Venous Segmental Flow Changes after Superficial Venous Intervention Demonstrating by Quantitative Phase-Contrast Magnetic Resonance Analysis: Preliminary Data from a Longitudinal Cohort Study
<p>Cohorts of the study.</p> "> Figure 2
<p>Typical stasis leg ulcer with venous reflux in the gaiter area (Also seen in <a href="#app1-jpm-12-01000" class="html-app">Video S1</a>). (<b>A</b>) Wet and nonhealing stasis leg ulcer. Black Arrow: unhealed venous ulcer with cellulitis. (<b>B</b>) Preintervention: The gated 3D-TSE-STIR MRA demonstrates the venous anatomy both leg veins. The white arrow indicates the diseased great saphenous vein of the wounded leg. (<b>C</b>) Postintervention: gated 3D-TSE-STIR MRA. The red arrow indicates the diseased great saphenous vein occluded. (<b>D</b>) Stasis leg ulcer healed after truncal ablation. Gated 3D-TSE-STIR MRA for venous systems. Black arrow: healed ulcers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. MRI Acquisition and Phase-Contrast Hemodynamic Analysis
2.3. Statistical Analysis
3. Results
3.1. Comparison between Target Limbs and Health Control by 2D PC-MRI Quantitative Analysis: Preintervention and Postintervention
3.2. Ratio of Target Limb to Nontreated Limb in Each Individual: Effects of Venous Intervention
4. Discussion
Study Limitations
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
ASV | absolute stroke volume |
CT | computed tomography |
CTA | computed tomography angiography |
DVT | deep venous thrombosis |
EIV | external iliac vein |
FFV | forward flow volume |
FOV | field of view |
FV | femoral vein |
GSV | great saphenous vein |
IR | inversion recovery |
IRB | institutional review board |
MF | mean flux |
MRA | magnetic resonance angiography |
MRI | magnetic resonance imaging |
MV | mean velocity |
PC | phase-contrast |
PV | popliteal vein |
STIR | short tau inversion recovery |
SV | stroke volume |
TOF | time-of-flight |
TSE | turbo spin-echo |
VTI | velocity time integral |
References
- Huang, Y.K.; Tseng, Y.H.; Lin, C.H.; Tsai, Y.H.; Hsu, Y.C.; Wang, S.C.; Chen, C.W. Evaluation of venous pathology of the lower extremities with triggered angiography non-contrast-enhanced magnetic resonance imaging. BMC Med. Imaging 2019, 19, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, Y.C.; Huang, Y.K.; Hsu, L.S.; Chen, P.Y.; Chen, C.W. Using non-contrast-enhanced magnetic resonance venography for the evaluation of May-Thurner syndrome in patients with renal insufficiency: A case report. Medicine 2019, 98, e18427. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Ting, H.; Chen, P.Y.; Weng, J.C.; Hsu, Y.C.; Wang, S.C.; Tseng, Y.H.; Huang, Y.K. Usefulness of triggered non-contrast-enhanced magnetic resonance angiography in assessing lower extremity venous disease. Medicine 2021, 100, e25809. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Tseng, Y.H.; Wong, M.Y.; Wu, C.M.; Lin, B.S.; Huang, Y.K. Stasis Leg Ulcers: Venous System Revises by Triggered Angiography Non-Contrast-Enhanced Sequence Magnetic Resonance Imaging. Diagnostics 2020, 10, 707. [Google Scholar] [CrossRef]
