Biologic Therapies in Pediatric Asthma
Abstract
:1. Introduction
2. Synopsis of TH2 Dominant Asthma Pathways
3. Approved Biologic Agents
3.1. Anti-IgE Therapy (Omalizumab)
3.2. Anti-IL-5 Therapies (Mepolizumad, Benralizumab)
3.3. Anti-IL-4R Therapy (Dupilumab)
3.4. Anti-TSLP Therapy (Tezepelumab)
3.5. Selecting a Biologic Therapy in Children Younger than 18 Years
4. Future Targeted Therapies
5. Future Perspective/Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TH2 | T-helper 2 |
STRA | Severe Therapy Resistant Asthma |
mAbs | Monoclonal Antibodies |
FeNO | Fractional exhaled Nitric Oxide |
U-BIOPRED | Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome |
SARP | Severe Asthma Research Program |
ICS | Inhaled Corticosteroids |
EMA | European Medicines Agency |
GINA | Global Initiative for Asthma |
FDA | Food and Drug Administration |
FEV1 | Forced Expiratory Volume in the first second |
OCS | Oral Glucocorticoids |
TSLP | Thymic Stromal Lymphopoietin |
(AERS | FDA Adverse Event Reporting System |
References
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar]
- Lovinsky-Desir, S. The use of biologic therapies for the management of pediatric asthma. Pediatr. Pulmonol. 2020, 55, 803–808. [Google Scholar]
- Conrad, L.A.; Cabana, M.D.; Rastogi, D. Defining pediatric asthma: Phenotypes to endotypes and beyond. Pediatr. Res. 2021, 90, 45–51. [Google Scholar]
- Fahy, J.V. Type 2 inflammation in asthma-present in most, absent in many. Nat. Rev. Immunol. 2015, 15, 57–65. [Google Scholar]
- Azmeh, R.; Greydanus, D.E.; Agana, M.G.; Dickson, C.A.; Patel, D.R.; Ischander, M.M.; Lloyd, R.D., Jr. Update in pediatric asthma: Selected issues. Dis. Mon. 2020, 66, 100886. [Google Scholar]
- From the Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA) Update 2022. 2022 GINA Main Report. Available online: https://ginasthma.org/reports/ (accessed on 5 June 2022).
- Barsky, E.E.; Giancola, L.M.; Baxi, S.N.; Gaffin, J.M. A practical approach to severe asthma in children. Ann. Am. Thorac. Soc. 2018, 15, 399–408. [Google Scholar]
- Hoch, H.; Kattan, M.; Szefler, S.J. Challenges in managing difficult-to-treat asthma in children: Stop, look, and listen. Pediatr. Pulmonol. 2020, 55, 791–794. [Google Scholar]
- Bush, A. Severe and difficult asthma: Diagnosis and management-challenges for a low-resource environment. Indian J. Pediatr. 2022, 89, 156–162. [Google Scholar]
- Schoettler, N.; Strek, M.E. Recent advances in severe asthma: From phenotypes to personalized medicine. Chest 2020, 157, 516–528. [Google Scholar]
- Martin Alonso, A.; Fainardi, V.; Saglani, S. Severe therapy resistant asthma in children: Translational approaches to uncover sub-phenotypes. Expert Rev. Respir Med. 2017, 11, 867–874. [Google Scholar]
- Russo, D.; Di Filippo, P.; Attanasi, M.; Lizzi, M.; Di Pillo, S.; Chiarelli, F. Biologic therapy and severe asthma in children. Biomedicines 2021, 9, 760. [Google Scholar]
- Little, M.; Kipriyanov, S.M.; Le Gall, F.; Moldenhauer, G. Of mice and men: Hybridoma and recombinant antibodies. Immunol. Today 2000, 21, 364–370. [Google Scholar]
- Shepard, H.M.; Phillips, G.L.; Thanos, C.D.; Feldmann, M. Developments in therapy with monoclonal antibodies and related proteins. Clin. Med. 2017, 17, 220–232. [Google Scholar]
- Licari, A.; Castagnoli, R.; Brambilla, I.; Marseglia, A.; Tosca, M.A.; Marseglia, G.L.; Ciprandi, G. Asthma endotyping and biomarkers in childhood asthma. Pediatr. Allergy Immunol. Pulmonol. 2018, 31, 44–55. [Google Scholar]
