Paeoniflorin Attenuates APAP-Induced Liver Injury via Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs
<p>PF attenuates AILI in mice. (<b>A</b>) Schematic diagram of drug administration to animals (n = 6); (<b>B</b>) body weights of mice during administration; (<b>C</b>) liver index measurements; (<b>D</b>–<b>G</b>) serum concentrations of ALT, AST, LDH, and MDA; (<b>H</b>) MPO levels in liver tissues of mice; (<b>I</b>) H&E staining images. The magnification used for the H&E staining images was ×100, with the scale bars representing 100 μm. All experimental data are presented as the mean ± SD. ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p <</span> 0.001 vs. the NC group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. the APAP group.</p> "> Figure 2
<p>PF attenuates APAP-induced hepatocyte inflammation and pyroptosis. (<b>A</b>) The mRNA expression levels of <span class="html-italic">IL-1β</span>, <span class="html-italic">TNF-α</span>, <span class="html-italic">IL-6</span>, and <span class="html-italic">IL-18</span> in the liver of the mice were quantified using the quantitative real-time polymerase chain reaction (qRT-PCR). (<b>B</b>) The mRNA expression levels of <span class="html-italic">NLRP3</span>, <span class="html-italic">caspase-1</span>, <span class="html-italic">GSDMD</span>, and <span class="html-italic">HMGB1</span> in the livers of mice were measured via qRT-PCR. (<b>C</b>,<b>D</b>) The protein levels of NLRP3, caspase-1, GSDMD, and HMGB1 in the livers of mice were assessed using Western blotting (WB) analysis and are reported relative to β-actin levels. (<b>E</b>) The levels of HMGB1 in the serum of mice were quantified using enzyme-linked immunosorbent assays (ELISAs). (<b>F</b>) HepG2 cells were treated with various concentrations of PF (0, 10, 20, and 40 μM) for 24 h, and then the cell viability was assessed using the thiazolyl blue tetrazolium bromide (MTT) assay (n = 3). (<b>G</b>) HepG2 cells were pretreated with various concentrations of PF (0, 10, 20, and 40 μM) for 24 h and subsequently treated with APAP (10 mM) for 6 h, and then the cell viability was assessed using the MTT assay (n = 3). (<b>H</b>) The mRNA expression levels of <span class="html-italic">IL-1β</span>, <span class="html-italic">TNF-α</span>, <span class="html-italic">IL-6</span>, and <span class="html-italic">IL-18</span> in HepG2 cells were quantified using qRT-PCR. (<b>I</b>) The mRNA expression levels of <span class="html-italic">NLRP3</span>, <span class="html-italic">caspase-1</span>, <span class="html-italic">GSDMD</span>, and <span class="html-italic">HMGB1</span> in the HepG2 cells were quantified using qRT-PCR. (<b>J</b>,<b>K</b>) The protein levels of NLRP3, caspase-1, GSDMD, and HMGB1 in the HepG2 cells were assessed using WB analysis, and are reported relative to β-actin levels. (<b>L</b>) The concentration of HMGB1 in the culture medium of the HepG2 cells was quantified using ELISA. All experimental data are presented as the mean ± SD. ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 vs. the NC group; * <span class="html-italic">p</span>< 0.05, ** <span class="html-italic">p</span>< 0.01, and *** <span class="html-italic">p</span>< 0.001 vs. the APAP group.</p> "> Figure 3
<p>PF inhibits the APAP-induced formation of NETs. (<b>A</b>) NETs in the serum were quantified using an ELISA for NE–DNA complexes. (<b>B</b>,<b>C</b>) The protein levels of MPO, PADI4, NE, and CitH3 in the mouse liver were assessed using WB analysis and are reported relative to β-actin levels. (<b>D</b>) To evaluate the distribution of MPO and CitH3, the positive areas for MPO and CitH3 in liver sections were assessed using IHC staining. The magnification in the images is ×200. (<b>E</b>) The surface characterization of the dHL-60 cells was performed using FESEM. The magnification used was ×2500, with the scale bars representing 20 μm. (<b>F</b>,<b>G</b>) A cellular immunofluorescence analysis was conducted to assess the protein expression of MPO and CitH3 in the dHL-60 cells (n = 3). The magnification used was ×400, with the scale bars representing 20 μm. (<b>H</b>,<b>I</b>) The protein levels of MPO, PADI4, NE, and CitH3 in the dHL-60 cells were assessed using WB analysis, and are reported relative to β-actin levels. All experimental data are presented as the mean ± SD. ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 vs. the NC group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. the APAP group or PMA group.</p> "> Figure 4
<p>PF intervenes the crosstalk between hepatocyte pyroptosis and NETs. (<b>A</b>) HepG2 cells in the co-culture were treated with PMA (100 nM) for 4 h, followed by treatment with various concentrations of PF (0, 10, 20, and 40 μM) for 24 h; subsequently, cell viability was assessed using the MTT assay (n = 3). (<b>B</b>) The mRNA expression level of GSDMD in the HepG2 cells in the co-culture was quantified using qRT-PCR. (<b>C</b>,<b>D</b>) The protein level of GSDMD in the HepG2 cells in the co-culture was assessed by WB analysis and reported relative to β-actin levels. (<b>E</b>,<b>F</b>) The protein levels of CitH3 in the dHL-60 cells in the co-culture were assessed using WB analysis and are reported relative to β-actin levels. (<b>G</b>) A cellular immunofluorescence analysis was performed to evaluate the expression of MPO and CitH3 in the dHL-60 cells in the co-culture (n = 3). The magnification used was ×400. All experimental data are presented as the mean ± SD. ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 vs. the NC group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. the APAP group or PMA group.</p> "> Figure 5