- Chen, C.W.; Tseng, Y.H.; Lin, C.C.; Kao, C.C.; Wong, M.Y.; Lin, B.S.; Huang, Y.K. Novel Diagnostic Options without Contrast Media or Radiation: Triggered Angiography Non-Contrast-Enhanced Sequence Magnetic Resonance Imaging in Treating Different Leg Venous Diseases. Diagnostics 2020, 10, 355. [Google Scholar] [CrossRef]
- Chen, C.W.; Tseng, Y.H.; Fang, Y.F.; Wong, M.Y.; Lin, Y.H.; Huang, Y.K. Superficial Venous Reflux Intervention Guided by Triggered Angiography Non-Contrast-Enhanced Sequence Magnetic Resonance Imaging: Different QFlow Pattern from Health Controls. J. Pers. Med. 2021, 11, 751. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Chen, C.W.; Wong, M.Y.; Yang, T.Y.; Lin, B.S.; Ting, H.; Huang, Y.K. Discriminating Reflux from Non-Reflux Diseases of Superficial Veins in Legs by Novel Non-Contrast MR with QFlow Technique. J. Pers. Med. 2021, 11, 242. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Chen, C.W.; Wong, M.Y.; Yang, T.Y.; Lin, Y.H.; Lin, B.S.; Huang, Y.K. Reduced External Iliac Venous Blood Flow Rate Is Associated with Asymptomatic Compression of the Common Iliac Veins. Medicina 2021, 57, 835. [Google Scholar] [CrossRef]
- Chen, C.W.; Fang, Y.F.; Tseng, Y.H.; Wong, M.Y.; Lin, Y.H.; Hsu, Y.C.; Lin, B.S.; Huang, Y.K. A Novel Tool for a Challenging Disease: Stasis Leg Ulcers Assessed Using QFlow in Triggered Angiography Noncontrast Enhanced Magnetic Resonance Imaging. J. Pers. Med. 2021, 11, 857. [Google Scholar] [CrossRef]
- Lin, B.S.; Chen, C.W.; Zhou, S.K.; Tseng, Y.H.; Wang, S.C.; Huang, Y.K. Evaluation of static ulcer on lower extremities using wireless wearable near-infrared spectroscopy device: Effect of deep venous thrombosis on TRiggered Angiography Non-Contrast-Enhanced sequence magnetic resonance imaging. Phlebology 2020, 35, 814–823. [Google Scholar] [CrossRef]
- Kursat Bozkurt, A.; Lawaetz, M.; Danielsson, G.; Lazaris, A.M.; Pavlovic, M.; Olariu, S.; Rasmussen, L. European College of Phlebology guideline for truncal ablation. Phlebology 2020, 35, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Nijsten, T.; van den Bos, R.R.; Goldman, M.P.; Kockaert, M.A.; Proebstle, T.M.; Rabe, E.; Sadick, N.S.; Weiss, R.A.; Neumann, M.H. Minimally invasive techniques in the treatment of saphenous varicose veins. J. Am. Acad. Dermatol. 2009, 60, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Zeh, R.; Armisen, R.; Barahona, S. Endovenous laser and echo-guided foam ablation in great saphenous vein reflux: One-year follow-up results. J. Vasc. Surg. 2008, 48, 940–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodburn, K.R. Endothermal ablation for the treatment of clinically significant incompetent lower limb perforating veins: Factors influencing the early outcomes. Phlebology 2021, 36, 127–134. [Google Scholar] [CrossRef]
- O’Banion, L.A.; Reynolds, K.B.; Kochubey, M.; Cutler, B.; Tefera, E.A.; Dirks, R.; Kiguchi, M.M. A comparison of cyanoacrylate glue and radiofrequency ablation techniques in the treatment of superficial venous reflux in CEAP 6 patients. J. Vasc. Surg. Venous Lymphat. Disord. 2021, 9, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Dimech, A.P.; Cassar, K. Efficacy of Cyanoacrylate Glue Ablation of Primary Truncal Varicose Veins Compared to Existing Endovenous Techniques: A Systematic Review of the Literature. Surg. J. 2020, 6, e77–e86. [Google Scholar] [CrossRef]
