, A.; Röhner, E.; Huscher, D.; Matziolis, G.; et al. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients. Int. J. Mol. Sci. 2017, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Hoff, P.; Gaber, T.; Strehl, C.; Schmidt-Bleek, K.; Lang, A.; Huscher, D.; Burmester, G.R.; Schmidmaier, G.; Perka, C.; Duda, G.N.; et al. Immunological characterization of the early human fracture hematoma. Immunol. Res. 2016, 64, 1195–1206. [Google Scholar] [CrossRef]
- Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2018, 39, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Owegi, H.; Egot-Lemaire, S.; Waite, L.R.; Waite, G.N. Macrophage activity in response to steady-state oxygen and hydrogen peroxide concentration—Biomed 2010. Biomed. Sci. Instrum. 2010, 46, 57–62. [Google Scholar] [PubMed]
- Qin, Y.; Greene, V.R.; Chattopadhyay, C.; Ekmekcioglu, S.; Liu, C.; Grimm, E.A. Abstract 2936: Induction of hypoxia in 3D human melanoma spheroids leads to c-Met activation and resistance to Vemurafenib. Cancer Res. 2013, 73, 2936. [Google Scholar] [CrossRef]
- Funamoto, K.; Zervantonakis, I.; Liu, Y.; Ochs, C.J.; Kim, C.; Kamm, R.D. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 2012, 12, 4855–4863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffenberger, M.; Hoff, P.; Thöne-Reineke, C.; Buttgereit, F.; Lang, A.; Gaber, T. The in vitro human fracture hematoma model—A tool for preclinical drug testing. Altex 2020, 37, 561–578. [Google Scholar] [CrossRef]
- Oze, H.; Hirao, M.; Ebina, K.; Shi, K.; Kawato, Y.; Kaneshiro, S.; Yoshikawa, H.; Hashimoto, J. Impact of medium volume and oxygen concentration in the incubator on pericellular oxygen concentration and differentiation of murine chondrogenic cell culture. Vitr. Cell. Dev. Biol.-Anim. 2012, 48, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.-P.; Chen, N.-H.; Lin, S.-W.; Chang, Y.-L.; Liao, H.-R.; Lin, Y.-S.; Chao, I.-J.; Lin, Y.; Pang, J.-H. Increased C-C Chemokine Receptor 2 Gene Expression in Monocytes of Severe Obstructive Sleep Apnea Patients and under Intermittent Hypoxia. PLoS ONE 2014, 9, e113304. [Google Scholar] [CrossRef] [PubMed]
- Rybnikova, E.; Samoilov, M. Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front. Neurosci. 2015, 9, 388. [Google Scholar] [CrossRef] [Green Version]
- Baumann, R.P.; Penketh, P.G.; Seow, H.A.; Shyam, K.; Sartorelli, A.C. Generation of Oxygen Deficiency in Cell Culture Using a Two-Enzyme System to Evaluate Agents Targeting Hypoxic Tumor Cells. Radiat. Res. 2008, 170, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Liu, L.; Feng, M.; An, S.; Zhou, M.; Li, Z.; Qi, J.; Shen, H. Effect of CoCl2 on fracture repair in a rat model of bone fracture. Mol. Med. Rep. 2015, 12, 5951–5956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pressley, M.; Gallaher, J.A.; Brown, J.S.; Tomaszewski, M.R.; Borad, P.; Damaghi, M.; Gillies, R.J.; Whelan, C.J. Cycling hypoxia selects for constitutive HIF stabilization. Sci. Rep. 2021, 11, 5777. [Google Scholar] [CrossRef] [PubMed]
Medium Height | Associated Volume (96-Well Plate) | Associated Volume (6-Well Plate) | Predicted pO2 |
---|---|---|---|
2 mm | 66.7 µL | 2 mL | 58% |
3 mm | 100.0 µL | 3.135 mL | 21% |
4.3 mm | 137.6 µL | 4.085 mL | 10% |
5.4 mm | 172.8 µL | 5.13 mL | 6.2% |
7.5 mm | 250.0 µL | n/a | <2% |
10 mm | 333.3 µL | n/a | <2% |