- Morris, T.S.; Autry, E.B.; Kuhn, R.J. The Role of Biologics in the Management of Asthma in the Pediatric Patient. J. Pediatr. Pharmacol. Ther. 2021, 26, 427–436. [Google Scholar]
- Santos-Valente, E.; Buntrock-Döpke, H.; Abou Taam, R.; Arasi, S.; Bakirtas, A.; Lozano Blasco, J.; Bønnelykke, K.; Craiu, M.; Cutrera, R.; Deschildre, A.; et al. Biologicals in childhood severe asthma: The European PERMEABLE survey on the status quo. ERJ Open Res. 2021, 7, 00143–02021. [Google Scholar]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar]
- Vom Hove, M.; Neininger, M.P.; Bertsche, T.; Prenzel, F. Biologicals in the treatment of pediatric atopic diseases. In Pediatric Pharmacotherapy; Springer: Cham, Switzerland, 2019; Volume 261, pp. 131–151. [Google Scholar]
- Hoy, S.M. Tezepelumab: First approval. Drugs 2022, 82, 461–468. [Google Scholar]
- Chipps, B.E.; Lanier, B.; Milgrom, H.; Deschildre, A.; Hedlin, G.; Szefler, S.J.; Kattan, M.; Kianifard, F.; Ortiz, B.; Haselkorn, T.; et al. Omalizumab in children with uncontrolled allergic asthma: Review of clinical trial and real-world experience. J. Allergy Clin. Immunol. 2017, 139, 1431–1444. [Google Scholar]
- Giovannini, M.; Mori, F.; Barni, S.; de Martino, M.; Novembre, E. Omalizumab and mepolizumab in the landscape of biological therapy for severe asthma in children: How to choose? Ital. J. Pediatr. 2019, 45, 151. [Google Scholar]
- Normansell, R.; Walker, S.; Milan, S.J.; Walters, E.H.; Nair, P. Omalizumab for asthma in adults and children. Cochrane Database Syst. Rev. 2014, 1, CD003559. [Google Scholar]
- Pelaia, C.; Vatrella, A.; Busceti, M.T.; Gallelli, L.; Terracciano, R.; Savino, R.; Pelaia, G. Severe eosinophilic asthma: From the pathogenic role of interleukin-5 to the therapeutic action of mepolizumab. Drug Des. Dev. Ther. 2017, 11, 3137–3144. [Google Scholar]
- Tenero, L.; Arturi, E.; Piazza, M.; Piacentini, G. Anti-IL-5 in pediatric allergic diseases. Pediatr. Allergy Immunol. 2020, 31 (Suppl. S26), 14–16. [Google Scholar]
- Licari, A.; Castagnoli, R.; Marseglia, A.; Olivero, F.; Votto, M.; Ciprandi, G.; Marseglia, G.L. Dupilumab to treat type 2 inflammatory diseases in children and adolescents. Paediatr. Drugs 2020, 22, 295–310. [Google Scholar]
- Hanania, N.A.; Alpan, O.; Hamilos, D.L.; Condemi, J.J.; Reyes-Rivera, I.; Zhu, J.; Rosen, K.E.; Eisner, M.D.; Wong, D.A.; Busse, W. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: A randomized trial. Ann. Intern Med. 2011, 154, 573–582. [Google Scholar]
- Brusselle, G.; Michils, A.; Louis, R.; Dupont, L.; Van de Maele, B.; Delobbe, A.; Pilette, C.; Lee, C.S.; Gurdain, S.; Vancayzeele, S.; et al. “Real-life” effectiveness of omalizumab in patients with severe persistent allergic asthma: The PERSIST study. Respir. Med. 2009, 103, 1633–1642. [Google Scholar]
- Humbert, M.; Taillé, C.; Mala, L.; Le Gros, V.; Just, J.; Molimard, M.; STELLAIR investigators. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: The STELLAIR study. Eur. Respir. J. 2018, 51, 1702523. [Google Scholar]
- Busse, W.W.; Morgan, W.J.; Gergen, P.J.; Mitchell, H.E.; Gern, J.E.; Liu, A.H.; Gruchalla, R.S.; Kattan, M.; Teach, S.J.; Pongracic, J.A.; et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med. 2011, 364, 1005–1015. [Google Scholar]
- Farne, H.A.; Wilson, A.; Powell, C.; Bax, L.; Milan, S.J. Anti-IL5 therapies for asthma. Cochrane Database Syst. Rev. 2017, 9, CD010834. [Google Scholar]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D.; SIRIUS Investigators. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar]
