Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics
"> Figure 1
<p>Simplified overview of proposed adaptive immune response to pathogenic fungi. Panel (<b>A</b>) illustrates the adaptive immune response to yeast, which necessitates a substantial quantity of the Th1 cell subtype. These cells secrete cytokines, such as IFN-γ, to activate macrophages for phagocytosis, and TNF-α to facilitate granuloma formation, as well as local and systemic inflammatory responses. A regulated response is considered the most effective approach to eliminating pathogenic yeasts. However, the response triggered by the Th17 subtype produces cytokines, such as IL-17, responsible for neutrophil recruitment, and IL-22, which stimulates the recruitment of antigen-presenting cells. During inflammation, the recruitment of neutrophils by Th17 subtypes may cause tissue destruction and aggravate the inflammatory process. Conversely, the response caused by the Th2 subtype results in increased antibody production, which contributes to the opsonization/neutralization of the pathogen. Nevertheless, the efficacy of these functions during pathogenic yeast infections remains undefined. For instance, in individuals with HIV infection, the suppression of CD4<sup>+</sup> T lymphocytes leads to the host’s inability to eliminate yeast pathogens. Panel (<b>B</b>) offers a proposed overview of the adaptive immune response to hyphae, spores, and conidia. In this scenario, the Th17 cell subtype is the most indispensable. As previously mentioned, these cells produce IL-17 and IL-22, which prompt neutrophil recruitment to the inflammation site. Consequently, polymorphonuclear cells secrete various fungicide and fungistatic molecules, including neutrophil extracellular traps (NETs), to eradicate the hyphae. In addition, it triggers inflammatory responses and tissue damage. The Th1 subtype response proves less effective due to the hyphae’s considerable size, rendering phagocytosis by activated macrophages an ineffectual process. Instead, a strong local and systemic inflammatory response ensues. The Th2 subtype response is the least effective, leading to a high production of antibodies. For instance, patients with neutropenia exhibit increased susceptibility to infections caused by fungi in the mycelial form. The arrow depicted in the upper part of the figure represents the frequency of the immune response, with larger arrows signifying a higher occurrence.</p> "> Figure 2
<p>Workflow for prediction of targets for vaccine and diagnosis. Obtention of proteomes by FungiDB or Uniprot; location prediction to find secreted protein; B cell epitope prediction—linear and conformational; antigenicity prediction by VaxiJen; T cell epitope prediction—MHC I (Proteasome, TAP and immunogenicity) and MHCI. Literature investigation: epitope refinement (evaluation)—analyses of solubility, position in the 3D structure and epitope conservancy.</p> ">
Abstract
:1. Introduction
2. Vaccine Approaches to Protect against Fungal Infections
2.1. Inactivated and Live-Attenuated Vaccines
Target Pathogen | Antigen/Strain | Adjuvant/Carrier/Vehicle | Vaccine Type | Model | Route of Injection | Human Clinical Trial | Reference(s) |
---|---|---|---|---|---|---|---|
Paracoccidioidomycosis (PCM) | P. brasiliensis | Nd | Inactivated/Live attenuated | Mice | - | Nd | [6] |
Major 43-kDa antigenic glycoprotein (gp43), (P10) | Plasmid vector | DNA Vaccine | Mice | Intramuscular/Intradermal | - | [16] | |
Mycobacterium leprae derived HSP65 | Vector pVAX1/ | Recombinant DNA | Mice | Intramuscular | - | [17] | |
Major 43-kDa antigenic glycoprotein (gp43), (P10) | Plasmid vector/IL-12 recombinant | DNA Vaccine | Mice | Intratracheal | - | [18] | |
Major 43-kDa antigenic glycoprotein (gp43), (P10) | S. cerevisiae expressing gp43 | Recombinant protein | Mice | Intraperitoneal | - | [19] | |
P10- FliC fusion protein | Freund adjuvant (CFA)/multiple-antigen peptide (MAP) | Recombinant protein | Mice | Intranasal | - | [20] | |
Recombinant rPb27 | Corynebacterium parvum/aluminum | Recombinant protein | Mice | Subcutaneous | - | [21] | |
Heat shock protein 60 (HSP60) | Monophosphoryl lipid A, synthetic trehalose dicorynomycolate, and cell wall skeleton | Recombinant protein | Mice | Subcutaneous | - | [22] | |
Panfungal | β-glucans of S. cerevisiae | Nd | Heat Killed Yeast (HKY) | Mice | Subcutaneous | Nd | [23] |
Coccidioidomycosis | Formalin Killed Spherules (FKS) | Nd | Whole organism/Inactivated | Human | Intramuscular | Phase 3 | [12] |
Antigen 2 (Ag2) | Nd | DNA vaccine | Mice | Intraperitoneal | - | [24] | |
Coccidioides posadasii CPS1 Deletion Mutant | rAg2/PRA1–106-CSA with MPL-SE (25 μg)/CpG (10 μg) adjuvant | Whole organism/Live-attenuated | Mice | Subcutaneous/Intraperitoneal | - | [14] | |
Δcts2/ard1/cts3 or ΔT—triple attenuated vaccine | Nd | Whole organism/Live-attenuated | Mice | Subcutaneous | - | [13] | |
Recombinant Coccidioides polypeptide antigen (rCpa1) encapsulated into glucan-chitin particles (GCP-rCpa1) | Mouse serum albumin (MSA) and incomplete Freund’s adjuvant | Recombinant protein | Mice | Subcutaneous | - | [25] | |
Blastomycosis | Adhesin BAD1 gene | Nd | Whole organism/Live-attenuated | Mice (T CD4+ depleted) | Subcutaneous | - | [26] |
Cryptococcosis | C. neoformans strain H99γ | Nd | Live-attenuated | T-cell depleted mice | Nasal inhalation | - | [27] |
Glucuronoxylomannan (GXM) | Tetanus toxoid (GXM-TT) | Conjugate/Solubleantigenic fractions | Mice | Subcutaneous | - | [28] | |
C. neoformans Δsgl1 | Nd | Whole organism/Live-attenuated | Mice | Intranasal | - | [29] | |
C. neoformans deletion of ZNF2 | Nd | Whole organism/Live-attenuated | Mice | Intranasal | - | [30] | |
Candidiasis | Agglutinin-like sequence 3 (Als3p) | Aluminium hydroxide (Alum) | Recombinant protein (NDV-3) | Mice/Human | Oropharyngeal, Vaginal and Intravenous | Phase I | [31,32] |
Recombinant secretory aspartyl proteinase (r-SAP-2) | Cholera toxin (CT) | Recombinant | Rat | Intravaginal | - | [33] | |
PEV7 (r-Sap2 virosomes | Cholera toxin (CT)/Virosomal carrier | Recombinant protein | Mice/Human | Intravaginal | Phase I (delivered by intramuscula) | [34] | |
Laminarin (Lam) β-glucan | Complete Freund’s adjuvant (CFA) | Lam- diphtheria toxoid CRM197 conjugate | Mice | Priming dose: Subcutaneous Booster: Intranasal | - | [35,36] | |
Fructose bisphosphate aldolase (Fba) (cytosolic and cell wall peptides) | Alum or monophosphoryl lipid A (MPL) | Subunit | Mice | Subcutaneous | - | [36] | |
The β-mannose trisaccharide, the Fba peptide T-cell epitope, a dectin-1 ligand, β1,3 glucan hexasaccharide | Freund’s incomplete adjuvant/with and without alum | Conjugate | Mice | Subcutaneous | [37] | ||
C. albicans serotypes a and b ribosomes | Nonencapsulated Klebsiella pneumoniae proteoglycan | Recombinant/Conjugate capsule | Women with vulvovaginal candidiasis (VVC) | Oral | phase II | [38] | |
Histoplasmosis | Heat Shock Protein 60 (HSP-60) | Monophosphoryl lipid A, synthetic trehalose dicorynomycolate, and cell wall skeleton | Recombinant protein | Mice | Subcutaneous | [39] | |
HIS-62 | Complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) | Recombinant protein | Mice | Subcutaneous | - | [40] | |
80-kilodalton antigen | Complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) | Recombinant protein | Mice | Subcutaneous | - | [41] | |
H Antigen | Monophosphoryl lipid A, synthetic trehalose dicorynomycolate, and cell wall skeleton | Recombinant protein | Mice | Subcutaneous | - | [42] | |
Pneumocystosis | Kexin genes | Vector: CMV to express Antigen EF-1α to express CD40L | Kexin-CD40 L DNA vaccine | CD4-deficient mice | Intramuscular | - | [43] |