- Aherne, T.M.; Ryan, E.J.; Boland, M.R.; McKevitt, K.; Hassanin, A.; Tubassam, M.; Tang, T.Y.; Walsh, S. Concomitant vs. Staged Treatment of Varicose Tributaries as an Adjunct to Endovenous Ablation: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 430–442. [Google Scholar] [CrossRef]
- Garcia-Madrid, C.; Pastor Manrique, J.O.; Gomez-Blasco, F.; Sala Planell, E. Update on endovenous radio-frequency closure ablation of varicose veins. Ann. Vasc. Surg. 2012, 26, 281–291. [Google Scholar] [CrossRef]
- Feliciano, B.A.; Dalsing, M.C. Varicose vein: Current management. Adv. Surg. 2011, 45, 45–62. [Google Scholar] [CrossRef]
- Nelzen, P.O.; Skoog, J.; Lassvik, C.; Lanne, T.; Zachrisson, H. Prediction of Post-interventional Outcome in Great Saphenous Vein Incompetence: The Role of Venous Plethysmography with Selective Superficial Vein Occlusion. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Ciccotosto, C.; Goodman, L.R.; Washington, L.; Quiroz, F.A. Indirect CT venography following CT pulmonary angiography: Spectrum of CT findings. J. Thorac. Imaging 2002, 17, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Duwe, K.M.; Shiau, M.; Budorick, N.E.; Austin, J.H.; Berkmen, Y.M. Evaluation of the lower extremity veins in patients with suspected pulmonary embolism: A retrospective comparison of helical CT venography and sonography. 2000 ARRS Executive Council Award I. American Roentgen Ray Society. Am. J. Roentgenol. 2000, 175, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Yucel, E.K.; Kaufman, J.A.; Geller, S.C.; Waltman, A.C. Atherosclerotic occlusive disease of the lower extremity: Prospective evaluation with two-dimensional time-of-flight MR angiography. Radiology 1993, 187, 637–641. [Google Scholar] [CrossRef]
- Suttmeyer, B.; Teichgraber, U.; Thomas, A.; Rathke, H.; Albrecht, L.; Jonczyk, M.; Verba, M.; Guttler, F.; Schnackenburg, B.; Hamm, B.; et al. Non-invasive ECG-triggered 2D TOF MR angiography of the pelvic and leg arteries in an open 1.0-tesla high-field MRI system in comparison to conventional DSA. Biomed. Tech. Biomed. Eng. 2014, 59, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Harigai, M.; Okada, T.; Umeoka, S.; Nagayama, S.; Tanaka, E.; Fujimoto, K.; Kido, A.; Takeda, K.; Togashi, K.; Sakai, Y. Non-contrast-enhanced MR venography of the upper limb: A comparative study of acquisitions with fresh blood imaging vs. time-of-flight methods. Clin. Imaging 2012, 36, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Steffens, J.C.; Link, J.; Schwarzenberg, H.; Mueller-Huelsbeck, S.; Brinkmann, G.; Heller, M. Lower extremity occlusive disease: Diagnostic imaging with a combination of cardiac-gated 2D phase-contrast and cardiac-gated 2D time-of-flight MRA. J. Comput. Assist. Tomogr. 1999, 23, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Gurel, K.; Gurel, S.; Karavas, E.; Buharalioglu, Y.; Daglar, B. Direct contrast-enhanced MR venography in the diagnosis of May-Thurner syndrome. Eur. J. Radiol. 2011, 80, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Ruehm, S.G.; Zimny, K.; Debatin, J.F. Direct contrast-enhanced 3D MR venography. Eur. Radiol. 2001, 11, 102–112. [Google Scholar] [CrossRef]