- Nair, P.; Wenzel, S.; Rabe, K.F.; Bourdin, A.; Lugogo, N.L.; Kuna, P.; Barker, P.; Sproule, S.; Ponnarambil, S.; Goldman, M.; et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N. Engl. J. Med. 2017, 376, 2448–2458. [Google Scholar]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar]
- Zayed, Y.; Kheiri, B.; Banifadel, M.; Hicks, M.; Aburahma, A.; Hamid, K.; Bachuwa, G.; Chandran, A. Dupilumab safety and efficacy in uncontrolled asthma: A systematic review and meta-analysis of randomized clinical trials. J. Asthma 2019, 56, 1110–1119. [Google Scholar]
- Rabe, K.F.; Nair, P.; Brusselle, G.; Maspero, J.F.; Castro, M.; Sher, L.; Zhu, H.; Hamilton, J.D.; Swanson, B.N.; Khan, A.; et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N. Engl. J. Med. 2018, 378, 2475–2485. [Google Scholar]
- Bacharier, L.B.; Maspero, J.F.; Katelaris, C.H.; Fiocchi, A.G.; Gagnon, R.; de Mir, I.; Jain, N.; Sher, L.D.; Mao, X.; Liu, D.; et al. Dupilumab in children with uncontrolled moderate-to-severe asthma. N. Engl. J. Med. 2021, 385, 2230–2240. [Google Scholar]
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. Review. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar]
- Ramphul, M.; Lo, D.K.H.; Gaillard, E.A. Precision Medicine for Paediatric Severe Asthma: Current Status and Future Direction. J. Asthma Allergy 2021, 14, 525–538. [Google Scholar]
- XOLAIR (Omalizumab). Highlights of Prescribing Information. Available online: https://www.gene.com/download/pdf/xolair_prescribing.pdf. (accessed on 16 June 2022).
- Lanier, B.; Bridges, T.; Kulus, M.; Taylor, A.F.; Berhane, I.; Vidaurre, C.F. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J. Allergy Clin. Immunol. 2009, 124, 1210–1216. [Google Scholar]
- Milgrom, H.; Berger, W.; Nayak, A.; Gupta, N.; Pollard, S.; McAlary, M.; Taylor, A.F.; Rohane, P. Treatment of childhood asthma with anti-immunoglobulin E antibody (Omalizumab). Pediatrics 2001, 108, e36. [Google Scholar]
- Gill, M.A.; Liu, A.H.; Calatroni, A.; Krouse, R.Z.; Shao, B.; Schiltz, A.; Gern, J.E.; Togias, A.; Busse, W.W. Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab. J. Allergy Clin. Immunol. 2018, 141, 1735–1743.e9. [Google Scholar]
- Baena-Cagnani, C.E.; Teijeiro, A.; Canonica, G.W. Four-year follow-up in children with moderate/severe uncontrolled asthma after withdrawal of a 1-year omalizumab treatment. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 267–271. [Google Scholar]
- Saco, T.V.; Pepper, A.; Casale, T.B. Uses of biologics in allergic diseases: What to choose and when. Ann. Allergy Asthma Immunol. 2018, 120, 357–366. [Google Scholar]
- Busse, W.; Chupp, G.; Nagase, H.; Albers, F.C.; Doyle, S.; Shen, Q.; Bratton, D.J.; Gunsoy, N.B. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: Indirect treatment comparison. J. Allergy Clin. Immunol. 2019, 143, 190–200.e20. [Google Scholar]
- Pham, T.H.; Damera, G.; Newbold, P.; Ranade, K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir. Med. 2016, 111, 21–29. [Google Scholar]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016, 388, 2115–2127. [Google Scholar]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016, 388, 2128–2141. [Google Scholar]
- Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Busse, W.; et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 2013, 368, 2455–2466. [Google Scholar]