Aspergillosis | Aspergillus fumigatus ΔsglA | Nd | Whole organism/Live-attenuated | Mice | Intranasal | - | [44] |
Antigen Asp f 3 and Asp f 9 (VesiVax® Af3/9) | Lipidated Tucaresol, monophosphoryl lipid A or Pam3CAG | Recombinant protein and VesiVax liposomes | Mice | Subcutaneous and inguinal region | - | [45] | |
Sporotrichosis | ZR8 peptide is from the GP70 protein | Freund’s incomplete adjuvant | Recombinant protein | Mice | Intramuscular | - | [46] |
2.2. Recombinant (Subunit) Vaccines
2.3. Conjugate Vaccines
2.4. Pan-Fungal Vaccine Strategy
2.5. DNA Vaccines
3. Immune Response against Fungal Infections and Approaches Vaccines
3.1. Vaccines Based on Antibody
3.2. Dendritic Cell Vaccination and Immunotherapy
3.3. Vaccines Based on T Helper Lymphocytes
4. HLA and Its Importance in Identification of Therapeutic Epitopes
Target Pathogen | HLA | Bioinformatics | Experimental | Model | Reference(s) |
---|---|---|---|---|---|
Paracoccidioides spp. | A1 | - | + | Human | [135] |
A2 | - | + | Human | ||
B7 | - | + | Human | ||
B21 | - | + | Human | ||
CW1 | - | + | Human | ||
B15 | - | + | Human | ||
A9 | - | + | Human | [141,142,143,144] | |
B13 | - | + | Human | ||
B22 | - | + | Human | ||
B40 | - | + | Human | ||
B40 | - | + | Human | [141,144,145] | |
DRB1-0101 | - | + | Human | [145] | |
DRB1-0301 | - | + | Human | ||
DRB1-0401 | - | + | Human | ||
DRB1-0701 | - | + | Human | ||
DRB1-1101 | - | + | Human | ||
DRB1-1301 | - | + | Human | ||
DRB1-0404 | - | + | Human | ||
DRB1-0802 | - | + | Human | ||
DRB1-0205 | - | + | Human | ||
DRB1-1302 | - | + | Human | ||
DRB1-1501 | - | + | Human | ||
Histoplasma spp. | B7 | - | + | Human | |
B7 | - | + | Human | [146] | |
DR-15 | - | + | Human | ||
DQ-6 | - | + | Human | ||
Cryptococcus spp. | DR4 | - | + | Mouse | |
C1203 | + | - | Human | [55,147] | |
DRB1-0101 | + | - | Human | ||
Coccidioides spp. | DRB1-0401 | - | + | Mouse | [148,149] |
4.1. Paracoccidioidomycosis
4.2. Histoplasmosis
4.3. Cryptococcosis
4.4. Coccidioidomycosis
5. Bioinformatic Tools for Vaccine Development against Fungi
Pathogen | Subcellular Location and | B Cell Epitope Prediction | T Cell Epitope Prediction | Cytokines | Immunogenicity and Antigenic | Number of Final Targets | Year | Ref. |
---|---|---|---|---|---|---|---|---|
Histoplasma capsulatum | PSORT II; McGeoch method; TMHMM | -- | -- | -- | VaxiJen 2.0, | 5 targets | 2023 | [169] |
Candida auris | TargetP; SignalP; Phobius; FunsecKB; PredGPI; TMHMM; EffectorP; FungalRV; FaaPred; | -- | NetMHCII 2.3 (IEDB) | -- | VaxiJen server | 39 targets | 2022 | [170] |
Rhizopus delemar | SignalP; PredGPI; TMHMM; GPI- anchor | BCPREDS; Ellipro tool | IEDB (MHC class I and II); MHC class I processing | IL-4Pred; IL-10Pred; IFNepitope | VaxiJen 2.0 | 4 targets | 2022 | [171] |
Sporothrix brasiliensis | -- | Bepipred 2.0 | PredBALC/C server; | IL-4pred; IFNepitope; 17eScan server; | SsEno | Enolase | 2022 | [172] |
Cryptococcus neoformans var. grubii | -- | IEDB Bcell epitope prediction tool; BepiPred; ElliPro | IEDB MHC-I prediction tool; IEDB MHC-II prediction tool | -- | Kolaskar and Tongaonkar antigenicity method | heat shock 70 kDa protein | 2021 | [147] |
Candida glabrata | -- | ElliPro; Bepipred tool from IEDB; | IEDB MHC I prediction tool/IEDB MHC II prediction | -- | Kolaskar and Tongaonkar antigenicity method | Fructose Bisphosphate Aldolase | 2021 | [173] |
Candida dubliniensis | -- | -- | IEDB B-cell epitope prediction tool; NetMHCII 2.3; NETMHCpan 4.0 web servers | IL2Pred, IL4Pred, and IFNepitope | VaxiJen 2.0; AllergenFP | Secreted aspartyl proteinases (SAP) proteins | 2023 | [174] |
Candida glabrata | SignalP-5; DeepLoc-1.0 | -- | -- | VaxiJen v2.0 server | 33 targets | 2022 | [175] | |
Aspergillus fumigatus | -- | -- | NetMHCIIpan ver.3.2 server; | -- | AllergenFP; VaxiJen ver.2.0 | 5,8-linoleate diol synthase; ChainB-chitinase A1 | 2022 | [175] |
Rhizopus microsporus | SignalP-5.0 server | -- | IEDB MHC I prediction tool/IEDB MHC II prediction; Docking by AutoDock Vina | INF predictionserver | -- | Spore coat (CotH) and Serine protease (SP) proteins as | 2021 | [176] |
Candida albicans | CELLO2GO | -- | NetCTL server; IEDB MHC I prediction tool/IEDB MHC II prediction | -- | VaxiJen server, ANTIGENpro; AllerTOP; NetChop3.1; MHCII-NP | Als4p, Als3p, Fav2p, Als2p, Eap1p, Hyr1p, Hwp1p, Sap2p | 2020 | [77] |
Candida auris | CELLO | ABCPred; Ellipro service | NetCTL 1.2; IEDB MHC II prediction | IFNepitope | VaxiJen server; Algpred server | Mitochondrial import receptor subunit, Putative beta-glucanase/Beta-glucan synthetases, 1,3-beta-glucanosyltransferase, Uricase, and a putative SUN family protein. | 2022 | [177] |
Rhizopus delemar | TMHMM v2.0 server | IEDB Bcell epitope prediction tool (BepiPred and ElliPro) | NetCTL 1.2; IEDB MHC II prediction | IFNepitope; IL4pred; IL10pred | VaxiJen server; AllerTOP v2.0; MHCII-NP (IEDB); NetChop3.1 | Cell membrane by the copper oxidase-iron permease (FTR1) complex | 2022 | [140] |
Candida tropicalis | CELLO2GO; PSORT II | -- | NETMHC 2.3; NETMHC 4.0; Bepipred (IEDB) | IFNepitope | VaxiJen 2.0; AllergenFP version 1. | Secreted aspartic protease 2 (SAP2) protein | 2022 | [166] |
5.1. T Cell Epitope Prediction
5.2. B Cell Epitope Prediction
5.3. Antigenicity Prediction
6. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Seyedjavadi, S.S.; Bagheri, P.; Nasiri, M.J.; Razzaghi-Abyaneh, M.; Goudarzi, M. Fungal Infection in Co-Infected Patients With COVID-19: An Overview of Case Reports/Case Series and Systematic Review. Front. Microbiol. 2022, 13, 888452. [Google Scholar] [CrossRef]
- Skiada, A.; Pavleas, I.; Drogari-Apiranthitou, M. Epidemiology and Diagnosis of Mucormycosis: An Update. J. Fungi 2020, 6, 265. [Google Scholar] [CrossRef]
- Gebrehiwet, T.; Gebremichael, G. Development of Vaccination against Fungal Disease: A Review Article. Int. J. Trop. Dis. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- do Nascimento Martins, E.M.; Reis, B.S.; de Resende, M.A.; de Andrade, A.S.R.; Goes, A.M. Mice Immunization with Radioattenuated Yeast Cells of Paracoccidiodes Brasiliensis: Influence of the Number of Immunizations. Mycopathologia 2009, 168, 51–58. [Google Scholar] [CrossRef]
- Liu, M.; Clemons, K.V.; Johansen, M.E.; Martinez, M.; Chen, V.; Stevens, D.A. Saccharomyces as a Vaccine against Systemic Candidiasis. Immunol. Investig. 2012, 41, 847–855. [Google Scholar] [CrossRef]
- Capilla, J.; Clemons, K.V.; Liu, M.; Levine, H.B.; Stevens, D.A. Saccharomyces Cerevisiae as a Vaccine against Coccidioidomycosis. Vaccine 2009, 27, 3662–3668. [Google Scholar] [CrossRef]
- Ardiani, A.; Higgins, J.P.; Hodge, J.W. Vaccines Based on Whole Recombinant Saccharomyces Cerevisiae Cells. FEMS Yeast Res. 2010, 10, 1060–1069. [Google Scholar] [CrossRef]
- Levine, H.B.; Cobb, J.M.; Smith, C.E. Immunity to Coccidioi-Domycosis Induced in Mice by Purified Spherule, Arthrospore, and Mycelial Vaccines. Trans. N. Y. Acad. Sci. 1960, 22, 436–449. [Google Scholar] [CrossRef]
- Levine, H.B.; Kong, Y.-C.M.; Smith, C.E. Immunization of Mice to Coccidioides Immitis: Dose, Regimen and Spherulation Stage of Killed Spherule Vaccines. J. Immunol. 1965, 94, 132–142. [Google Scholar] [CrossRef]
- Pappagianis, D.; Brown, B.W.; Cunningham, R.; Einstein, H.; Ellsworth, R.; Galgfani, J.; Hampson, C.R.; Holeman, C.W.; Johnson, R.H.; Larwood, T.R.; et al. Evaluation of the Protective Efficacy of the Killed Coccidioides Immitis Spherule Vaccine in Humans. Am. Rev. Respir. Dis. 1993, 148, 656–660. [Google Scholar] [CrossRef]