- Alfano, G.; Fontana, F.; Ferrari, A.; Solazzo, A.; Perrone, R.; Giaroni, F.; Torricelli, P.; Cappelli, G. Incidence of nephrogenic systemic fibrosis after administration of gadoteric acid in patients on renal replacement treatment. Magn. Reason. Imaging 2020, 70, 1–4. [Google Scholar] [CrossRef]
- Schieda, N.; Maralani, P.J.; Hurrell, C.; Tsampalieros, A.K.; Hiremath, S. Updated Clinical Practice Guideline on Use of Gadolinium-Based Contrast Agents in Kidney Disease Issued by the Canadian Association of Radiologists. Can. Assoc. Radiol. J. 2019, 70, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Meuli, R.A.; Wedeen, V.J.; Geller, S.C.; Edelman, R.R.; Frank, L.R.; Brady, T.J.; Rosen, B.R. MR gated subtraction angiography: Evaluation of lower extremities. Radiology 1986, 159, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Gutzeit, A.; Sutter, R.; Froehlich, J.M.; Roos, J.E.; Sautter, T.; Schoch, E.; Giger, B.; Wyss, M.; Graf, N.; von Weymarn, C.; et al. ECG-triggered non-contrast-enhanced MR angiography (TRANCE) versus digital subtraction angiography (DSA) in patients with peripheral arterial occlusive disease of the lower extremities. Eur. Radiol. 2011, 21, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Seyam, M.; Sharma, N.; Ud Din, M.; Bansal, V. New Horizons for Diagnostic Pitfalls of Cerebral Venous Thrombosis: Clinical Utility of a Newly Developed Cerebral Venous Thrombosis Diagnostic Score: A Case Report and Literature Review. Am. J. Case Rep. 2021, 22, e932123. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, A.; Scott, K.R.; Koyfman, A.; Long, B. Cerebral venous thrombosis: Diagnosis and management in the emergency department setting. Am. J. Emerg. Med. 2021, 47, 24–29. [Google Scholar] [CrossRef]
- Algin, O.; Koc, U.; Yalcin, N. Cerebrospinal fluid velocity changes of idiopathic scoliosis: A preliminary study on 3-T PC-MRI and 3D-SPACE-VFAM data. Child’s Nerv. Syst. 2021, 38, 379–386. [Google Scholar] [CrossRef]
No | Age | Sex | Comorbidities | Target Legs | Main Symptoms | C in CEAP | E in CEAP | A in CEAP | P in CEAP | Wound Location | VCSS | Surgical Intervention |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 59 | F | DM | Left | Wound | C6 | Ep | GSVa, GSVb, SSV, CPV | Pr | gaiter area | 19 | A.R.C catheter ablation |
2 | 50 | M | Nil | Right | Wound | C6 | Ep | GSVa, GSVb | Pr | gaiter area | 13 | A.R.C catheter ablation |
3 | 48 | F | Nil | Left | pain, swelling | C5 | Ep | GSVa, GSVb | Pr | nil | 10 | A.R.C catheter ablation |
4 | 61 | F | Cervix cancer | Left | pain, claudication | C5 | Ep | GSVa, GSVb, LSV | Pr | nil | 9 | Atoven cathter ablation, sclerotherapy |
5 | 55 | F | Cholesteremia, Hepatitis B | Left | pain, swelling, mild skin hyperpigmentation | C5 | Ep | GSVa, GSVb | Pr | nil | 7 | A.R.C catheter ablation |
6 | 56 | F | Hypertension, tongue SCC | Left | swelling | C5 | Ep | GSV, LSV | Pr | nil | 10 | A.R.C catheter ablation |
7 | 65 | F | Nil | Left | cramping pain, heat | C5 | Ep | GSVa, GSVa, GSVbLSV | Pr | nil | 7 | Venaseal |
8 | 59 | F | Nil | Right | red swelling, itchy patches | C5 | Ep | GSVa, GSVb | Pr | nil | 7 | Venaseal |
9 | 43 | M | DM, Hypertension | Right | Wound, pain | C6 | Ep | GSVa, GSVb, LSV | Pr | gaiter area | 17 | A.R.C catheter ablation |