- Pelaia, C.; Crimi, C.; Vatrella, A.; Tinello, C.; Terracciano, R.; Pelaia, G. Molecular targets for biological therapies of severe asthma. Front. Immunol. 2020, 11, 603312. [Google Scholar]
- Puzzovio, P.G.; Eliashar, R.; Levi-Schaffer, F. Tezepelumab administration in moderate-to-severe uncontrolled asthma: Is it all about eosinophils? J. Allergy Clin. Immunol. 2022, 149, 1582–1584. [Google Scholar]
- Ly, N.; Zheng, Y.; Griffiths, J.M.; van der Merwe, R.; Agoram, B.; Parnes, J.R.; Roskos, L. Pharmacokinetic and pharmacodynamics modeling of tezepelumab to guide phase 3 dose selection for patients with severe asthma. J. Clin. Pharmacol. 2021, 61, 901–912. [Google Scholar]
- Corren, J.; Parnes, J.R.; Wang, L.; Mo, M.; Roseti, S.L.; Griffiths, J.M.; van der Merwe, R. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 2017, 377, 936–946. [Google Scholar]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar]
- Diver, S.; Khalfaoui, L.; Emson, C.; Wenzel, S.E.; Menzies-Gow, A.; Wechsler, M.E.; Johnston, J.; Molfino, N.; Parnes, J.R.; Megally, A.; et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-tosevere uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 1299–1312. [Google Scholar]
- Sverrild, A.; Hansen, S.; Hvidtfeldt, M.; Clausson, C.M.; Cozzolino, O.; Cerps, S.; Uller, L.; Backer, V.; Erjefält, J.; Porsbjerg, C. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur. Respir. J. 2021, 59, 2101296. [Google Scholar]
- GINA Difficult-To-Treat & Severe Asthma in Adolescent and Adult Patients. Diagnosis and Management. A GINA Pocket Guide for Health Professionals. V4.0 May 2022. Available online: https://ginasthma.org/severeasthma/. (accessed on 5 June 2022).
- Casale, T.B.; Luskin, A.T.; Busse, W.; Zeiger, R.S.; Trzaskoma, B.; Yang, M.; Griffin, N.M.; Chipps, B.E. Omalizumab effectiveness by biomarker status in patients with asthma: Evidence from prospero, a prospective real-world study. J. Allergy Clin. Immunol. Pract. 2019, 7, 156–164.e1. [Google Scholar]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019, 394, 1638–1650. [Google Scholar]
- Castro, M.; Zangrilli, J.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015, 3, 355–366. [Google Scholar]
- Corren, J.; Weinstein, S.; Janka, L.; Zangrilli, J.; Garin, M. Phase 3 study of reslizumab in patients with poorly controlled asthma: Effects across a broad range of eosinophil counts. Chest 2016, 150, 799–810. [Google Scholar]
- Bjermer, L.; Lemiere, C.; Maspero, J.; Weiss, S.; Zangrilli, J.; Germinaro, M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: A Randomized Phase 3 Study. Chest 2016, 150, 789–798. [Google Scholar]
- Wechsler, M.E.; Peters, S.P.; Hill, T.D.; Ariely, R.; DePietro, M.R.; Driessen, M.T.; Terasawa, E.L.; Thomason, D.R.; Panettieri, R.A. Clinical outcomes and health-care resource use associated with reslizumab treatment in adults with severe eosinophilic asthma in real-world practice. Chest 2021, 159, 1734–1746. [Google Scholar]
- Bernstein, J.A.; Virchow, J.C.; Murphy, K.; Maspero, J.F.; Jacobs, J.; Adir, Y.; Humbert, M.; Castro, M.; Marsteller, D.A.; McElhattan, J.; et al. Effect of fixed-dose subcutaneous reslizumab on asthma exacerbations in patients with severe uncontrolled asthma and corticosteroid sparing in patients with oral corticosteroid-dependent asthma: Results from two phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 2020, 8, 461–474. [Google Scholar]
mAb | Target | Mechanism of Action | Applicable Population (Age in Years) | Common Eligibility Criteria | Safety Profile |
---|---|---|---|---|---|
