Parametric Study on Investigations of GMAW-Based WAAM Process Parameters and Effect on Microstructure and Mechanical Properties of NiTi SMA
<p>The GMAW-based WAAM experimental setup.</p> "> Figure 2
<p>Determination of bead morphologies, BW and BH.</p> "> Figure 3
<p>Process chart of the HTS algorithm [<a href="#B44-jmmp-09-00058" class="html-bibr">44</a>].</p> "> Figure 4
<p>A 10-layered nitinol specimen fabricated by WAAM at optimized parameters.</p> "> Figure 5
<p>Testing locations of the built structure.</p> "> Figure 6
<p>Single-layer depositions along with cut cross-sections of depositions.</p> "> Figure 7
<p>Influences of WAAM variables on BH response.</p> "> Figure 8
<p>Influences of WAAM variables on BW response.</p> "> Figure 9
<p>Macrostructure of the built WAAM structure.</p> "> Figure 10
<p>Microstructures of (<b>a</b>) HAZ and initial layers, (<b>b</b>) middle layers, and (<b>c</b>) top layers of the built WAAM structure.</p> "> Figure 10 Cont.
<p>Microstructures of (<b>a</b>) HAZ and initial layers, (<b>b</b>) middle layers, and (<b>c</b>) top layers of the built WAAM structure.</p> "> Figure 11
<p>Tensile test specimens (<b>a</b>) after fracture and (<b>b</b>) after fractography.</p> "> Figure 12
<p>Microhardness along the build direction for a WAAM structure of nitinol SMA.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plan
2.2. Testing and Characterization
2.2.1. Evaluation of Responses
2.2.2. Optimization Using HTS Algorithm
- Conduction mode
- Convection mode
- Radiation mode
2.2.3. Microstructure and Mechanical Characterizations
3. Results and Discussions
3.1. ANOVA for Output Responses
3.2. Influence of WAAM Variables on Output Responses
3.3. Optimization Using HTS Algorithm
3.4. Fabrication of Thin-Walled Structure
3.5. Macrostructure and Microstructure Study
3.6. Mechanical Properties
3.6.1. Tensile Testing
3.6.2. Microhardness Testing
4. Conclusions
- ➢
- The statistical outcomes for bead morphologies were observed to be highly significant, as is validated by the ANOVA, R2, and Adj. R2 values. All three WAAM variables were found to be significant for both responses of BH and BW, showing the largest contributions of WFS (68.83%) for BH and V for BW;
- ➢
- The simultaneous optimization carried out using the HTS technique yielded optimal process parameters of WFS of 6 m/min, TS of 12 mm/s, and voltage of 20 V. A thin-walled structure with 10 layers was successfully fabricated at these optimized conditions;
- ➢
- The macrostructural examination showed an as-deposited NiTi wall without cracks or pores. This established that the parameters, as well as the manufacturing techniques, were sufficient to derive defect-free layers;
- ➢
- In the microstructural study, the HAZ was observed to have coarse grains that were columnar in shape, and the first layer contained a mix of dendritic structures. The middle layers demonstrated a mix of coarse and fine columnar grains with dendritic colonies, while the last few layers demonstrated fairly equiaxed grains as well as a finer microstructure, as the cooling rates here were very slow;
- ➢
- The microhardness examination yielded the lowest value of 236.56 HV in the bottom layer, while the maximum value of 316.78 HV was found in the topmost layer;
- ➢
- The UTS obtained in the bottom portion was observed to be 536.22 MPa, while the top portion showed a UTS of 586.31 MPa, showing increasing strength along the building direction. Similar observations were recorded for elongation (EL), which showed values of 10.72% and 11.57% in the bottom and top portions, respectively. Fractography of the tensile specimens showed the good toughness and ductility of the fabricated nitinol specimen;
- ➢