10 | 72 | F | DM, Hypertension | Left | swelling | C5 | Ep | GSVa, GSVb, LSV | Pr | nil | 10 | A.R.C catheter ablation |
11 | 59 | M | Nil | Left | cramping | C5 | Ep | GSVa, GSVb | Pr | nil | 8 | Atoven catheter ablation, sclerotherapy |
12 | 65 | F | Renal insufficiency, DM, Hypertension, Hepatitis C | Right | Wound, pain | C6 | Ep | GSV, SSV | Pr | gaiter | 20 | A.R.C catheter ablation |
QFlow | Segments | Target Limb before Interventions | Heathy Controls | p Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Stroke volume (SV), mL | ||||||
EIV | 5.898 | 2.200 | 3.751 | 1.386 | < 0.001 | |
FV | 1.728 | 0.801 | 1.124 | 0.511 | 0.004 | |
PV | 1.095 | 0.446 | 0.602 | 0.338 | < 0.001 | |
GSV | 0.936 | 0.518 | 0.310 | 0.219 | 0.001 | |
Forward flow volume (FFV), mL | ||||||
EIV | 5.932 | 2.172 | 3.872 | 1.506 | 0.001 | |
FV | 1.731 | 0.797 | 1.139 | 0.505 | 0.004 | |
PV | 1.102 | 0.441 | 0.614 | 0.331 | < 0.001 | |
GSV | 0.941 | 0.513 | 0.321 | 0.209 | 0.001 | |
Absolute stroke volume (ASV), mL | ||||||
EIV | 5.956 | 2.154 | 4.022 | 1.602 | 0.002 | |
FV | 1.734 | 0.792 | 1.155 | 0.502 | 0.005 | |
PV | 1.108 | 0.437 | 0.625 | 0.325 | < 0.001 | |
GSV | 0.947 | 0.507 | 0.334 | 0.199 | 0.001 | |
Mean flux (MF), mL/s | ||||||
EIV | 6.641 | 2.958 | 4.144 | 1.752 | 0.015 | |
FV | 1.979 | 1.019 | 1.224 | 0.604 | 0.003 | |
PV | 1.223 | 0.544 | 0.661 | 0.401 | < 0.001 | |
GSV | 1.037 | 0.524 | 0.336 | 0.240 | 0.001 | |
Velocity time integral (VTI), cm | ||||||
EIV | 6.653 | 2.114 | 3.856 | 1.764 | < 0.001 | |
FV | 4.190 | 2.219 | 3.004 | 1.677 | 0.057 | |
PV | 1.464 | 0.948 | 1.154 | 0.704 | 0.233 | |
GSV | 2.768 | 1.853 | 1.570 | 1.256 | 0.055 | |
Mean velocity (MV), cm/s | ||||||
EIV | 7.288 | 2.123 | 12.630 | 49.991 | 0.715 | |
FV | 4.694 | 2.574 | 3.251 | 1.859 | 0.040 | |
PV | 1.611 | 1.094 | 1.241 | 0.765 | 0.201 | |
GSV | 3.088 | 2.088 | 1.669 | 1.272 | 0.044 |
QFlow | Segments | Target Limb after Interventions | Heathy Cotrols | p Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Stroke volume (SV), mL | ||||||
EIV | 6.334 | 2.093 | 3.751 | 1.386 | < 0.001 | |
FV | 2.671 | 1.560 | 1.124 | 0.511 | 0.006 | |
PV | 1.750 | 0.928 | 0.602 | 0.338 | 0.001 | |
GSV | 0.054 | 0.070 | 0.310 | 0.219 | < 0.001 | |
Forward flow volume (FFV), mL | ||||||
EIV | 6.413 | 2.025 | 3.872 | 1.506 | < 0.001 | |
FV | 2.843 | 1.360 | 1.139 | 0.505 | 0.001 | |
PV | 1.750 | 0.928 | 0.614 | 0.331 | 0.001 | |
GSV | 0.096 | 0.046 | 0.321 | 0.209 | < 0.001 | |
Absolute stroke volume (ASV), mL | ||||||
EIV | 6.490 | 1.979 | 4.022 | 1.602 | < 0.001 | |
FV | 2.849 | 1.353 | 1.155 | 0.502 | 0.001 | |
PV | 1.750 | 0.928 | 0.625 | 0.325 | 0.001 | |
GSV | 0.186 | 0.067 | 0.334 | 0.199 | 0.001 | |
Mean flux (MF), mL/s | ||||||
EIV | 7.276 | 2.959 | 4.144 | 1.752 | 0.004 | |
FV | 3.245 | 1.728 | 1.224 | 0.604 | 0.002 | |
PV | 1.989 | 1.125 | 0.661 | 0.401 | 0.002 | |
GSV | 0.049 | 0.059 | 0.336 | 0.240 | < 0.001 | |
Velocity time integral (VTI), cm | ||||||
EIV | 5.673 | 1.806 | 3.856 | 1.764 | 0.004 | |
FV | 6.225 | 4.332 | 3.004 | 1.677 | 0.027 | |
PV | 1.959 | 0.580 | 1.154 | 0.704 | 0.001 | |
GSV | 0.063 | 0.439 | 1.570 | 1.256 | < 0.001 | |
Mean velocity (MV), cm/s | ||||||
EIV | 6.373 | 2.224 | 12.630 | 49.991 | 0.669 | |