Omalizumab [6,21,22,23] | IgE | Binds to Fc part of free IgE, inhibits IgE from binding to its receptors (FcεR1 receptors), reducing free IgE levels and down-regulating receptor expression, resulting in prevention of activation and releasement of TH2 inflammation mediators | ≥6 years | Exacerbations during the last year, and sensitization to inhaled allergens, and total serum IgE levels (generally for IgE-mediated persistent allergic asthma) | Headache, fever (in aged 6 to 12), injection-site reactions (erythema, edema, pain, pruritus), sporadic/very rare cases of anaphylaxis (approximately 0.2%) |
Mepolizumab [6,22,24,25] | IL-5 | Binds to circulating IL-5 and prevents its interaction with IL-5 receptor α, reducing eosinophil levels | ≥6 years | Severe exacerbations during the last year, and baseline blood eosinophils above determined count (>150 cells/μL or >300 cell/μL) | Headache, injection-site reactions, eczema, nasal congestion, rare cases of anaphylaxis |
Benralizumab [6,22,25] | IL-5 receptor α | Binds to IL-5 receptor α, inhibiting IL-5 pathway, causing apoptosis of eosinophils | ≥12 years | Same as mepolizumab | Headache, injection-site reactions, pharyngitis, rare cases of anaphylaxis |
Dupilumab [6,26] | IL-4 receptor α | Binds to IL-4 receptor α, blocking the signaling induced by IL-4 and IL-13 signaling, downregulating TH2 inflammatory pathways | ≥6 years | Severe exacerbations during the last year, and existence of type 2 biomarkers, or necessity for maintenance OCS | Injection-site reactions, transient blood eosinophilia, rare cases of vasculitis with eosinophilic granulomatosis with polyangiitis |
Tezepelumab [6,20] | TSLP | Binds to circulating TSLP, inhibiting interaction with its receptor and its’ upstream action in asthma inflammatory cascade | ≥12 years | Severe exacerbations during the last year, considered in patients with no type 2 biomarkers | Injection-site reactions, pharyngitis, arthralgia, back pain, rare cases of anaphylaxis |
mAb | Quality of Life | Exacerbations | Asthma Control | Lung Function Parameters | Blood Eosinophil Number | Median OCS Use |
---|---|---|---|---|---|---|
Omalizumab [6,16,27,28,29,30] | Improved | Decreased | Improved | No significant difference | No significant difference | Decreased |
Mepolizumab [31,32] | Improved | Decreased | Improved | Improved | Decreased | Decreased |
Benralizumab [31,33] | Improved | Decreased | Improved | Improved | Decreased * | Decreased |
Dupilumab [34,35,36,37] | Improved | Decreased | Improved | Improved | Decreased ** | Decreased |
Tezepelumab [6,20,38] | Improved | Decreased | Improved | Improved | Decreased *** | No significant difference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perikleous, E.P.; Steiropoulos, P.; Nena, E.; Paraskakis, E. Biologic Therapies in Pediatric Asthma. J. Pers. Med. 2022, 12, 999. https://doi.org/10.3390/jpm12060999
Perikleous EP, Steiropoulos P, Nena E, Paraskakis E. Biologic Therapies in Pediatric Asthma. Journal of Personalized Medicine. 2022; 12(6):999. https://doi.org/10.3390/jpm12060999
Chicago/Turabian StylePerikleous, Evanthia P., Paschalis Steiropoulos, Evangelia Nena, and Emmanouil Paraskakis. 2022. "Biologic Therapies in Pediatric Asthma" Journal of Personalized Medicine 12, no. 6: 999. https://doi.org/10.3390/jpm12060999
APA StylePerikleous, E. P., Steiropoulos, P., Nena, E., & Paraskakis, E. (2022). Biologic Therapies in Pediatric Asthma. Journal of Personalized Medicine, 12(6), 999. https://doi.org/10.3390/jpm12060999