- The thin-walled structure fabricated in the study should enhance the confidence of manufacturers, especially as regards the repair and maintenance of components made of this alloy, such as in the medical field (orthodontic devices, implants, stents, tools, etc.) and structural engineering (dampers), and in other applications such as the building of heat engines, resilient glass frames, retractable antennas, surgical implants, and self-bending spoons.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
ANOVA | Analysis of variance |
BBD | Box–Behnken design |
BH | Bead height |
BW | Bead width |
EDM | Electrical discharge machining |
EL | Elongation |
GMAW | Gas–metal arc welding |
HTS | Heat transfer search |
SMA | Shape memory alloy |
TS | Travel speed |
UTS | Ultimate tensile strength |
WAAM | Wire arc additive manufacturing |
WFS | Wire feed speed |
References
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Vatanparast, S.; Boschetto, A.; Bottini, L.; Gaudenzi, P. New trends in 4D printing: A critical review. Appl. Sci. 2023, 13, 7744. [Google Scholar] [CrossRef]
- Tareq, S.; Rahman, T.; Poudel, B.; Chung, H.; Kwon, P. Heat treatment protocol for additively manufactured nitinol shape memory alloys in biomedical applications. Mater. Sci. Eng. A 2024, 897, 146274. [Google Scholar] [CrossRef]
- Böttcher, F.; Schaarschmidt, I.; Edelmann, J.; Schubert, A. Simulation-Assisted Tool Design for Pulsed Electrochemical Machining of Magnetic Shape-Memory Alloys. J. Manuf. Mater. Process. 2024, 8, 46. [Google Scholar] [CrossRef]
- Shafeeq, M.M.; Hirshikesh; Gupta, G.; Mondal, D. Influence of Mn on the Mechanical and Shape Memory Transformation Behaviours of Powder Metallurgy Processed Cu–Al–Ni SMAs. Met. Mater. Int. 2024, 30, 211–219. [Google Scholar] [CrossRef]
- Rodinò, S.; Maletta, C. Design Considerations and Applications of Shape Memory Alloy-Based Actuation in Morphing Structures: A Systematic Review. Prog. Eng. Sci. 2024, 1, 100021. [Google Scholar] [CrossRef]
- Ahmad, S.; Hashmi, A.W.; Singh, J.; Arora, K.; Tian, Y.; Iqbal, F.; Al-Dossari, M.; Khan, M.I. Innovations in Additive Manufacturing of Shape Memory Alloys: Alloys, Microstructures, Treatments, Applications. J. Mater. Res. Technol. 2024, 32, 4136–4197. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Kumar, C.P.; Ganesh, S.S.S.; Venkatesh, M.; Radhika, N.; Vignesh, M.; Pazhani, A. Possibilities, performance and challenges of nitinol alloy fabricated by Directed Energy Deposition and Powder Bed Fusion for biomedical implants. J. Manuf. Process. 2023, 102, 885–909. [Google Scholar] [CrossRef]
- Parimanik, S.R.; Mahapatra, T.R.; Mishra, D. A systematic literature review on laser welding of NiTi SMA. Lasers Manuf. Mater. Process. 2023, 10, 77–117. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, J.; Zhang, L.; Zhang, Y.; Song, B.; Wang, X.; Fan, J.; Liu, Q.; Shi, Y. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: A review. Int. J. Extrem. Manuf. 2023, 5, 032001. [Google Scholar] [CrossRef]
- Muniraju, M.; Talla, G. Exploring sustainable machining processes for nitinol shape memory alloy: A review of eco-friendly EDM and other techniques. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 85. [Google Scholar] [CrossRef]
- Kulkarni, V.N.; Gaitonde, V.; Jangali, S.G.; Petkar, P.M. A review on machinability aspects of binary and ternary Nitinol (NiTi) shape memory and super elastic alloys. AIP Conf. Proc. 2024, 3007, 100024. [Google Scholar]
- Martínez, R.Z.; Bose-Bandyopadhyay, S.; Burl, A.; Contreras-Almengor, Ó.; Vega, C.A.; Saleeby, K.; Kurfess, T.; Lantada, A.D.; Molina-Aldareguia, J. Comparative analysis of machining and electropolishing for surface quality improvement of shape memory nitinol samples additively manufactured by laser powder bed fusion. Addit. Manuf. Lett. 2025, 12, 100261. [Google Scholar] [CrossRef]