Target | Accession Number | Primer Forward (5′ to 3′) | Primer Reverse (3′ to 5′) | Amplicon Size | TAnnealing | Cycle Number |
---|---|---|---|---|---|---|
RUNX2 | NM_001015051.3 | CGGCAAAATGAGCGACGTG | CACCGAGCACAGGAAGTTG | 268 bp | 64 °C | 40 |
VEGFA | NM_001204384.1 | CTACCTCCACCATGCCAAGT | GCAGTAGCTGCGCTGATAGA | 109 bp | 60 °C | 30 |
HIF-1a | NM_001530.3 | CTGAGGGGACAGGAGGATCA | GTGGCAACTGATGAGCAAGC | 408 bp | 60 °C | 35 |
CCL2 | NM_002982.3 | CCTTCATTCCCCAAGGGCTC | GGTTTGCTTGTCCAGGTGGT | 236 bp | 60 °C | 35 |
CCL5 | NM_002985.2 | ATCCTCATTGCTACTGCCCTC | GCCACTGGTGTAGAAATACTCC | 135 bp | 60 °C | 35 |
CCL7 | NM_006273.3 | CTTGCTCAGCCAGTTGGGATT | CCACTTCTGTGTGGGGTCAG | 183 bp | 60 °C | 35 |
CCL8 | NM_005623.2 | ACTTGCTCAGCCAGATTCAGTT | CCCATCTCTCCTTGGGGTCA | 185 bp | 60 °C | 35 |
GM-CSF | NM_000758.3 | GAGACACTGCTGCTGAGATGA | GAGGGCAGTGCTGCTTGTA | 180 bp | 64 °C | 40 |
MCSF | NM_000757.5 | AAGTTTGCCTGGGTCCTCTC | CCACTCCCAATCATGTGGCT | 289 bp | 60 °C | 40 |
TNF-α | NM_000594.3 | ATGAGCACTGAAAGCATGATCC | GAGGGCTGATTAGAGAGAGGTC | 217 bp | 56 °C | 35 |
GAPDH | NM_002046.4 | GTCAGTGGTGGACCTGACCT | AGGGGTCTACATGGCAACTG | 420 bp | 56 °C | 25 |
HPRT | NM_000194.2 | CCCTGGCGTCGTGATTAGTG | GAGCACACAGAGGGCTACAA | 190 bp | 56 °C | 25 |
18s RNA | NR_003286 | GGACAGGATTGACAGATTGAT | AGTCTCGTTCGTTATCGGAAT | 111 bp | 56 °C | 25 |
Medium Height | Cobalt Chloride | GOX/CAT 1 | Hypoxia Chamber | |
---|---|---|---|---|
Assay principle | Lowered local oxygen concentration due to reduced gas exchange | Blocking of HIF-1α degradation | Consumption of (all) oxygen by enzymatic system | Lowered environmental oxygen concentration |
Lowered oxygen concentration | Yes | No | Yes | Yes |
Approx. induction time 2 | Up to several hours | Immediate stabilization | ~20 to 60 min [22] | ~4 to 24 h [53] |
Ability to monitor pO2 | Yes | No | Yes | Yes |
2D Culture | Yes | Yes | Yes | Yes |
Suspension Culture | No | Yes | Yes | Yes |
3D Culture | Limited | Yes | Yes | Yes |
Animal models | No | Yes | No data available | Yes |
Advantages | Easy | Easy | “Real” hypoxia Easy | Most natural system |
Disadvantages | Slow induction of hypoxia (no sharp drop in pO2) High amounts of medium needed Inter-plate differences Problems in 3D-cultures | Only mimicking of hypoxia Chemical needs to be added Can be toxic | Enzymatic homeostasis can be disturbed Side products of enzymatic reaction | Much equipment needed Slow onset of hypoxia Limited space in incubator |
Costs for 100 96-well plates 3 | RPMI+5% FCS: ≈ 58 € Depending on medium costs (x1.7 of normal medium costs at 5.4 mm) | ≈ 41 € | ≈ 4.50 € (getting less with more plates because GOX is cheaper than CAT) | Depending on chamber system and gas Gas: ≈ 100 € Chamber: 1300 €–>25,000 € |
Literature | Camp and Capitano, 2007 [21] | Al Okail et al. 2010 [28] | Mueller et al. 2009 [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinderknecht, H.; Ehnert, S.; Braun, B.; Histing, T.; Nussler, A.K.; Linnemann, C. The Art of Inducing Hypoxia. Oxygen 2021, 1, 46-61. https://doi.org/10.3390/oxygen1010006
Rinderknecht H, Ehnert S, Braun B, Histing T, Nussler AK, Linnemann C. The Art of Inducing Hypoxia. Oxygen. 2021; 1(1):46-61. https://doi.org/10.3390/oxygen1010006
Chicago/Turabian StyleRinderknecht, Helen, Sabrina Ehnert, Bianca Braun, Tina Histing, Andreas K. Nussler, and Caren Linnemann. 2021. "The Art of Inducing Hypoxia" Oxygen 1, no. 1: 46-61. https://doi.org/10.3390/oxygen1010006