FV | 7.160 | 5.292 | 3.251 | 1.859 | 0.028 | |
PV | 2.188 | 0.747 | 1.241 | 0.765 | 0.001 | |
GSV | 0.081 | 0.386 | 1.669 | 1.272 | < 0.001 |
QFlow | Segments | Ratio before Interventions | Ratio after Interventions | p Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Stroke volume (SV), mL | ||||||
EIV | 0.984 | 0.330 | 0.912 | 0.298 | 0.437 | |
FV | 1.124 | 0.342 | 1.522 | 1.061 | 0.164 | |
PV | 1.115 | 0.589 | 1.799 | 0.955 | 0.058 | |
GSV | 2.829 | 2.393 | 0.362 | 0.861 | 0.007 | |
Forward flow volume (FFV), mL | ||||||
EIV | 0.918 | 0.344 | 0.897 | 0.314 | 0.835 | |
FV | 0.966 | 0.410 | 1.593 | 1.081 | 0.125 | |
PV | 1.065 | 0.482 | 1.793 | 0.956 | 0.035 | |
GSV | 2.515 | 2.080 | 0.336 | 0.416 | 0.002 | |
Absolute stroke volume (ASV), mL | ||||||
EIV | 0.958 | 0.334 | 0.888 | 0.326 | 0.456 | |
FV | 1.103 | 0.337 | 1.652 | 1.035 | 0.056 | |
PV | 1.026 | 0.409 | 1.788 | 0.957 | 0.024 | |
GSV | 2.029 | 1.834 | 0.499 | 0.562 | 0.014 | |
Mean flux (MF), mL/s | ||||||
EIV | 0.984 | 0.329 | 0.913 | 0.301 | 0.446 | |
FV | 1.121 | 0.346 | 1.631 | 0.976 | 0.053 | |
PV | 1.117 | 0.588 | 1.791 | 0.943 | 0.059 | |
GSV | 2.941 | 2.599 | 0.347 | 0.807 | 0.008 | |
Velocity time integral (VTI), cm | ||||||
EIV | 1.041 | 0.401 | 1.054 | 0.425 | 0.938 | |
FV | 1.060 | 0.298 | 1.806 | 1.107 | 0.025 | |
PV | 1.150 | 0.800 | 1.793 | 0.826 | 0.080 | |
GSV | 1.482 | 1.033 | 0.421 | 0.911 | 0.027 | |
Mean velocity (MV), cm/s | ||||||
EIV | 1.042 | 0.401 | 1.053 | 0.424 | 0.945 | |
FV | 1.059 | 0.298 | 1.799 | 1.091 | 0.024 | |
PV | 1.150 | 0.807 | 1.788 | 0.816 | 0.082 | |
GSV | 1.483 | 1.039 | 0.423 | 0.916 | 0.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-W.; Tseng, Y.-H.; Kao, C.-C.; Ngo, Y.G.; Lee, C.-Y.; Yang, T.-Y.; Lin, Y.-H.; Huang, Y.-K. Venous Segmental Flow Changes after Superficial Venous Intervention Demonstrating by Quantitative Phase-Contrast Magnetic Resonance Analysis: Preliminary Data from a Longitudinal Cohort Study. J. Pers. Med. 2022, 12, 1000. https://doi.org/10.3390/jpm12061000
Chen C-W, Tseng Y-H, Kao C-C, Ngo YG, Lee C-Y, Yang T-Y, Lin Y-H, Huang Y-K. Venous Segmental Flow Changes after Superficial Venous Intervention Demonstrating by Quantitative Phase-Contrast Magnetic Resonance Analysis: Preliminary Data from a Longitudinal Cohort Study. Journal of Personalized Medicine. 2022; 12(6):1000. https://doi.org/10.3390/jpm12061000
Chicago/Turabian StyleChen, Chien-Wei, Yuan-Hsi Tseng, Chih-Chen Kao, Yeh Giin Ngo, Chung-Yuan Lee, Teng-Yao Yang, Yu-Hui Lin, and Yao-Kuang Huang. 2022. "Venous Segmental Flow Changes after Superficial Venous Intervention Demonstrating by Quantitative Phase-Contrast Magnetic Resonance Analysis: Preliminary Data from a Longitudinal Cohort Study" Journal of Personalized Medicine 12, no. 6: 1000. https://doi.org/10.3390/jpm12061000
APA StyleChen, C. -W., Tseng, Y. -H., Kao, C. -C., Ngo, Y. G., Lee, C. -Y., Yang, T. -Y., Lin, Y. -H., & Huang, Y. -K. (2022). Venous Segmental Flow Changes after Superficial Venous Intervention Demonstrating by Quantitative Phase-Contrast Magnetic Resonance Analysis: Preliminary Data from a Longitudinal Cohort Study. Journal of Personalized Medicine, 12(6), 1000. https://doi.org/10.3390/jpm12061000