- Xue, J.; Chen, X.; Selby, D.; Hung, C.Y.; Yu, J.J.; Cole, G.T. A Genetically Engineered Live Attenuated Vaccine of Coccidioides Posadasii Protects BALB/c Mice against Coccidioidomycosis. Infect. Immun. 2009, 77, 3196–3208. [Google Scholar] [CrossRef] [PubMed]
- Narra, H.P.; Shubitz, L.F.; Mandel, M.A.; Trinh, H.T.; Griffin, K.; Buntzman, A.S.; Frelinger, J.A.; Galgiani, J.N.; Orbach, M.J. A Coccidioides Posadasii CPS1 Deletion Mutant Is Avirulent and Protects Mice from Lethal Infection. Infect. Immun. 2016, 84, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Mandel, M.A.; Beyhan, S.; Voorhies, M.; Shubitz, L.F.; Galgiani, J.N.; Orbach, M.J.; Sil, A. The WOPR Family Protein Ryp1 Is a Key Regulator of Gene Expression, Development, and Virulence in the Thermally Dimorphic Fungal Pathogen Coccidioides Posadasii. PLoS Pathog. 2022, 18, e1009832. [Google Scholar] [CrossRef]
- Pinto, A.R.; Puccia, R.; Diniz, S.N.; Franco, M.F.; Travassos, L.R. DNA-Based Vaccination against Murine Paracoccidioidomycosis Using the Gp43 Gene from Paracoccidioides Brasiliensis. Vaccine 2000, 18, 3050–3058. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Bocca, A.L.; Amaral, A.C.; Souza, A.C.C.O.; Faccioli, L.H.; Coelho-Castelo, A.A.M.; Figueiredo, F.; Silva, C.L.; Felipe, M.S.S. HSP65 DNA as Therapeutic Strategy to Treat Experimental Paracoccidioidomycosis. Vaccine 2010, 28, 1528–1534. [Google Scholar] [CrossRef]
- Rittner, G.M.G.; Muñoz, J.E.; Marques, A.F.; Nosanchuk, J.D.; Taborda, C.P.; Travassos, L.R. Therapeutic DNA Vaccine Encoding Peptide P10 against Experimental Paracoccidioidomycosis. PLoS Negl. Trop. Dis. 2012, 6, e1519. [Google Scholar] [CrossRef]
- Assis-Marques, M.A.; Oliveira, A.F.; Ruas, L.P.; dos Reis, T.F.; Roque-Barreira, M.C.; Coelho, P.S.R. Saccharomyces Cerevisiae Expressing Gp43 Protects Mice against Paracoccidioides Brasiliensis Infection. PLoS ONE 2015, 10, e0120201. [Google Scholar] [CrossRef]
- Braga, C.J.M.; Rittner, G.M.G.; Henao, J.E.M.; Teixeira, A.F.; Massis, L.M.; Sbrogio-Almeida, M.E.; Taborda, C.P.; Travassos, L.R.; Ferreira, L.C.S. Paracoccidioides Brasiliensis Vaccine Formulations Based on the Gp43-Derived P10 Sequence and the Salmonella Enterica FliC Flagellin. Infect. Immun. 2009, 77, 1700–1707. [Google Scholar] [CrossRef]
- Fernandes, V.C.; Martins, E.M.N.; Boeloni, J.N.; Coitinho, J.B.; Serakides, R.; Goes, A.M. Additive Effect of RPb27 Immunization and Chemotherapy in Experimental Paracoccidioidomycosis. PLoS ONE 2011, 6, e17885. [Google Scholar] [CrossRef] [PubMed]
- De Bastos Ascenço Soares, R.; Gomez, F.J.; De Almeida Soares, C.M.; Deepe, G.S. Vaccination with Heat Shock Protein 60 Induces a Protective Immune Response against Experimental Paracoccidioides Brasiliensis Pulmonary Infection. Infect. Immun. 2008, 76, 4214–4221. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Clemons, K.V.; Bigos, M.; Medovarska, I.; Brummer, E.; Stevens, D.A. Immune Responses Induced by Heat Killed Saccharomyces Cerevisiae: A Vaccine against Fungal Infection. Vaccine 2011, 29, 1745–1753. [Google Scholar] [CrossRef]
- Jiang, C.; Magee, D.M.; Quitugua, T.N.; Cox, R.A. Genetic Vaccination against Coccidioides Immitis: Comparison of Vaccine Efficacy of Recombinant Antigen 2 and Antigen 2 CDNA. Infect. Immun. 1999, 67, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-Y.; Zhang, H.; Castro-Lopez, N.; Ostroff, G.R.; Khoshlenar, P.; Abraham, A.; Cole, G.T.; Negron, A.; Forsthuber, T.; Peng, T.; et al. Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (RCpa1) against Pulmonary Coccidioides Posadasii Infection. Infect. Immun. 2018, 86. [Google Scholar] [CrossRef]
- Wüthrich, M.; Filutowicz, H.I.; Warner, T.; Deepe, G.S.; Klein, B.S. Vaccine Immunity to Pathogenic Fungi Overcomes the Requirement for CD4 Help in Exogenous Antigen Presentation to CD8+ T Cells: Implications for Vaccine Development in Immune-Deficient Hosts. J. Exp. Med. 2003, 197, 1405–1416. [Google Scholar] [CrossRef]
- Wozniak, K.L.; Young, M.L.; Wormley, F.L. Protective Immunity against Experimental Pulmonary Cryptococcosis in T Cell-Depleted Mice. Clin. Vaccine Immunol. 2011, 18, 717–723. [Google Scholar] [CrossRef]
- Devi, S. Preclinical Efficacy of a Glucuronoxylomannan-Tetanus Toxoid Conjugate Vaccine of Cryptococcus Neoformans in a Murine Model. Vaccine 1996, 14, 841–844. [Google Scholar] [CrossRef]
- Normile, T.G.; Del Poeta, M. Three Models of Vaccination Strategies Against Cryptococcosis in Immunocompromised Hosts Using Heat-Killed Cryptococcus Neoformans Δsgl1. Front. Immunol. 2022, 13, 868523. [Google Scholar] [CrossRef]
- Lin, J.; Pham, T.; Hipsher, K.; Glueck, N.; Fan, Y.; Lin, X. Immunoprotection against Cryptococcosis Offered by Znf2 Depends on Capsule and the Hyphal Morphology. mBio 2022, 13, e0278521. [Google Scholar] [CrossRef]
- Schmidt, C.S.; White, C.J.; Ibrahim, A.S.; Filler, S.G.; Fu, Y.; Yeaman, M.R.; Edwards, J.E.; Hennessey, J.P. NDV-3, a Recombinant Alum-Adjuvanted Vaccine for Candida and Staphylococcus Aureus, Is Safe and Immunogenic in Healthy Adults. Vaccine 2012, 30, 7594–7600. [Google Scholar] [CrossRef]
- Spellberg, B.J.; Ibrahim, A.S.; Avanesian, V.; Fu, Y.; Myers, C.; Phan, Q.T.; Filler, S.G.; Yeaman, M.R.; Edwards, J.E. Efficacy of the Anti-Candida RAls3p-N or RAls1p-N Vaccines against Disseminated and Mucosal Candidiasis. J. Infect. Dis. 2006, 194, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Sandini, S.; La Valle, R.; Deaglio, S.; Malavasi, F.; Cassone, A.; De Bernardis, F. A Highly Immunogenic Recombinant and Truncated Protein of the Secreted Aspartic Proteases Family (RSap2t) of Candida Albicans as a Mucosal Anticandidal Vaccine. FEMS Immunol. Med. Microbiol. 2011, 62, 215–224. [Google Scholar] [CrossRef] [PubMed]
- De Bernardis, F.; Amacker, M.; Arancia, S.; Sandini, S.; Gremion, C.; Zurbriggen, R.; Moser, C.; Cassone, A. A Virosomal Vaccine against Candidal Vaginitis: Immunogenicity, Efficacy and Safety Profile in Animal Models. Vaccine 2012, 30, 4490–4498. [Google Scholar] [CrossRef] [PubMed]
- Bromuro, C.; Romano, M.; Chiani, P.; Berti, F.; Tontini, M.; Proietti, D.; Mori, E.; Torosantucci, A.; Costantino, P.; Rappuoli, R.; et al. Beta-Glucan-CRM197 Conjugates as Candidates Antifungal Vaccines. Vaccine 2010, 28, 2615–2623. [Google Scholar] [CrossRef]
- Xin, H.; Cartmell, J.; Bailey, J.J.; Dziadek, S.; Bundle, D.R.; Cutler, J.E. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis. PLoS ONE 2012, 7, e35106. [Google Scholar] [CrossRef]
- Bundle, D.R.; Paszkiewicz, E.; Elsaidi, H.R.H.; Mandal, S.S.; Sarkar, S. A Three Component Synthetic Vaccine Containing a β-Mannan T-Cell Peptide Epitope and a β-Glucan Dendritic Cell Ligand. Molecules 2018, 23, 1961. [Google Scholar] [CrossRef]
- Levy, D.A.; Bohbot, J.M.; Catalan, F.; Normier, G.; Pinel, A.M.; Dussourd d’Hinterland, L. Phase II Study of D.651, an Oral Vaccine Designed to Prevent Recurrences of Vulvovaginal Candidiasis. Vaccine 1989, 7, 337–340. [Google Scholar] [CrossRef]
- Deepe, G.S.; Gibbons, R.S. Cellular and Molecular Regulation of Vaccination with Heat Shock Protein 60 from Histoplasma Capsulatum. Infect. Immun. 2002, 70, 3759–3767. [Google Scholar] [CrossRef]
- Gomez, F.J.; Gomez, A.N.A.M.; Deepe, G.S. Protective Efficacy of a 62-Kilodalton Antigen, HIS-62, from the Cell Wall and Cell Membrane of Histoplasma Capsulatum Yeast Cells. Infect. Immun. 1991, 59, 4459–4464. [Google Scholar] [CrossRef]
- Gomez, F.J.; Gomez, A.M.; Deepe, G.S. An 80-Kilodalton Antigen from Histoplasma Capsulatum That Has Homology to Heat Shock Protein 70 Induces Cell-Mediated Immune Responses and Protection in Mice. Infect. Immun. 1992, 60, 2565–2571. [Google Scholar] [CrossRef]