- Kundiya, R.R.; Kadam, M.; Jadhav, P.; Pawade, R. A review on high speed micro-milling of shape memory alloy (NiTinol): Process and post perspective. Int. J. Interact. Des. Manuf. (IJIDeM) 2024, 1–17. [Google Scholar] [CrossRef]
- El-Husseiny, M.M.; Baraka, A.A.; Oraby, O.; El-Danaf, E.A.; Salem, H.G. Fabrication of Bimetallic High-Strength Low-Alloy Steel/Si-Bronze Functionally Graded Materials Using Wire Arc Additive Manufacturing. J. Manuf. Mater. Process. 2023, 7, 138. [Google Scholar] [CrossRef]
- Khanna, N.; Salvi, H.; Karaş, B.; Fairoz, I.; Shokrani, A. Cost modelling for powder bed fusion and directed energy deposition additive manufacturing. J. Manuf. Mater. Process. 2024, 8, 142. [Google Scholar] [CrossRef]
- Özel, T.; Shokri, H.; Loizeau, R. A review on wire-fed directed energy deposition based metal additive manufacturing. J. Manuf. Mater. Process. 2023, 7, 45. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, K.S.; Dip, T.M.; Chowdhury, M.F.M.; Debnath, S.R.; Hasan, S.M.M.; Sakib, M.S.; Saha, T.; Padhye, R.; Houshyar, S. A review on nanomaterial-based additive manufacturing: Dynamics in properties, prospects, and challenges. Prog. Addit. Manuf. 2024, 9, 1197–1224. [Google Scholar] [CrossRef]
- Sanjeeviprakash, K.; Kannan, A.R.; Shanmugam, N.S. Additive manufacturing of metal-based functionally graded materials: Overview, recent advancements and challenges. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 241. [Google Scholar] [CrossRef]
- Shah, A.; Aliyev, R.; Zeidler, H.; Krinke, S. A review of the recent developments and challenges in wire arc additive manufacturing (WAAM) process. J. Manuf. Mater. Process. 2023, 7, 97. [Google Scholar] [CrossRef]
- Sinha, A.K.; Pramanik, S.; Yagati, K.P. Research progress in arc based additive manufacturing of aluminium alloys-A review. Measurement 2022, 200, 111672. [Google Scholar] [CrossRef]
- Aldalur, E.; Suárez, A.; Veiga, F. Thermal expansion behaviour of Invar 36 alloy parts fabricated by wire-arc additive manufacturing. J. Mater. Res. Technol. 2022, 19, 3634–3645. [Google Scholar] [CrossRef]
- Srivastava, M.; Rathee, S.; Tiwari, A.; Dongre, M. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour. Mater. Chem. Phys. 2023, 294, 126988. [Google Scholar] [CrossRef]
- Vora, J.; Parmar, H.; Chaudhari, R.; Khanna, S.; Doshi, M.; Patel, V. Experimental investigations on mechanical properties of multi-layered structure fabricated by GMAW-based WAAM of SS316L. J. Mater. Res. Technol. 2022, 20, 2748–2757. [Google Scholar] [CrossRef]
- Dhinakaran, V.; Ajith, J.; Fahmidha, A.F.Y.; Jagadeesha, T.; Sathish, T.; Stalin, B. Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys—A review. Mater. Today Proc. 2020, 21, 920–925. [Google Scholar] [CrossRef]
- Resnina, N.; Palani, I.; Belyaev, S.; Prabu, S.M.; Liulchak, P.; Karaseva, U.; Manikandan, M.; Jayachandran, S.; Bryukhanova, V.; Sahu, A. Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing. J. Alloys Compd. 2021, 851, 156851. [Google Scholar] [CrossRef]
- Kumar, A.; Maji, K. Selection of process parameters for near-net shape deposition in wire arc additive manufacturing by genetic algorithm. J. Mater. Eng. Perform. 2020, 29, 3334–3352. [Google Scholar] [CrossRef]
- Baghel, P.K.; Gupta, T. Optimization of parameters of pulse current gas tungsten arc welding using non conventional techniques. J. Adv. Join. Process. 2022, 6, 100124. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Mani Prabu, S.; Palani, I.; Patel, V.K.; Parikh, D.; de Lacalle, L.N.L. Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm. Materials 2019, 12, 1277. [Google Scholar] [CrossRef]
