Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Immunological characterization of the early human fracture hematoma

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The initial inflammatory phase of fracture healing is of great importance for the clinical outcome. We aimed to develop a detailed time-dependent analysis of the initial fracture hematoma. We analyzed the composition of immune cell subpopulations by flow cytometry and the concentration of cytokines and chemokines by bioplex in 42 samples from human fractures of long bones <72 h post-trauma. The early human fracture hematoma is characterized by maturation of granulocytes and migration of monocytes/macrophages and hematopoietic stem cells. Both T helper cells and cytotoxic T cells proliferate within the fracture hematoma and/or migrate to the fracture site. Humoral immunity characteristics comprise high concentration of pro-inflammatory cytokines such as IL-6, IL-8, IFNγ and TNFα, but also elevated concentration of anti-inflammatory cytokines, e.g., IL-1 receptor antagonist and IL-10. Furthermore, we found that cells of the fracture hematoma represent a source for key chemokines. Even under the bioenergetically restricted conditions that exist in the initial fracture hematoma, immune cells are not only present, but also survive, mature, function and migrate. They secrete a cytokine/chemokine cocktail that contributes to the onset of regeneration. We hypothesize that this specific microenvironment of the initial fracture hematoma is among the crucial factors that determine fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev. 2010;16(4):427–34.

    Article  PubMed  Google Scholar 

  2. Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg. 2004;187(5A):11S–6S.

    Article  CAS  PubMed  Google Scholar 

  3. Epari DR, Kassi JP, Schell H, Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am. 2007;89(7):1575–85.

    PubMed  Google Scholar 

  4. Schell H, Lienau J, Epari DR, Seebeck P, Exner C, Muchow S, et al. Osteoclastic activity begins early and increases over the course of bone healing. Bone. 2006;38(4):547–54.

    Article  PubMed  Google Scholar 

  5. Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR. Effect of repeated irrigation and debridement on fracture healing in an animal model. J Orthop Res. 2002;20(6):1197–204.

    Article  PubMed  Google Scholar 

  6. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brighton CT, Krebs AG. Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am. 1972;54(2):323–32.

    Article  CAS  PubMed  Google Scholar 

  8. Brighton CT, Krebs AG. Oxygen tension of nonunion of fractured femurs in the rabbit. Surg Gynecol Obstet. 1972;135(3):379–85.

    CAS  PubMed  Google Scholar 

  9. Gaber T, Dziurla R, Tripmacher R, Burmester GR, Buttgereit F. Hypoxia inducible factor (HIF) in rheumatology: low O2! see what HIF can do! Ann Rheum Dis. 2005;64(7):971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolar P, Gaber T, Perka C, Duda GN, Buttgereit F. Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res. 2011;469(11):3118–26 (Epub 2011/03/17).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoff P, Gaber T, Schmidt-Bleek K, Senturk U, Tran CL, Blankenstein K, et al. Immunologically restricted patients exhibit a pronounced inflammation and inadequate response to hypoxia in fracture hematomas. Immunol Res. 2011;51(1):116–22 (Epub 2011/07/02).

    Article  CAS  PubMed  Google Scholar 

  12. Hoff P, Maschmeyer P, Gaber T, Schutze T, Raue T, Schmidt-Bleek K, et al. Human immune cells’ behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model. Cell Mol Immunol. 2013;10(2):151–8 (Epub 2013/02/12).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoff P, Rakow A, Gaber T, Hahne M, Senturk U, Strehl C, et al. Preoperative irradiation for the prevention of heterotopic ossification induces local inflammation in humans. Bone. 2013;55(1):93–101 (Epub 2013/04/11).

    Article  PubMed  Google Scholar 

  14. Canturk NZ, Esen N, Vural B, Canturk Z, Kirkali G, Oktay G, et al. The relationship between neutrophils and incisional wound healing. Skin Pharmacol Appl Skin Physiol. 2001;14(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  15. Bastian OW, Koenderman L, Alblas J, Leenen LP, Blokhuis TJ. Neutrophils contribute to fracture healing by synthesizing fibronectin + extracellular matrix rapidly after injury. Clin Immunol. 2016;164:78–84.