- Deepe, G.S.; Gibbons, R. Protective Efficacy of H Antigen from Histoplasma Capsulatum in a Murine Model of Pulmonary Histoplasmosis. Infect. Immun. 2001, 69, 3128–3134. [Google Scholar] [CrossRef]
- Zheng, M.; Ramsay, A.J.; Robichaux, M.B.; Norris, K.A.; Kliment, C.; Crowe, C.; Rapaka, R.R.; Steele, C.; McAllister, F.; Shellito, J.E.; et al. CD4+ T Cell–Independent DNA Vaccination against Opportunistic Infections. J. Clin. Investig. 2005, 115, 3536. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.M.; Normile, T.G.; Fabri, J.H.T.M.; Brauer, V.S.; Araújo, G.R.d.S.; Frases, S.; Nimrichter, L.; Malavazi, I.; Del Poeta, M. Vaccination with Live or Heat-Killed Aspergillus Fumigatus ΔsglA Conidia Fully Protects Immunocompromised Mice from Invasive Aspergillosis. mBio 2022, 13, e0232822. [Google Scholar] [CrossRef] [PubMed]
- Slarve, M.; Holznecht, N.; Reza, H.; Gilkes, A.; Slarve, I.; Olson, J.; Ernst, W.; Ho, S.O.; Adler-Moore, J.; Fujii, G. Recombinant Aspergillus Fumigatus Antigens Asp f 3 and Asp f 9 in Liposomal Vaccine Protect Mice against Invasive Pulmonary Aspergillosis. Vaccine 2022, 40, 4160–4168. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, J.R.F.; Jannuzzi, G.P.; Kaihami, G.H.; Breda, L.C.D.; Ferreira, K.S.; De Almeida, S.R. An Immunoproteomic Approach Revealing Peptides from Sporothrix Brasiliensis That Induce a Cellular Immune Response in Subcutaneous Sporotrichosis. Sci. Rep. 2018, 8, 4912. [Google Scholar] [CrossRef]
- Pirofski, L.A.; Casadevall, A. Use of Licensed Vaccines for Active Immunization of the Immunocompromised Host. Clin. Microbiol. Rev. 1998, 11, 1–26. [Google Scholar] [CrossRef]
- Santos, E.; Levitz, S.M. Fungal Vaccines and Immunotherapeutics. Cold Spring Harb. Perspect. Med. 2014, 4, 1–14. [Google Scholar] [CrossRef]
- Wang, B.; Norbury, C.C.; Greenwood, R.; Bennink, J.R.; Yewdell, J.W.; Frelinger, J.A. Multiple Paths for Activation of Naive CD8+ T Cells: CD4-Independent Help. J. Immunol. 2001, 167, 1283–1289. [Google Scholar] [CrossRef]
- Scheckelhoff, M.; Deepe, G.S. The Protective Immune Response to Heat Shock Protein 60 of Histoplasma Capsulatum Is Mediated by a Subset of Vβ8.1/8.2 + T Cells. J. Immunol. 2002, 169, 5818–5826. [Google Scholar] [CrossRef]
- Stuehler, C.; Khanna, N.; Bozza, S.; Zelante, T.; Moretti, S.; Kruhm, M.; Lurati, S.; Conrad, B.; Worschech, E.; Stevanović, S.; et al. Cross-Protective TH1 Immunity against Aspergillus Fumigatus and Candida Albicans. Blood 2011, 117, 5881–5891. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.I.; Lyons, J.M.; Hong, T.B.; Tamae, D.; Liu, Y.K.; Wilczynski, S.P.; Kalkum, M. Vaccinations with Recombinant Variants of Aspergillus Fumigatus Allergen Asp f 3 Protect Mice against Invasive Aspergillosis. Infect. Immun. 2006, 74, 5075–5084. [Google Scholar] [CrossRef] [PubMed]
- Bozza, S.; Clavaud, C.; Giovannini, G.; Fontaine, T.; Beauvais, A.; Sarfati, J.; D’Angelo, C.; Perruccio, K.; Bonifazi, P.; Zagarella, S.; et al. Immune Sensing of Aspergillus Fumigatus Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination. J. Immunol. 2009, 183, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Specht, C.A.; Nong, S.; Dan, J.M.; Lee, C.K.; Levitz, S.M. Contribution of Glycosylation to T Cell Responses Stimulated by Recombinant Cryptococcus Neoformans Mannoprotein. J. Infect. Dis. 2007, 196, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Specht, C.A.; Lee, C.K.; Huang, H.; Hester, M.M.; Liu, J.; Luckie, B.A.; Torres Santana, M.A.; Mirza, Z.; Khoshkenar, P.; Abraham, A.; et al. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species. mBio 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Abuodeh, R.O.; Shubitz, L.F.; Siegel, E.; Snyder, S.; Peng, T.; Orsborn, K.I.; Brummer, E.; Stevens, D.A.; Galgiani, J.N. Resistance to Coccidioides Immitis in Mice after Immunization with Recombinant Protein or a DNA Vaccine of a Proline-Rich Antigen. Infect. Immun. 1999, 67, 2935–2940. [Google Scholar] [CrossRef]
- Hurtgen, B.J.; Hung, C.Y.; Ostroff, G.R.; Levitz, S.M.; Cole, G.T. Construction and Evaluation of a Novel Recombinant T Cell Epitope-Based Vaccine against Coccidioidomycosis. Infect. Immun. 2012, 80, 3960–3974. [Google Scholar] [CrossRef]
- Orsborn, K.I.; Shubitz, L.F.; Peng, T.; Kellner, E.M.; Orbach, M.J.; Haynes, P.A.; Galgiani, J.N. Protein Expression Profiling of Coccidioides Posadasii by Two-Dimensional Differential in-Gel Electrophoresis and Evaluation of a Newly Recognized Peroxisomal Matrix Protein as a Recombinant Vaccine Candidate. Infect. Immun. 2006, 74, 1865–1872. [Google Scholar] [CrossRef]
- Shubitz, L.F.; Yu, J.J.; Hung, C.Y.; Kirkland, T.N.; Peng, T.; Perrill, R.; Simons, J.; Xue, J.; Herr, R.A.; Cole, G.T.; et al. Improved Protection of Mice against Lethal Respiratory Infection with Coccidioides Posadasii Using Two Recombinant Antigens Expressed as a Single Protein. Vaccine 2006, 24, 5904–5911. [Google Scholar] [CrossRef]
- Tarcha, E.J.; Basrur, V.; Hung, C.Y.; Gardner, M.J.; Cole, G.T. A Recombinant Aspartyl Protease of Coccidioides Posadasii Induces Protection against Pulmonary Coccidioidomycosis in Mice. Infect. Immun. 2006, 74, 516–527. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Luo, G.; Gebremariam, T.; Lee, H.; Schmidt, C.S.; Hennessey, J.P.; French, S.W.; Yeaman, M.R.; Filler, S.G.; Edwards, J.E. NDV-3 Protects Mice from Vulvovaginal Candidiasis through T- and B-Cell Immune Response. Vaccine 2013, 31, 5549–5556. [Google Scholar] [CrossRef] [PubMed]
- Baquir, B.; Lin, L.; Ibrahim, A.S.; Fu, Y.; Avanesian, V.; Tu, A.; Edwards, J., Jr.; Spellberg, B. Immunological Reactivity of Blood from Healthy Humans to the RAls3p-N Vaccine Protein. J. Infect. Dis. 2010, 201, 473–477. [Google Scholar] [CrossRef]
- Li, W.Q.; Hu, X.C.; Zhang, X.; Ge, Y.; Zhao, S.; Hu, Y.; Ashman, R.B. Immunisation with the Glycolytic Enzyme Enolase Confers Effective Protection against Candida Albicans Infection in Mice. Vaccine 2011, 29, 5526–5533. [Google Scholar] [CrossRef]
- Nami, S.; Mohammadi, R.; Vakili, M.; Khezripour, K.; Mirzaei, H.; Morovati, H. Fungal Vaccines, Mechanism of Actions and Immunology: A Comprehensive Review. Biomed. Pharmacother. 2019, 109, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.; Ramachandran, S. Immunoinformatics as a Tool for New Antifungal Vaccines. Methods Mol. Biol. 2017, 1625, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Ibrahim, A.S.; Xu, X.; Farber, J.M.; Avanesian, V.; Baquir, B.; Fu, Y.; French, S.W.; Edwards, J.E.; Spellberg, B. Th1-Th17 Cells Mediate Protective Adaptive Immunity against Staphylococcus Aureus and Candida Albicans Infection in Mice. PLoS Pathog. 2009, 5. [Google Scholar] [CrossRef]
- Spellberg, B.; Ibrahim, A.S.; Yeaman, M.R.; Lin, L.; Fu, Y.; Avanesian, V.; Bayer, A.S.; Filler, S.G.; Lipke, P.; Otoo, H.; et al. The Antifungal Vaccine Derived from the Recombinant N Terminus of Als3p Protects Mice against the Bacterium Staphylococcus Aureus. Infect. Immun. 2008, 76, 4574–4580. [Google Scholar] [CrossRef]
- Edwards, J.E.; Schwartz, M.M.; Schmidt, C.S.; Sobel, J.D.; Nyirjesy, P.; Schodel, F.; Marchus, E.; Lizakowski, M.; Demontigny, E.A.; Hoeg, J.; et al. A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal Candidiasis-A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2018, 66, 1928–1936. [Google Scholar] [CrossRef]
- Alqarihi, A.; Singh, S.; Edwards, J.E.; Ibrahim, A.S.; Uppuluri, P. NDV-3A Vaccination Prevents C. Albicans Colonization of Jugular Vein Catheters in Mice. Sci. Rep. 2019, 9, 6194. [Google Scholar] [CrossRef]
- NCT. Safety and Immunogenicity Study of a Virosomal Vaccine Against Recurrent Vulvovaginal Candida Infection. 2010. Available online: https://clinicaltrials.gov/show/NCT01067131 (accessed on 18 May 2023).