- Ranjan, A.; Das, R.; Pal, S.; Majumder, A.; Deb, M. Performance analysis of porous-based taper-shaped fin for enhanced heat transfer rate using cuckoo search algorithm. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 238, 1372–1384. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; He, K. Parameter estimation of various PV cells and modules using an improved simultaneous heat transfer search algorithm. J. Comput. Electron. 2024, 23, 584–599. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit. Manuf. 2018, 23, 151–160. [Google Scholar] [CrossRef]
- Shen, C.; Reid, M.; Liss, K.-D.; Pan, Z.; Ma, Y.; Cuiuri, D.; van Duin, S.; Li, H. Neutron diffraction residual stress determinations in Fe3Al based iron aluminide components fabricated using wire-arc additive manufacturing (WAAM). Addit. Manuf. 2019, 29, 100774. [Google Scholar] [CrossRef]
- Shen, C.; Pan, Z.; Ma, Y.; Cuiuri, D.; Li, H. Fabrication of iron-rich Fe–Al intermetallics using the wire-arc additive manufacturing process. Addit. Manuf. 2015, 7, 20–26. [Google Scholar] [CrossRef]
- Dong, B.; Pan, Z.; Shen, C.; Ma, Y.; Li, H. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process. Metall. Mater. Trans. B 2017, 48, 3143–3151. [Google Scholar] [CrossRef]
- Chaudhari, R.; Parikh, N.; Khanna, S.; Vora, J.; Patel, V. Effect of multi-walled structure on microstructure and mechanical properties of 1.25 Cr-1.0 Mo steel fabricated by GMAW-based WAAM using metal-cored wire. J. Mater. Res. Technol. 2022, 21, 3386–3396. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Z.; Wang, Y.; Wang, L.; Su, L.; Cuiuri, D.; Zhao, Y.; Li, H. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit. Manuf. 2020, 34, 101240. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Z.; Yang, G.; Han, J.; Chen, X.; Li, H. Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing. Mater. Sci. Eng. A 2019, 749, 218–222. [Google Scholar] [CrossRef]
- Zeng, Z.; Cong, B.; Oliveira, J.; Ke, W.; Schell, N.; Peng, B.; Qi, Z.; Ge, F.; Zhang, W.; Ao, S. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties. Addit. Manuf. 2020, 32, 101051. [Google Scholar] [CrossRef]
- Chaudhari, R.; Bhatt, R.; Vaghasia, V.; Raja, B.D.; Patel, V.K.; Khanna, S.; Vora, J.; Patel, V.V. A parametric study and experimental investigations of microstructure and mechanical properties of multi-layered structure of metal core wire using wire arc additive manufacturing. J. Adv. Join. Process. 2023, 8, 100160. [Google Scholar] [CrossRef]
- Vora, J.; Parikh, N.; Chaudhari, R.; Patel, V.K.; Paramar, H.; Pimenov, D.Y.; Giasin, K. Optimization of bead morphology for GMAW-based wire-arc additive manufacturing of 2.25 Cr-1.0 Mo steel using metal-cored wires. Appl. Sci. 2022, 12, 5060. [Google Scholar] [CrossRef]
- Chahdoura, S.; Bahloul, R.; Tlija, M.; Tahan, A. Multi-objective optimization of PLA-FDM parameters for enhancement of industrial product mechanical performance based on GRA-RSM and BBD. Prog. Addit. Manuf. 2024, 10, 1355–1383. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Xie, X.; Ma, T.; Huang, S.; Xiao, J.; Liang, Z. Wear resistance of Cronidur 30 steel enhanced by optimizing the strengthened grinding process (SGP) parameters using a Box-Behnken design (BBD) method. J. Manuf. Process. 2024, 122, 7–20. [Google Scholar] [CrossRef]
- Patel, V.K.; Savsani, V.J. Heat transfer search (HTS): A novel optimization algorithm. Inf. Sci. 2015, 324, 217–246. [Google Scholar] [CrossRef]
- Rojas, H.; Vargas, Z.; Valdez, S.; Serrano, M.; del Pozo, A.; Alcántara, M. Taguchi, Grey Relational Analysis, and ANOVA Optimization of TIG Welding Parameters to Maximize Mechanical Performance of Al-6061 T6 Alloy. J. Manuf. Mater. Process. 2024, 8, 246. [Google Scholar] [CrossRef]