    Article  CAS  PubMed  Google Scholar 

  16. Simpson DM, Ross R. The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Investig. 1972;51(8):2009–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaffer M, Barbul A. Lymphocyte function in wound healing and following injury. Br J Surg. 1998;85(4):444–60.

    Article  CAS  PubMed  Google Scholar 

  18. Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, et al. Multiple roles for CCR2 during fracture healing. Dis Model Mech. 2010;3(7–8):451–8 (Epub 2010/04/01).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan JK, Glass GE, Ersek A, Freidin A, Williams GA, Gowers K, et al. Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med. 2015;7(5):547–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawakami Y, Ii M, Alev C, Kawamoto A, Matsumoto T, Kuroda R, et al. Local transplantation of ex vivo expanded bone marrow-derived CD34-positive cells accelerates fracture healing. Cell Transplant. 2012;21(12):2689–709 (Epub 2012/09/05).

    Article  PubMed  Google Scholar 

  21. Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. Tissue Eng Part B Rev. 2014;20(3):190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, et al. Superior potential of CD34-positive cells compared to total mononuclear cells for healing of nonunion following bone fracture. Cell Transpl. 2015;24(7):1379–93.

    Article  Google Scholar 

  23. Ogilvie P, Bardi G, Clark-Lewis I, Baggiolini M, Uguccioni M. Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood. 2001;97(7):1920–4 (Epub 2001/03/27).

    Article  CAS  PubMed  Google Scholar 

  24. Konnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155–65 (Epub 2014/04/12).

    Article  PubMed  Google Scholar 

  25. Toben D, Schroeder I, El Khassawna T, Mehta M, Hoffmann JE, Frisch JT, et al. Fracture healing is accelerated in the absence of the adaptive immune system. J Bone Miner Res. 2011;26(1):113–24 (Epub 2010/07/20).

    Article  CAS  PubMed  Google Scholar 

  26. Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013;5(177):177.

    Article  Google Scholar 

  27. Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau T 3rd, et al. Action of IL-1beta during fracture healing. J Orthop Res. 2010;28(6):778–84 (Epub 2009/12/31).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mumme M, Scotti C, Papadimitropoulos A, Todorov A, Hoffmann W, Bocelli-Tyndall C, et al. Interleukin-1beta modulates endochondral ossification by human adult bone marrow stromal cells. Eur Cell Mater. 2012;24:224–36 (Epub 2012/09/26).

    CAS  PubMed  Google Scholar 

  29. Hengartner NE, Fiedler J, Ignatius A, Brenner RE. IL-1beta inhibits human osteoblast migration. Mol Med. 2013;19:36–42 (Epub 2013/03/20).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol. 1998;160(11):5347–54.

    CAS  PubMed  Google Scholar 

  31. Hauser CJ, Zhou X, Joshi P, Cuchens MA, Kregor P, Devidas M, et al. The immune microenvironment of human fracture/soft-tissue hematomas and its relationship to systemic immunity. J Trauma. 1997;42(5):895–903.

    Article  CAS  PubMed  Google Scholar 

  32. Currie HN, Loos MS, Vrana JA, Dragan K, Boyd JW. Spatial cytokine distribution following traumatic injury. Cytokine. 2014;66(2):112–8 (Epub 2014/01/28).

    Article  CAS  PubMed  Google Scholar 

  33. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci USA. 2011;108(4):1585–90 (Epub 2011/01/07).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holbrook ST, Ohls RK, Schibler KR, Yang YC, Christensen RD. Effect of interleukin-9 on clonogenic maturation and cell-cycle status of fetal and adult hematopoietic progenitors. Blood. 1991;77(10):2129–34 (Epub 1991/05/15).

    CAS  PubMed  Google Scholar 

  35. Ikemizu S, Chirifu M, Davis SJ. IL-2 and IL-15 signaling complexes: different but the same. Nat Immunol. 2012;13(12):1141–2 (Epub 2012/11/20).