- Luo, G.; Ibrahim, A.S.; Spellberg, B.; Nobile, C.J.; Mitchell, A.P.; Fu, Y. Candida Albicans Hyr1p Confers Resistance to Neutrophil Killing and Is a Potential Vaccine Target. J. Infect. Dis. 2010, 201, 1718–1728. [Google Scholar] [CrossRef]
- Nitz, M.; Ling, C.C.; Otter, A.; Cutler, J.E.; Bundle, D.R. The Unique Solution Structure and Immunochemistry of the Candida Albicans β-1,2-Mannopyranan Cell Wall Antigens. J. Biol. Chem. 2002, 277, 3440–3446. [Google Scholar] [CrossRef] [PubMed]
- De Bernardis, F.; Graziani, S.; Tirelli, F.; Antonopoulou, S. Candida Vaginitis: Virulence, Host Response and Vaccine Prospects. Med. Mycol. 2018, 56, S26–S31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L. Vaccination with Phage-Displayed Antigenic Epitope. Methods Mol. Biol. 2017, 1625, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.L.; Eberle, K.; Colón, J.R.; Courville, E.; Xin, H. Synthetic Conjugate Peptide Fba-Met6 (MP12) Induces Complement-Mediated Resistance against Disseminated Candida Albicans. Vaccine 2021, 39, 4099–4107. [Google Scholar] [CrossRef]
- Rappuoli, R.; Bottomley, M.J.; D’Oro, U.; Finco, O.; De Gregorio, E. Reverse Vaccinology 2.0: Human Immunology Instructs Vaccine Antigen Design. J. Exp. Med. 2016, 213, 469–481. [Google Scholar] [CrossRef]
- Tarang, S.; Kesherwani, V.; LaTendresse, B.; Lindgren, L.; Rocha-Sanchez, S.M.; Weston, M.D. In Silico Design of a Multivalent Vaccine Against Candida Albicans. Sci. Rep. 2020, 10, 1066. [Google Scholar] [CrossRef]
- Pizza, M.; Scarlato, V.; Masignani, V.; Giuliani, M.M.; Arico, B.; Comanducci, M.; Jennings, G.T.; Baldi, L.; Bartolini, E.; Capecchi, B.; et al. Identification of Vaccine Candidates against Serogroup B Meningococcus by Whole-Genome Sequencing Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing. Science (1979) 2000, 287, 1816–1820. [Google Scholar]
- Karch, C.P.; Burkhard, P. Vaccine Technologies: From Whole Organisms to Rationally Designed Protein Assemblies. Biochem. Pharmacol. 2016, 120, 1–14. [Google Scholar] [CrossRef]
- Pietrella, D.; Rachini, A.; Torosantucci, A.; Chiani, P.; Brown, A.J.P.; Bistoni, F.; Costantino, P.; Mosci, P.; D’Enfert, C.; Rappuoli, R.; et al. A β-Glucan-Conjugate Vaccine and Anti-β-Glucan Antibodies Are Effective against Murine Vaginal Candidiasis as Assessed by a Novel in Vivo Imaging Technique. Vaccine 2010, 28, 1717–1725. [Google Scholar] [CrossRef]
- Guazzelli, L.; Crawford, C.J.; Ulc, R.; Bowen, A.; McCabe, O.; Jedlicka, A.J.; Wear, M.P.; Casadevall, A.; Oscarson, S. A Synthetic Glycan Array Containing Cryptococcus Neoformans Glucuronoxylomannan Capsular Polysaccharide Fragments Allows the Mapping of Protective Epitopes. Chem. Sci. 2020, 11, 9209–9217. [Google Scholar] [CrossRef]
- Han, Y.; Ulrich, M.A.; Cutler, J.E. Candida Albicans Mannan Extract–Protein Conjugates Induce a Protective Immune Response against Experimental Candidiasis. J. Infect. Dis. 1999, 179, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Glee, P.; Adams, A.; Mohiuddin, F.; Eberle, K. Design of a Mimotope-Peptide Based Double Epitope Vaccine against Disseminated Candidiasis. Vaccine 2019, 37, 2430–2438. [Google Scholar] [CrossRef] [PubMed]
- Clemons, K.V.; Danielson, M.E.; Michel, K.S.; Liu, M.; Ottoson, N.C.; Leonardo, S.M.; Martinez, M.; Chen, V.; Antonysamy, M.A.; Stevens, D.A. Whole Glucan Particles as a Vaccine against Murine Aspergillosis. J. Med. Microbiol. 2014, 63, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Paulovičová, E.; Machová, E.; Tulinská, J.; Bystrický, S. Cell and Antibody Mediated Immunity Induced by Vaccination with Novel Candida Dubliniensis Mannan Immunogenic Conjugate. Int. Immunopharmacol. 2007, 7, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Dziadek, S.; Bundle, D.R.; Cutler, J.E. Synthetic Glycopeptide Vaccines Combining β-Mannan and Peptide Epitopes Induce Protection against Candidiasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13526–13531. [Google Scholar] [CrossRef]
- Rivera, A.; Hohl, T.M. Calnexin Bridges the Gap toward a Pan-Fungal Vaccine. Cell Host Microbe 2015, 17, 421–423. [Google Scholar] [CrossRef]
- Torosantucci, A.; Bromuro, C.; Chiani, P.; De Bernardis, F.; Berti, F.; Galli, C.; Norelli, F.; Bellucci, C.; Polonelli, L.; Costantino, P.; et al. A Novel Glyco-Conjugate Vaccine against Fungal Pathogens. J. Exp. Med. 2005, 202, 597–606. [Google Scholar] [CrossRef]
- Wüthrich, M.; Gern, B.; Hung, C.Y.; Ersland, K.; Rocco, N.; Pick-Jacobs, J.; Galles, K.; Filutowicz, H.; Warner, T.; Evans, M.; et al. Vaccine-Induced Protection against 3 Systemic Mycoses Endemic to North America Requires Th17 Cells in Mice. J. Clin. Investig. 2011, 121, 554–568. [Google Scholar] [CrossRef]
- Wüthrich, M.; Brandhorst, T.T.; Sullivan, T.D.; Filutowicz, H.; Sterkel, A.; Stewart, D.; Li, M.; Lerksuthirat, T.; Lebert, V.; Shen, Z.T.; et al. Calnexin Induces Expansion of Antigen-Specific CD4+ T Cells That Confer Immunity to Fungal Ascomycetes via Conserved Epitopes. Cell Host Microbe 2015, 17, 452–465. [Google Scholar] [CrossRef]
- Rayens, E.; Rabacal, W.; Willems, H.M.E.; Kirton, G.M.; Barber, J.P.; Mousa, J.J.; Celia-Sanchez, B.N.; Momany, M.; Norris, K.A. Immunogenicity and Protective Efficacy of a Pan-Fungal Vaccine in Preclinical Models of Aspergillosis, Candidiasis, and Pneumocystosis. PNAS Nexus 2022, 1, pgac248. [Google Scholar] [CrossRef]
- Lee, J.; Arun Kumar, S.; Jhan, Y.Y.; Bishop, C.J. Engineering DNA Vaccines against Infectious Diseases. Acta Biomater. 2018, 80, 31–47. [Google Scholar] [CrossRef] [PubMed]
- de Amorim, J.; Magalhães, A.; Muñoz, J.E.; Rittner, G.M.G.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. DNA Vaccine Encoding Peptide P10 against Experimental Paracoccidioidomycosis Induces Long-Term Protection in Presence of Regulatory T Cells. Microbes Infect. 2013, 15, 181–191. [Google Scholar] [CrossRef]
- Ivey, F.D.; Magee, D.M.; Woitaske, M.D.; Johnston, S.A.; Cox, R.A. Identification of a Protective Antigen of Coccidioides Immitis by Expression Library Immunization. Vaccine 2003, 21, 4359–4367. [Google Scholar] [CrossRef] [PubMed]
- Shafaati, M.; Saidijam, M.; Soleimani, M.; Hazrati, F.; Mirzaei, R.; Amirheidari, B.; Tanzadehpanah, H.; Karampoor, S.; Kazemi, S.; Yavari, B.; et al. A Brief Review on DNA Vaccines in the Era of COVID-19. Future Virol. 2022, 17, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Faiolla, R.C.L.; Coelho, M.C.; de Santana, R.C.; Martinez, R. Histoplasmosis in Immunocompetent Individuals Living in an Endemic Area in the Brazilian Southeast. Rev. Soc. Bras. Med. Trop. 2013, 46, 461–465. [Google Scholar] [CrossRef]
- Fox, J. Gene Therapy Safety Issues Come to Fore. Nat. Biotechnol. 1999, 17, 1153. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Netea, M.G. Medical Mycology and Fungal Immunology: New Research Perspectives Addressing a Major World Health Challenge. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150462. [Google Scholar] [CrossRef]
- Mendes, R.P.; de Cavalcante, R.S.; Marques, S.A.; Marques, M.E.A.; Venturini, J.; Sylvestre, T.F.; Paniago, A.M.M.; Pereira, A.C.; da de Silva, J.F.; Fabro, A.T.; et al. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol. J. 2017, 11, 224–282. [Google Scholar] [CrossRef]
- Bongomin, F. Post-Tuberculosis Chronic Pulmonary Aspergillosis: An Emerging Public Health Concern. PLoS Pathog. 2020, 16, e1008742. [Google Scholar] [CrossRef]
- Romani, L. Immunity to Fungal Infections. Nat. Rev. Immunol. 2004, 4, 11–24. [Google Scholar] [CrossRef]
- Kurosawa, M.; Yonezumi, M.; Hashino, S.; Tanaka, J.; Nishio, M.; Kaneda, M.; Ota, S.; Koda, K.; Suzuki, N.; Yoshida, M.; et al. Epidemiology and Treatment Outcome of Invasive Fungal Infections in Patients with Hematological Malignancies. Int. J. Hematol. 2012, 96, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Bacher, P.; Hohnstein, T.; Beerbaum, E.; Röcker, M.; Blango, M.G.; Kaufmann, S.; Röhmel, J.; Eschenhagen, P.; Grehn, C.; Seidel, K.; et al. Human Anti-Fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida Albicans. Cell 2019, 176, 1340–1355.e15. [Google Scholar] [CrossRef] [PubMed]
- Benard, G. An Overview of the Immunopathology of Human Paracoccidioidomycosis. Mycopathologia 2008, 165, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Wormley, F.L.; Perfect, J.R.; Steele, C.; Cox, G.M. Protection against Cryptococcosis by Using a Murine Gamma Interferon-Producing Cryptococcus Neoformans Strain. Infect. Immun. 2007, 75, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Mochon, A.B.; Cutler, J.E. Is a Vaccine Needed against Candida Albicans? Med. Mycol. 2005, 43, 97–115. [Google Scholar] [CrossRef]
- Oliveira, L.V.N.; Wang, R.; Specht, C.A.; Levitz, S.M. Vaccines for Human Fungal Diseases: Close but Still a Long Way to Go. NPJ Vaccines 2021, 6, 1–8. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Alfaraj, A.H.; Alshengeti, A.; Alawfi, A.; Alwarthan, S.; Alhajri, M.; Al-Najjar, A.H.; Al Fares, M.A.; Najim, M.A.; Almuthree, S.A.; et al. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023, 11, 671. [Google Scholar] [CrossRef]
- Karwa, R.; Wargo, K.A. Efungumab: A Novel Agent in the Treatment of Invasive Candidiasis. Ann. Pharmacother. 2009, 43, 1818–1823. [Google Scholar] [CrossRef]