- Kumar, P.K.; Lokeshwar, G.; Reddy, C.U.K.; Jyotis, A.; Shetty, S.; Acharya, S.; Shetty, N. Effect of drilling parameters on surface roughness and delamination of Ramie–Bamboo-reinforced natural hybrid composites. J. Manuf. Mater. Process. 2024, 8, 195. [Google Scholar] [CrossRef]
- Bouloumpasi, E.; Skendi, A.; Christaki, S.; Biliaderis, C.G.; Irakli, M. Optimizing conditions for the recovery of lignans from sesame cake using three green extraction methods: Microwave-, ultrasound-and accelerated-assisted solvent extraction. Ind. Crops Prod. 2024, 207, 117770. [Google Scholar] [CrossRef]
- Akritas, M.G.; Papadatos, N. Heteroscedastic one-way ANOVA and lack-of-fit tests. J. Am. Stat. Assoc. 2004, 99, 368–382. [Google Scholar] [CrossRef]
- Xu, W.; Lin, S.; Fan, C.; Yang, C. Prediction and optimization of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int. J. Adv. Manuf. Technol. 2015, 79, 183–196. [Google Scholar] [CrossRef]
- Thakur, P.; Chapgaon, A. A review on effects of GTAW process parameters on weld. Int. J. Res. Appl. Sci. Eng. (IJRASET) 2016, 4, 136–140. [Google Scholar]
- Kumar, V.; Mandal, A.; Das, A.K.; Kumar, S. Parametric study and characterization of wire arc additive manufactured steel structures. Int. J. Adv. Manuf. Technol. 2021, 115, 1723–1733. [Google Scholar] [CrossRef]
- Mistry, P. Effect of process parameters on bead geometry and shape relationship of gas metal arc weldments. Int. J. Adv. Res. Mech. Eng. Technol. 2016, 2, 24–27. [Google Scholar]
- Lee, H.-k.; Kim, J.; Pyo, C.; Kim, J. Evaluation of bead geometry for aluminum parts fabricated using additive manufacturing-based wire-arc welding. Processes 2020, 8, 1211. [Google Scholar] [CrossRef]
- Chaudhari, R.; Parmar, H.; Vora, J.; Patel, V.K. Parametric study and investigations of bead geometries of GMAW-based wire–arc additive manufacturing of 316L stainless steels. Metals 2022, 12, 1232. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Scutelnicu, E.; Rusu, C.C.; Mistodie, L.R.; Mihailescu, D.; Subbiah, A.V. Wire arc additive manufacturing: Review on recent findings and challenges in industrial applications and materials characterization. Metals 2021, 11, 939. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Vora, J.; Pandey, R.; Dodiya, P.; Patel, V.; Khanna, S.; Vaghasia, V.; Chaudhari, R. Fabrication of Multi-Walled Structure through Parametric Study of Bead Geometries of GMAW-Based WAAM Process of SS309L. Materials 2023, 16, 5147. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Rogal, Ł.; Kalita, D.; Węglowski, M.; Błacha, S.; Berent, K.; Czeppe, T.; Antolak-Dudka, A.; Durejko, T.; Czujko, T. Superelastic effect in NiTi alloys manufactured using electron beam and focused laser rapid manufacturing methods. J. Mater. Eng. Perform. 2020, 29, 4463–4473. [Google Scholar] [CrossRef]
- Kelly, S.; Kampe, S. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling. Metall. Mater. Trans. A 2004, 35, 1869–1879. [Google Scholar] [CrossRef]
- Yu, L.; Chen, K.; Zhang, Y.; Liu, J.; Yang, L.; Shi, Y. Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing. J. Alloys Compd. 2022, 892, 162193. [Google Scholar] [CrossRef]
- Bae, J.; Lee, H.; Seo, D.; Yun, S.; Yang, J.; Huh, S.; Jeong, H.; Noh, J. Grain size and phase transformation behavior of TiNi shape-memory-alloy thin film under different deposition conditions. Materials 2020, 13, 3229. [Google Scholar] [CrossRef]
- Chaudhari, R.; Khanna, S.; Vora, J.; Patel, V. Experimental investigations on microstructure and mechanical properties of wall structure of SS309L using wire-arc additive manufacturing. J. Adv. Join. Process. 2024, 9, 100172. [Google Scholar] [CrossRef]