    Article  CAS  PubMed  Google Scholar 

  36. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA. 2004;101(7):1969–74 (Epub 2004/02/06).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601 (Epub 2006/07/27).

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt-Bleek K, Schell H, Lienau J, Schulz N, Hoff P, Pfaff M, et al. Initial immune reaction and angiogenesis in bone healing. J Tissue Eng Regen Med. 2014;8(2):120–30.

    Article  CAS  PubMed  Google Scholar 

  39. Silfversward CJ, Sisask G, Larsson S, Ohlsson C, Frost A, Ljunggren O, et al. Bone formation in interleukin-4 and interleukin-13 depleted mice. Acta Orthop. 2008;79(3):410–20 (Epub 2008/07/16).

    Article  PubMed  Google Scholar 

  40. Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010;411(21–22):1570–9 (Epub 2010/07/17).

    Article  CAS  PubMed  Google Scholar 

  41. Maurer M, von Stebut E. Macrophage inflammatory protein-1. Int J Biochem Cell Biol. 2004;36(10):1882–6 (Epub 2004/06/19).

    Article  CAS  PubMed  Google Scholar 

  42. Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol. 2001;2(2):102–7 (Epub 2001/03/29).

    Article  CAS  PubMed  Google Scholar 

  43. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30(3):245–57 (Epub 2010/07/29).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu AC, Morrison NA, Kelly WL, Forwood MR. MCP-1 expression is specifically regulated during activation of skeletal repair and remodeling. Calcif Tissue Int. 2013;92(6):566–75 (Epub 2013/03/06).

    Article  CAS  PubMed  Google Scholar 

  45. Ishida K, Matsumoto T, Sasaki K, Mifune Y, Tei K, Kubo S, et al. Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng Part A. 2010;16(10):3271–84 (Epub 2010/07/16).

    Article  CAS  PubMed  Google Scholar 

  46. Hogan SP. Recent advances in eosinophil biology. Int Arch Allergy Immunol. 2007;143(Suppl 1):3–14 (Epub 2007/08/09).

    Article  PubMed  Google Scholar 

  47. Pease JE. Asthma, allergy and chemokines. Curr Drug Targets. 2006;7(1):3–12 (Epub 2006/02/04).

    Article  CAS  PubMed  Google Scholar 

  48. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol. 2002;168(7):3195–204 (Epub 2002/03/22).

    Article  CAS  PubMed  Google Scholar 

  49. Kaplan AP. Chemokines, chemokine receptors and allergy. Int Arch Allergy Immunol. 2001;124(4):423–31 (Epub 2001/05/08).

    Article  CAS  PubMed  Google Scholar 

  50. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood. 2002;100(6):2195–202 (Epub 2002/08/30).

    CAS  PubMed  Google Scholar 

  51. Detsch R, Boccaccini AR. The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med. 2015;9(10):1133–49.

    Article  CAS  PubMed  Google Scholar 

  52. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270(5243):1811–5 (Epub 1995/12/15).

    Article  CAS  PubMed  Google Scholar 

  53. Marques RE, Guabiraba R, Russo RC, Teixeira MM. Targeting CCL5 in inflammation. Expert Opin Ther Targets. 2013;17(12):1439–60 (Epub 2013/10/05).

    Article  CAS  PubMed  Google Scholar 

  54. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, et al. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 2013;24(3):297–310 (Epub 2013/04/25).

    Article  CAS  PubMed  Google Scholar 

  55. Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct. 2013;31(1):1–11 (Epub 2012/11/07).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Manuela Jakstadt for her excellent technical assistance. This study was supported by the German Research Foundation (DFG Bu1015/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Hoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoff, P., Gaber, T., Strehl, C. et al. Immunological characterization of the early human fracture hematoma. Immunol Res 64, 1195–1206 (2016). https://doi.org/10.1007/s12026-016-8868-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8868-9

Keywords

Navigation