- Pachl, J.; Svoboda, P.; Jacobs, F.; Vandewoude, K.; van der Hoven, B.; Spronk, P.; Masterson, G.; Malbrain, M.; Aoun, M.; Garbino, J.; et al. A Randomized, Blinded, Multicenter Trial of Lipid-Associated Amphotericin B Alone versus in Combination with an Antibody-Based Inhibitor of Heat Shock Protein 90 in Patients with Invasive Candidiasis. Clin. Infect. Dis. 2006, 42, 1404–1413. [Google Scholar] [CrossRef]
- Loreto, É.S.; Tondolo, J.S.M.; Alves, S.H.; Santurio, J.M. Immunotherapy for Fungal Infections. In Immunotherapy—Myths, Reality, Ideas, Future; InTech: Houston, TX, USA, 2017. [Google Scholar]
- Omaetxebarria, M.; Moragues, M.; Elguezabal, N.; Rodriguez-Alejandre, A.; Brena, S.; Schneider, J.; Polonelli, L.; Ponton, J. Antifungal and Antitumor Activities of a Monoclonal Antibody Directed Against a Stress Mannoprotein of Candida Albicans. Curr. Mol. Med. 2005, 5, 393–401. [Google Scholar] [CrossRef]
- Brena, S.; Omaetxebarría, M.J.; Elguezabal, N.; Cabezas, J.; Moragues, M.D.; Pontón, J. Fungicidal Monoclonal Antibody C7 Binds to Candida Albicans Als3. Infect. Immun. 2007, 75, 3680–3682. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.J.; Schneider, J.; Moragues, M.D.; Martínez-Conde, R.; Pontón, J.; Aguirre, J.M. Cross-Reactivity between Candida Albicans and Oral Squamous Cell Carcinoma Revealed by Monoclonal Antibody C7. Anticancer Res. 2007, 27, 3639–3643. [Google Scholar] [PubMed]
- Singh, S.; Uppuluri, P.; Mamouei, Z.; Alqarihi, A.; Elhassan, H.; French, S.; Lockhart, S.R.; Chiller, T.; Edwards, J.E.; Ibrahim, A.S. The NDV-3A Vaccine Protects Mice from Multidrug Resistant Candida Auris Infection. PLoS Pathog. 2019, 15. [Google Scholar] [CrossRef] [PubMed]
- Matveev, A.L.; Krylov, V.B.; Khlusevich, Y.A.; Baykov, I.K.; Yashunsky, D.V.; Emelyanova, L.A.; Tsvetkov, Y.E.; Karelin, A.A.; Bardashova, A.V.; Wong, S.S.W.; et al. Novel Mouse Monoclonal Antibodies Specifically Recognizing β-(1!3)-D-Glucan Antigen. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Boniche, C.; Rossi, S.A.; Kischkel, B.; Barbalho, F.V.; Moura, Á.N.D.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J. Fungi 2020, 6, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 1–10. [Google Scholar] [CrossRef]
- Ramirez-Ortiz, Z.G.; Means, T.K. The Role of Dendritic Cells in the Innate Recognition of Pathogenic Fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 2012, 3, 635–646. [Google Scholar] [CrossRef]
- Sabado, R.L.; Balan, S.; Bhardwaj, N. Dendritic Cell-Based Immunotherapy. Cell Res. 2017, 27, 74–95. [Google Scholar] [CrossRef]
- Bozza, S.; Perruccio, K.; Montagnoli, C.; Gaziano, R.; Bellocchio, S.; Burchielli, E.; Nkwanyuo, G.; Pitzurra, L.; Velardi, A.; Romani, L. A Dendritic Cell Vaccine against Invasive Aspergillosis in Allogeneic Hematopoietic Transplantation. Blood 2003, 102, 3807–3814. [Google Scholar] [CrossRef]
- Bozza, S.; Gaziano, R.; Lipford, G.B.; Montagnoli, C.; Bacci, A.; Di Francesco, P.; Kurup, V.P.; Wagner, H.; Romani, L. Vaccination of Mice against Invasive Aspergillosis with Recombinant Aspergillus Proteins and CpG Oligodeoxynucleotides as Adjuvants. Microbes Infect. 2002, 4, 1281–1290. [Google Scholar] [CrossRef]
- Shao, C.; Qu, J.; He, L.; Zhang, Y.; Wang, J.; Zhou, H.; Wang, Y.; Liu, X. Dendritic Cells Transduced with an Adenovirus Vector Encoding Interleukin-12 Are a Potent Vaccine for Invasive Pulmonary Aspergillosis. Genes Immun. 2005, 6, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Kinjo, Y.; Okubo, Y.; Aki, K.; Urai, M.; Kaneko, Y.; Shimizu, K.; Wang, D.N.; Okawara, A.; Nara, T.; et al. Dendritic Cell-Based Immunization Ameliorates Pulmonary Infection with Highly Virulent Cryptococcus Gattii. Infect. Immun. 2015, 83, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.; Ferreira, K.S.; Almeida, S.R.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. Prophylactic and Therapeutic Vaccination Using Dendritic Cells Primed with Peptide 10 Derived from the 43-Kilodalton Glycoprotein of Paracoccidioides Brasiliensis. Clin. Vaccine Immunol. 2012, 19, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Borghi, M.; Renga, G.; Puccetti, M.; Oikonomou, V.; Palmieri, M.; Galosi, C.; Bartoli, A.; Romani, L. Antifungal Th Immunity: Growing up in Family. Front. Immunol. 2014, 5, 506. [Google Scholar] [CrossRef]
- Speakman, E.A.; Dambuza, I.M.; Salazar, F.; Brown, G.D. T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends Immunol. 2020, 41, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, P.R.; da Silva, T.A.; Kontoyiannis, D.P. Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells. Front. Immunol. 2018, 8, 1939. [Google Scholar] [CrossRef]
- Gilbert, S.C. T-Cell-Inducing Vaccines—What’s the Future. Immunology 2012, 135, 19–26. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Zhou, W.L.; Huang, Y.; Liang, X.; Jiang, L.; Yang, X.; Sun, J.; Li, Z.; Han, W.D.; et al. Genetically Engineered t Cells for Cancer Immunotherapy. Signal Transduct. Target. Ther. 2019, 4, 1–17. [Google Scholar] [CrossRef]
- Lum, L.G.; Bollard, C.M. Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. In Management of Infections in the Immunocompromised Host; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 395–411. ISBN 9783319776743. [Google Scholar]
- Cenci, E.; Mencacci, A.; Bacci, A.; Bistoni, F.; Kurup, V.P.; Romani, L. T Cell Vaccination in Mice with Invasive Pulmonary Aspergillosis. J. Immunol. 2000, 165, 381–388. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, P.; Li, L.; Wan, Z.; Zhao, Z.; Li, R. Adoptive Immunity Mediated by HLA-A*0201 Restricted Asp F16 Peptides-Specific CD8+ T Cells against Aspergillus Fumigatus Infection. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3089–3096. [Google Scholar] [CrossRef]
- Posch, W.; Steger, M.; Wilflingseder, D.; Lass-Flörl, C. Promising Immunotherapy against Fungal Diseases. Expert Opin. Biol. Ther. 2017, 17, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.F.; Pereira, A.C.; Pereira, A.; Alves, M.S. The Role of HLA Antigens in the Development of Paracoccidioidomycosis. J. Eur. Acad. Dermatol. Venereol. 2000, 14, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J. Immunol. Res. 2017, 2017, 2680160. [Google Scholar] [CrossRef] [PubMed]
- Osama, A.; Sati, M.; Abdelmoneim, A.H. Multi-Epitope Peptide Vaccine Prediction for Candida Albicans Targeting Pyruvate Kinase Protein; an Immunoinformatics Approach Vaccines Designing View Project Monosoduim Glutamate Toxicity View Project SEE PROFILE. bioRxiv 2019. [Google Scholar] [CrossRef]
- Raoufi, E.; Hemmati, M.; Eftekhari, S.; Khaksaran, K.; Mahmodi, Z.; Farajollahi, M.M.; Mohsenzadegan, M. Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-Art Review. Int. J. Pept. Res. Ther. 2020, 26, 1155–1163. [Google Scholar] [CrossRef]
- Repac, J.; Mandić, M.; Lunić, T.; Božić, B.; Božić Nedeljković, B. Mining the Capacity of Human-Associated Microorganisms to Trigger Rheumatoid Arthritis—A Systematic Immunoinformatics Analysis of T Cell Epitopes. PLoS ONE 2021, 16, e0253918. [Google Scholar] [CrossRef]
- Araf, Y.; Moin, A.T.; Timofeev, V.I.; Faruqui, N.A.; Saiara, S.A.; Ahmed, N.; Parvez, M.S.A.; Rahaman, T.I.; Sarkar, B.; Ullah, M.A.; et al. Immunoinformatic Design of a Multivalent Peptide Vaccine Against Mucormycosis: Targeting FTR1 Protein of Major Causative Fungi. Front. Immunol. 2022, 13, 863234. [Google Scholar] [CrossRef]
- Goldani, L.Z.; Monteiro, C.M.C.; Donadi, E.A.; Martinez, R.; Voltarelli, J.C. HLA Antigens in Brazilian Patients with Paracoccidioidomycosis. Mycopathologia 1991, 114, 89–91. [Google Scholar] [CrossRef]
- de Restrepo, F.M.; Restrepo, M.; Restrepo, A. Blood Groups and HLA Antigens in Paracoccidioidomycosis. Med. Mycol. 1983, 21, 35–39. [Google Scholar] [CrossRef]
- González, N.; Albornoz, M.; Ríos, R.; Prado, L. HLA y Paracoccidioidomycosis. Cien. Tecnol. Venez. 1985, 2, 229–234. [Google Scholar]
- Lacerda, G.B.; Arce-Gomez, B.; Filho, F.Q.T.; Mycology, V.; Mkdica, M.; Clinicas, H. De Increased Frequency of HLA-B40 in Patients with Paracoccidioidomycosis. Med. Mycol. 1988, 26, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Mamoni, R.L.; Blotta, M.H.S.L. Flow-Cytometric Analysis of Cytokine Production in Human Paracoccidioidomycosis. Cytokine 2006, 35, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Braley, R.E.; Meredith, T.A.; Aaberg, T.M.; Koethe, S.M.; Witkowski, J.A. The Prevalence of HLA-B7 in Presumed Ocular Histoplasmosis. Am. J. Ophthalmol. 1978, 85, 859–861. [Google Scholar] [CrossRef]
- Elhassan, R.M.; Alsony, N.M.; Othman, K.M.; Izz-Aldin, D.T.; Alhaj, T.A.; Ali, A.A.; Abashir, L.A.; Ahmed, O.H.; Hassan, M.A. Epitope-Based Immunoinformatic Approach on Heat Shock 70 KDa Protein Complex of Cryptococcus Neoformans Var. Grubii. J. Immunol. Res. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Hurtgen, B.J.; Castro-Lopez, N.; Jiménez-Alzate, M.d.P.; Cole, G.T.; Hung, C.-Y. Preclinical Identification of Vaccine Induced Protective Correlates in Human Leukocyte Antigen Expressing Transgenic Mice Infected with Coccidioides Posadasii. Vaccine 2016, 34, 5336–5343. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, A.; Devi Pentakota, K.; Liao, Y.-R.; Zhang, H.; Ostroff, G.; Hung, C.-Y. A Recombinant Multivalent Vaccine (RCpa1) Induces Protection for C57BL/6 and HLA Transgenic Mice Against Pulmonary Infection 2 with Both Species of Coccidioides. bioRxiv 2021. [Google Scholar] [CrossRef]