- Qi, Z.; Qi, B.; Cong, B.; Sun, H.; Zhao, G.; Ding, J. Microstructure and mechanical properties of wire+ arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated. J. Manuf. Process. 2019, 40, 27–36. [Google Scholar] [CrossRef]
- Wang, L.; Xue, J.; Wang, Q. Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel. Mater. Sci. Eng. A 2019, 751, 183–190. [Google Scholar] [CrossRef]
Input Variables | Symbol | Values with Levels |
---|---|---|
Wire feed speed (m/min) | WFS | 5; 6; 7 |
Travel Speed (mm/s) | TS | 10; 12; 14 |
Voltage | V | 20; 22; 24 |
Shielding gas | - | Argon gas with 15 L/min |
Feedstock material | - | Nitinol wire with 1.2 mm diameter |
Substrate | - | Pure titanium |
Std Order | Run Order | WFS (m/min) | TS (mm/s) | Voltage (V) | BH (mm) | BW (mm) |
---|---|---|---|---|---|---|
1 | 1 | 5 | 10 | 22 | 5.63 | 7.78 |
10 | 2 | 6 | 14 | 20 | 5.70 | 5.52 |
11 | 3 | 6 | 10 | 24 | 4.67 | 9.20 |
15 | 4 | 6 | 12 | 22 | 6.07 | 6.89 |
12 | 5 | 6 | 14 | 24 | 5.21 | 8.57 |
14 | 6 | 6 | 12 | 22 | 5.97 | 7.03 |
3 | 7 | 5 | 14 | 22 | 4.83 | 5.93 |
13 | 8 | 6 | 12 | 22 | 6.20 | 6.80 |
2 | 9 | 7 | 10 | 22 | 8.06 | 7.87 |
7 | 10 | 5 | 12 | 24 | 4.21 | 8.42 |
4 | 11 | 7 | 14 | 22 | 7.48 | 8.00 |
8 | 12 | 7 | 12 | 24 | 5.89 | 9.32 |
9 | 13 | 6 | 10 | 20 | 7.05 | 6.41 |
6 | 14 | 7 | 12 | 20 | 7.73 | 6.89 |
5 | 15 | 5 | 12 | 20 | 5.29 | 6.06 |
Source | DF | Adj. SS | Adj. MS | F | P |
---|---|---|---|---|---|
ANOVA for BH | |||||
Model | 7 | 18.0230 | 2.5747 | 65.55 | <0.001 |
Linear | 3 | 15.3912 | 5.1304 | 130.61 | <0.001 |
WFS | 1 | 10.5943 | 10.5943 | 269.70 | <0.001 |
TS | 1 | 0.6020 | 0.6020 | 15.33 | 0.006 |
V | 1 | 4.1949 | 4.1949 | 106.79 | <0.001 |
Square | 2 | 1.5879 | 0.7939 | 20.21 | <0.001 |
2-Way Interaction | 2 | 1.0439 | 0.5220 | 13.29 | 0.004 |
Error | 7 | 0.2750 | 0.0393 | - | - |
Lack-of-Fit | 5 | 0.2485 | 0.0497 | 3.76 | 0.223 |
Pure Error | 2 | 0.0265 | 0.0132 | - | - |
Total | 14 | 18.2980 | - | - | - |
ANOVA for BW | |||||
Model | 6 | 19.2735 | 3.2122 | 95.15 | <0.001 |
Linear | 3 | 17.3178 | 5.7726 | 170.98 | <0.001 |
WFS | 1 | 1.8748 | 1.8748 | 55.53 | <0.001 |
TS | 1 | 1.3146 | 1.3146 | 38.94 | <0.001 |
V | 1 | 14.1283 | 14.1283 | 418.48 | <0.001 |
Square | 2 | 0.9722 | 0.4861 | 14.40 | 0.002 |
2-Way Interaction | 1 | 0.9835 | 0.9835 | 29.13 | <0.001 |
Error | 8 | 0.2701 | 0.0338 | - | - |
Lack-of-Fit | 6 | 0.2421 | 0.0404 | 2.88 | 0.280 |
Pure Error | 2 | 0.0280 | 0.0140 | - | - |
Total | 14 | 19.5435 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaghasia, V.; Chaudhari, R.; Patel, V.K.; Vora, J. Parametric Study on Investigations of GMAW-Based WAAM Process Parameters and Effect on Microstructure and Mechanical Properties of NiTi SMA. J. Manuf. Mater. Process. 2025, 9, 58. https://doi.org/10.3390/jmmp9020058
Vaghasia V, Chaudhari R, Patel VK, Vora J. Parametric Study on Investigations of GMAW-Based WAAM Process Parameters and Effect on Microstructure and Mechanical Properties of NiTi SMA. Journal of Manufacturing and Materials Processing. 2025; 9(2):58. https://doi.org/10.3390/jmmp9020058
Chicago/Turabian StyleVaghasia, Vatsal, Rakesh Chaudhari, Vivek K. Patel, and Jay Vora. 2025. "Parametric Study on Investigations of GMAW-Based WAAM Process Parameters and Effect on Microstructure and Mechanical Properties of NiTi SMA" Journal of Manufacturing and Materials Processing 9, no. 2: 58. https://doi.org/10.3390/jmmp9020058
APA StyleVaghasia, V., Chaudhari, R., Patel, V. K., & Vora, J. (2025). Parametric Study on Investigations of GMAW-Based WAAM Process Parameters and Effect on Microstructure and Mechanical Properties of NiTi SMA. Journal of Manufacturing and Materials Processing, 9(2), 58. https://doi.org/10.3390/jmmp9020058