- Kurita, N.; Biswas, S.K.; Oarada, M.; Sano, A.; Nishimura, K.; Miyaji, M. Fungistatic and Fungicidal Activities of Murine Polymorphonuclear Leucocytes against Yeast Cells of Paracoccidioides Brasiliensis. Med. Mycol. 1999, 37, 19–24. [Google Scholar] [CrossRef]
- Iwai, L.K.; Yoshida, M.; Sidney, J.; Shikanai-Yasuda, M.A.; Goldberg, A.C.; Juliano, M.A.; Hammer, J.; Juliano, L.; Sette, A.; Kalil, J.; et al. In Silico Prediction of Peptides Binding to Multiple HLA-DR Molecules Accurately Identifies Immunodominant Epitopes from Gp43 of Paracoccidioides Brasiliensis Frequently Recognized in Primary Peripheral Blood Mononuclear Cell Responses from Sensitized Ind. Mol. Med. 2003, 9, 209–219. [Google Scholar] [CrossRef]
- Iwai, L.K.; Yoshida, M.; Sadahiro, A.; da Silva, W.R.; Marin, M.L.; Goldberg, A.C.; Juliano, M.A.; Juliano, L.; Shikanai-Yasuda, M.A.; Kalil, J.; et al. T-Cell Recognition of Paracoccidioides Brasiliensis Gp43-Derived Peptides in Patients with Paracoccidioidomycosis and Healthy Individuals. Clin. Vaccine Immunol. 2007, 14, 474–476. [Google Scholar] [CrossRef]
- Travassos, L.R.; Rodrigues, E.G.; Iwai, L.K.; Taborda, C.P. Attempts at a Peptide Vaccine against Paracoccidioidomycosis, Adjuvant to Chemotherapy. Mycopathologia 2008, 165, 341–352. [Google Scholar] [CrossRef]
- de Almeida, S.M.; Rebelatto, C.L.K.; Queiroz-telles, F.; Werneck, L.C.; Monteiro, S.; Almeida, D.; Lu, C.; Queiroz-telles, F.; Cesar, L. Major Histocompatibility Complex and Central Nervous System Involvement by Paracoccidioidomycosis. J. Infect. 2005, 51, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; Hernandez, O.; Tamayo, D.; Muñoz, J.F.; García, A.M.; Gómez, B.L.; Restrepo, A.; McEwen, J.G. Paracoccidioides Brasiliensis PbP27 Gene: Knockdown Procedures and Functional Characterization. FEMS Yeast Res. 2014, 14, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Dabil, H.; Kaplan, H.J.; Duffy, B.F.; Phelan, D.L.; Mohanakumar, T.; Jaramillo, A. Association of the HLA-DR15/HLA-DQ6 Haplotype with Development of Choroidal Neovascular Lesions in Presumed Ocular Histoplasmosis Syndrome. Hum. Immunol. 2003, 64, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Kischkel, B.; Boniche-Alfaro, C.; de Menezes, I.G.; Rossi, S.A.; Angeli, C.B.; de Almeida, S.R.; Palmisano, G.; Lopes-Bezerra, L.; Nosanchuk, J.D.; Taborda, C.P. Immunoproteomic and Immunopeptidomic Analyses of Histoplasma Capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Front. Immunol. 2021, 12, 764501. [Google Scholar] [CrossRef] [PubMed]
- Allendoerfer, R.; Maresca, B.; Deepe, G.S. Cellular Immune Responses to Recombinant Heat Shock Protein 70 from Histoplasma Capsulatum. Infect. Immun. 1996, 64, 4123–4128. [Google Scholar] [CrossRef] [PubMed]
- Leopold Wager, C.M.; Wormley, F.L. Is Development of a Vaccine against Cryptococcus Neoformans Feasible? PLoS Pathog. 2015, 11, e1004843. [Google Scholar] [CrossRef]
- Datta, K.; Pirofski, L. Towards a Vaccine for Cryptococcus Neoformans: Principles and Caveats. FEMS Yeast Res. 2006, 6, 525–536. [Google Scholar] [CrossRef]
- Elhassan, R.M.; Alsony, N.M.; Othman, K.M.; Izz-Aldin, D.T.; Alhaj, T.A.; Ali, A.A.; Abashir, L.A.; Ahmed, O.H.; Hassan, M.A. Computational Vaccinology Approach: Designing an Efficient Multi-Epitope Peptide Vaccine against Cryptococcus Neoformans Var. Grubii’s Heat Shock 70KDa Protein. bioRxiv 2019. [Google Scholar] [CrossRef]
- Williams, P.L.; Sable, D.L.; Sorgen, S.P.; Pappagianis, D.; Levine, H.B.; Brodine, S.K.; Brown, B.W.; Grumet, F.C.; Stevens, D.A. Immunologic Responsiveness and Safety Associated with the Coccidioides Immitis Spherule Vaccine in Volunteers of White, Black, and Filipino Ancestry. Am. J. Epidemiol. 1984, 119, 591–602. [Google Scholar] [CrossRef]
- Soleymani, S.; Tavassoli, A.; Housaindokht, M.R. An Overview of Progress from Empirical to Rational Design in Modern Vaccine Development, with an Emphasis on Computational Tools and Immunoinformatics Approaches. Comput. Biol. Med. 2021, 140, 105057. [Google Scholar] [CrossRef]
- Bonilla, F.A.; Boston, P. Update: Vaccines in Primary Immunodeficiency. J. Allergy Clin. Immunol. 2018, 141, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.; Rodrigues, M.L.; Coelho, C. The Still Underestimated Problem of Fungal Diseases Worldwide. Front. Microbiol. 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Singh, A.; Upadhyay, A.K.; Mannan, M.A.-u. Design of a Multi-Epitope Vaccine against the Pathogenic Fungi Candida Tropicalis Using an in Silico Approach. J. Genet. Eng. Biotechnol. 2022, 20, 140. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; Volume 1, ISBN 9789240060241. [Google Scholar]
- Chaudhuri, R.; Ansari, F.A.; Raghunandanan, M.V.; Ramachandran, S. FungalRV: Adhesin Prediction and Immunoinformatics Portal for Human Fungal Pathogens. BMC Genom. 2011, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.C.S.; Roque, B.S.; Felice, A.G.; Jaiswal, A.K.; Tiwari, S.; Azevedo, V.; Silva-Vergara, M.L.; de Castro Soares, S.; Ferreira-Paim, K.; Fonseca, F.M. Comparative Genomics of Histoplasma Capsulatum and Prediction of New Vaccines and Drug Targets. J. Fungi 2023, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Osmanoglu, Ö.; Minocha, R.; Bandi, S.R.; Bencurova, E.; Srivastava, M.; Dandekar, T. Genome-Wide Scan for Potential CD4+ T-Cell Vaccine Candidates in Candida Auris by Exploiting Reverse Vaccinology and Evolutionary Information. Front. Med. 2022, 9, 1008527. [Google Scholar] [CrossRef]
- Pritam, M.; Singh, G.; Kumar, R.; Singh, S.P. Screening of Potential Antigens from Whole Proteome and Development of Multi-Epitope Vaccine against Rhizopus Delemar Using Immunoinformatics Approaches. J. Biomol. Struct. Dyn. 2023, 41, 2118–2145. [Google Scholar] [CrossRef]
- Portuondo, D.L.; Batista-Duharte, A.; Cardenas, C.; de Oliveira, C.S.; Borges, J.C.; Téllez-Martínez, D.; Santana, P.A.; Gauna, A.; Mercado, L.; Mateus de Castilho, B.; et al. A Sporothrix Spp. Enolase Derived Multi-Epitope Vaccine Confers Protective Response in BALB/c Mice Challenged with Sporothrix Brasiliensis. Microb. Pathog. 2022, 166, 105539. [Google Scholar] [CrossRef]
- Elamin Elhasan, L.M.; Hassan, M.B.; Elhassan, R.M.; Abdelrhman, F.A.; Salih, E.A.; Ibrahim, H.A.; Mohamed, A.A.; Osman, H.S.; Khalil, M.S.M.; Alsafi, A.A.; et al. Epitope-Based Peptide Vaccine Design against Fructose Bisphosphate Aldolase of Candida Glabrata: An Immunoinformatics Approach. J. Immunol. Res. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Akhtar, N.; Magdaleno, J.S.L.; Ranjan, S.; Wani, A.K.; Grewal, R.K.; Oliva, R.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida Dubliniensis Using Immunoinformatics. Vaccines 2023, 11, 364. [Google Scholar] [CrossRef]
- Kamli, M.R.; Sabir, J.S.M.; Malik, M.A.; Ahmad, A. Characterization of the Secretome of Pathogenic Candida Glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development. Pharmaceutics 2022, 14, 1989. [Google Scholar] [CrossRef] [PubMed]
- Soltan, M.A.; Eldeen, M.A.; Elbassiouny, N.; Kamel, H.L.; Abdelraheem, K.M.; El-Gayyed, H.A.; Gouda, A.M.; Sheha, M.F.; Fayad, E.; Ali, O.A.A.; et al. In Silico Designing of a Multitope Vaccine against Rhizopus Microsporus with Potential Activity against Other Mucormycosis Causing Fungi. Cells 2021, 10, 3014. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Suleman, M.; Ali, S.S.; Sarwar, M.F.; Ali, I.; Ali, L.; Khan, A.; Rokhan, B.; Wang, Y.; Zhao, R.; et al. Subtractive Proteomics Assisted Therapeutic Targets Mining and Designing Ensemble Vaccine against Candida Auris for Immune Response Induction. Comput. Biol. Med. 2022, 145, 105462. [Google Scholar] [CrossRef] [PubMed]
- Duraes, F.V.; Niven, J.; Dubrot, J.; Hugues, S.; Gannagé, M. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation. Front. Immunol. 2015, 6, 459. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Rappuoli, R. Reverse Vaccinology: Developing Vaccines in the Era of Genomics. Immunity 2010, 33, 530–541. [Google Scholar] [CrossRef]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 Update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef]
- Paul, S.; Lindestam Arlehamn, C.S.; Scriba, T.J.; Dillon, M.B.C.; Oseroff, C.; Hinz, D.; McKinney, D.M.; Carrasco Pro, S.; Sidney, J.; Peters, B.; et al. Development and Validation of a Broad Scheme for Prediction of HLA Class II Restricted T Cell Epitopes. J. Immunol. Methods 2015, 422, 28–34. [Google Scholar] [CrossRef]
- Cezar-dos-Santos, F.; Assolini, J.P.; Okuyama, N.C.M.; Viana, K.F.; de Oliveira, K.B.; Itano, E.N. Unraveling the Susceptibility of Paracoccidioidomycosis: Insights towards the Pathogen-Immune Interplay and Immunogenetics. Infect. Genet. Evol. 2020, 86, 104586. [Google Scholar] [CrossRef]
- Kar, P.; Ruiz-Perez, L.; Arooj, M.; Mancera, R.L. Current Methods for the Prediction of T-Cell Epitopes. Pept. Sci. 2018, 110, e24046. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Mahajan, S.; Paul, S.; Yan, Z.; Kim, H.; Jespersen, M.C.; Jurtz, V.; Andreatta, M.; Greenbaum, J.A.; Marcatili, P.; et al. IEDB-AR: Immune Epitope Database - Analysis Resource in 2019. Nucleic Acids Res. 2019, 47, W502–W506. [Google Scholar] [CrossRef]
- Ansari, H.R.; Raghava, G.P. Identification of Conformational B-Cell Epitopes in an Antigen from Its Primary Sequence. Immunome Res. 2010, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data. Nucleic Acids Res. 2020, 48, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Parmar, J.; Kumar, A. Structure-Based Immunogenicity Prediction of Uricase from Fungal (Aspergillus Flavus), Bacterial (Bacillus Subtillis) and Mammalian Sources Using Immunoinformatic Approach. Protein J. 2020, 39, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Bhargav, A.; Fatima, F.; Chaurasia, P.; Seth, S.; Ramachandran, S. Computer-Aided Tools and Resources for Fungal Pathogens: An Application of Reverse Vaccinology for Mucormycosis. Monoclon. Antibodies Immunodiagn. Immunother. 2022, 41, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Raghava, G.P.S. ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites. Bioinformatics 2003, 19, 1009–1014. [Google Scholar] [CrossRef]
- Reche, P.A.; Glutting, J.P.; Zhang, H.; Reinherz, E.L. Enhancement to the RANKPEP Resource for the Prediction of Peptide Binding to MHC Molecules Using Profiles. Immunogenetics 2004, 56, 405–419. [Google Scholar] [CrossRef]
- Bhasin, M.; Raghava, G.P.S. A Hybrid Approach for Predicting Promiscuous MHC Class I Restricted T Cell Epitopes. J. Biosci. 2007, 32, 31–42. [Google Scholar] [CrossRef]
- Specht, C.A.; Homan, E.J.; Lee, C.K.; Mou, Z.; Gomez, C.L.; Hester, M.M.; Abraham, A.; Rus, F.; Ostroff, G.R.; Levitz, S.M. Protection of Mice against Experimental Cryptococcosis by Synthesized Peptides Delivered in Glucan Particles. mBio 2022, 13. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Sun, P.; Gao, B.; Ma, Z. Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering. BioMed Res. Int. 2014, 2014, 689219. [Google Scholar] [CrossRef]
- Kalita, P.; Tripathi, T. Methodological Advances in the Design of Peptide-Based Vaccines. Drug Discov. Today 2022, 27, 1367–1380. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S.; Ratnakar, T.S.; Prajapati, V.K. Immunoinformatics and Reverse Vaccinology Methods to Design Peptide-Based Vaccines. In Advances in Protein Molecular and Structural Biology Methods; Academic Press: Cambridge, MA, USA, 2022; pp. 477–487. ISBN 9780323902649. [Google Scholar]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Fernandes, G.F.; de Almeida, S.R.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Immunoproteomic Analysis Reveals a Convergent Humoral Response Signature in the Sporothrix Schenckii Complex. J. Proteom. 2015, 115, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.M.S.; De Andrade, H.M.; Vainstein, M.H.; Wanke, B.; Schrank, A.; Balaguez, C.B.; Dos Santos, P.R.; Santi, L.; Pires, S.D.F.; Da Silva, A.S.; et al. Immunoproteomics and Immunoinformatics Analysis of Cryptococcus Gattii: Novel Candidate Antigens for Diagnosis. Future Microbiol. 2013, 8, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Sircar, G.; Jana, K.; Dasgupta, A.; Saha, S.; Bhattacharya, S.G. Epitope Mapping of Rhi o 1 and Generation of a Hypoallergenic Variant. J. Biol. Chem. 2016, 291, 18016–18029. [Google Scholar] [CrossRef]
- Moreira, A.L.E.; Oliveira, M.A.P.; Silva, L.O.S.; Inácio, M.M.; Bailão, A.M.; Parente-Rocha, J.A.; Cruz-Leite, V.R.M.; Paccez, J.D.; de Almeida Soares, C.M.; Weber, S.S.; et al. Immunoproteomic Approach of Extracellular Antigens From Paracoccidioides Species Reveals Exclusive B-Cell Epitopes. Front. Microbiol. 2020, 10, 2968. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Pinheiro, B.G.; Teixeira-Ferreira, A.; Hahn, R.C.; de Camargo, Z.P. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides Lutzii. J. Fungi 2020, 6, 357. [Google Scholar] [CrossRef]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Chen, Z.; Zhang, L.; Yan, D.; Mao, T.; Tang, K.; Qiu, T.; Cao, Z. SEPPA 3.0—Enhanced Spatial Epitope Prediction Enabling Glycoprotein Antigens. Nucleic Acids Res. 2019, 47, W388–W394. [Google Scholar] [CrossRef]
- Sweredoski, M.J.; Baldi, P. PEPITO: Improved Discontinuous B-Cell Epitope Prediction Using Multiple Distance Thresholds and Half Sphere Exposure. Bioinformatics 2008, 24, 1459–1460. [Google Scholar] [CrossRef]
- Ponomarenko, J.; Bui, H.-H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A New Structure-Based Tool for the Prediction of Antibody Epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef]
- Rubinstein, N.D.; Mayrose, I.; Martz, E.; Pupko, T. Epitopia: A Web-Server for Predicting B-Cell Epitopes. BMC Bioinform. 2009, 10, 287. [Google Scholar] [CrossRef]
- Xu, X.L.; Sun, J.; Liu, Q.; Wang, X.J.; Xu, T.L.; Zhu, R.X.; Wu, D.; Cao, Z.W. Evaluation of Spatial Epitope Computational Tools Based on Experimentally-Confirmed Dataset for Protein Antigens. Chin. Sci. Bull. 2010, 55, 2169–2174. [Google Scholar] [CrossRef]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V.G. In Silico Prediction of Linear B-Cell Epitopes on Proteins. Methods Mol. Biol. 2017, 1484, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.A.; Ami, J.Q.; Faisal, K.; Chowdhury, R.; Ghosh, P.; Hossain, F.; Abd El Wahed, A.; Mondal, D. An Immunoinformatic Approach Driven by Experimental Proteomics: In Silico Design of a Subunit Candidate Vaccine Targeting Secretory Proteins of Leishmania Donovani Amastigotes. Parasites Vectors 2020, 13, 1–21. [Google Scholar] [CrossRef]
- Sanches, R.C.O.; Tiwari, S.; Ferreira, L.C.G.; Oliveira, F.M.; Lopes, M.D.; Passos, M.J.F.; Maia, E.H.B.; Taranto, A.G.; Kato, R.; Azevedo, V.A.C.; et al. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against Schistosoma Mansoni Using Transmembrane Proteins as a Target. Front. Immunol. 2021, 12, 490. [Google Scholar] [CrossRef] [PubMed]
- Vilela Rodrigues, T.C.; Jaiswal, A.K.; Lemes, M.R.; da Silva, M.V.; Sales-Campos, H.; Alcântara, L.C.J.; de Tosta, S.F.O.; Kato, R.B.; Alzahrani, K.J.; Barh, D.; et al. An Immunoinformatics-Based Designed Multi-Epitope Candidate Vaccine (Mpme-VAC/STV-1) against Mycoplasma Pneumoniae. Comput. Biol. Med. 2022, 142, 105194. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Vivona, S.; Bernante, F.; Filippini, F. NERVE: New Enhanced Reverse Vaccinology Environment. BMC Biotechnol. 2006, 6, 35. [Google Scholar] [CrossRef]
- Xiang, Z.; He, Y. Vaxign: A Web-Based Vaccine Target Design Program for Reverse Vaccinology. Procedia Vaccinol. 2009, 1, 23–29. [Google Scholar] [CrossRef]
- Magnan, C.N.; Zeller, M.; Kayala, M.A.; Vigil, A.; Randall, A.; Felgner, P.L.; Baldi, P. High-Throughput Prediction of Protein Antigenicity Using Protein Microarray Data. Bioinformatics 2010, 26, 2936–2943. [Google Scholar] [CrossRef]
- Jaiswal, V.; Chanumolu, S.K.; Gupta, A.; Chauhan, R.S.; Rout, C. Jenner-Predict Server: Prediction of Protein Vaccine Candidates (PVCs) in Bacteria Based on Host-Pathogen Interactions. BMC Bioinform. 2013, 14, 211. [Google Scholar] [CrossRef]
- Moise, L.; Gutierrez, A.; Kibria, F.; Martin, R.; Tassone, R.; Liu, R.; Terry, F.; Martin, B.; De Groot, A.S. Ivax: An Integrated Toolkit for the Selection and Optimization of Antigens and the Design of Epitope-Driven Vaccines. Hum. Vaccines Immunother. 2015, 11, 2312–2321. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Naz, A.; Ahmad, J.; Naz, K.; Obaid, A.; Parveen, T.; Ahsan, M.; Ali, A. VacSol: A High Throughput in Silico Pipeline to Predict Potential Therapeutic Targets in Prokaryotic Pathogens Using Subtractive Reverse Vaccinology. BMC Bioinform. 2017, 18, 106. [Google Scholar] [CrossRef] [PubMed]
- Doytchinova, I. Flower DR Bioinformatic Approach for Identifying Parasite and Fungal Candidate Subunit Vaccines. Open Vaccine J. 2008, 1, 4. [Google Scholar] [CrossRef]
- Flower, D.R.; Doytchinova, I.; Zaharieva, N.; Dimitrov, I. Immunogenicity Prediction by VaxiJen: A Ten Year Overview. J. Proteomics Bioinform. 2017, 10, 298–310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inácio, M.M.; Moreira, A.L.E.; Cruz-Leite, V.R.M.; Mattos, K.; Silva, L.O.S.; Venturini, J.; Ruiz, O.H.; Ribeiro-Dias, F.; Weber, S.S.; Soares, C.M.d.A.; et al. Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics. J. Fungi 2023, 9, 633. https://doi.org/10.3390/jof9060633
Inácio MM, Moreira ALE, Cruz-Leite VRM, Mattos K, Silva LOS, Venturini J, Ruiz OH, Ribeiro-Dias F, Weber SS, Soares CMdA, et al. Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics. Journal of Fungi. 2023; 9(6):633. https://doi.org/10.3390/jof9060633
Chicago/Turabian StyleInácio, Moisés Morais, André Luís Elias Moreira, Vanessa Rafaela Milhomem Cruz-Leite, Karine Mattos, Lana O’Hara Souza Silva, James Venturini, Orville Hernandez Ruiz, Fátima Ribeiro-Dias, Simone Schneider Weber, Célia Maria de Almeida Soares, and et al. 2023. "Fungal Vaccine Development: State of the Art and Perspectives Using Immunoinformatics" Journal of Fungi 9, no. 6: 633. https://doi.org/10.3390/jof9060633