<p>PF attenuates AILI in mice by intervening the crosstalk between hepatocyte pyroptosis and NETs. (<b>A</b>) The levels of NETs in the serum of the neutropenic mice were quantified using ELISAs. (<b>B</b>,<b>C</b>) The ALT and AST levels in the serum of the neutropenic mice. (<b>D</b>,<b>E</b>) The protein levels of GSDMD in the liver of the neutropenic mice were determined using WB analysis and are reported relative to β-actin levels. (<b>F</b>) The mRNA expression level of GSDMD in the liver of the neutropenic mice was quantified via qRT-PCR. (<b>G</b>,<b>H</b>) The protein levels of GSDMD, HMGB1, and CitH3 in the liver of the pyroptosis inhibitor-treated mice were assessed using WB analysis and are reported relative to β-actin levels. (<b>I</b>) The mRNA expression level of GSDMD in the liver of the pyroptosis inhibitor-treated mice was quantified via qRT-PCR. (<b>J</b>,<b>K</b>) The serum levels of ALT and AST in the pyroptosis inhibitor-treated mice. (<b>L</b>,<b>M</b>) The levels of NETs and HMGB1 in the serum of the pyroptosis inhibitor-treated mice were measured using ELISA. All experimental data are presented as the mean ± SD. ## <span class="html-italic">p</span> < 0.01 and ### <span class="html-italic">p</span> < 0.001 vs. the NC group, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. the APAP or PMA group; <sup>Δ</sup> <span class="html-italic">p</span> < 0.05, ns <span class="html-italic">p</span> > 0.05 vs. the APAP + DNase I or APAP + DSF group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. PF Attenuates AILI in Mice
2.2. PF Attenuates APAP-Induced Hepatocyte Inflammation and Pyroptosis
2.3. PF Inhibits the Formation of NETs Induced by APAP
2.4. PF Intervenes the Crosstalk Between Hepatocyte Pyroptosis and NETs In Vitro
2.5. PF Attenuates AILI in Mice by Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animal Experiments
4.3. Plasma and Liver Biochemical Measures
4.4. Histological Analysis
4.5. ELISA
4.6. IHC Staining
4.7. Cell Culture
4.8. Cell Viability Assay
4.9. Analysis of Cell Surface Antigens
4.10. Wright–Giemsa Staining
4.11. Field-Emission Scanning Electron Microscopy (FESEM)
4.12. Immunofluorescence Staining (IF)
4.13. HepG2 and dHL-60 Cells Co-Culture Experiments
4.14. qRT-PCR
4.15. WB
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALF | Acute liver failure |
ALT | Alanine transaminase |
AML-12 | Alpha mouse liver 12 cells |
APAP | Acetaminophen |
AST | Aspartate transaminase |
ATRA | All-trans retinoicacid |
caspase-1 | Cysteine-aspartic protease 1 |
CitH3 | Citrullinated histone H3 |
dHL-60 | Neutrophil-like differentiated HL-60 cells |
DNase I | Deoxyribonuclease I |
DSF | Disulfiram |
ELISA | Enzyme-linked immunosorbent assay |
FBS | Fetal bovine serum |
FESEM | Field-emission scanning electron microscopy |
GSDMD | Gasdermin D |
HepG2 | Human hepatoma G2 cells |
HL-60 | Human promyelocytic leukemia cells |
HMGB1 | High-mobility group box 1 |
H&E | Hematoxylin and eosin |
IL-18 | Interleukin-18 |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
LDH | Lactate dehydrogenase |
MDA | Malondialdehyde |
MPO | Myeloperoxidase |
MTT | Thiazolyl blue tetrazolium bromide |
NAC | N-acetylcysteine |
NE | Neutrophil elastase |
NETs | Neutrophil extracellular traps |
NLRP3 | NOD-, LRR-, and pyrin domain-containing protein 3 |
PF | Paeoniflorin |
PADI4 | Peptidyl arginine deiminase 4 |
PBS | Phosphate buffer saline |
PMA | Phorbol 12-myristate 13-acetate |
qRT-PCR | Quantitative real-time polymerase chain reaction |
TNF-α | Tumor necrosis factor alpha |
References
- Allison, R.; Guraka, A.; Shawa, I.T.; Tripathi, G.; Moritz, W.; Kermanizadeh, A. Drug induced liver injury—A 2023 update. J. Toxicol. Environ. Health B Crit. Rev. 2023, 26, 442–467. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced Liver Injury: From Animal Models to Humans. J. Clin. Transl. Hepatol. 2014, 2, 153–161. [Google Scholar] [PubMed]
- Gil-Pitarch, C.; Serrano-Maciá, M.; Simon, J.; Mosca, L.; Conter, C.; Rejano-Gordillo, C.M.; Zapata-Pavas, L.E.; Peña-Sanfélix, P.; Azkargorta, M.; Rodríguez-Agudo, R.; et al. Neddylation inhibition prevents acetaminophen-induced liver damage by enhancing the anabolic cardiolipin pathway. Cell Rep. Med. 2024, 5, 101653. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, N.F.; Nakanishi, H.; Ohto, T.; Shindou, H.; Shimizu, T. LPCAT3/LPLAT12 deficiency in the liver ameliorates acetaminophen-induced acute liver injury. FASEB J. 2024, 38, e23328. [Google Scholar] [CrossRef]
- Pettie, J.M.; Caparrotta, T.M.; Hunter, R.W.; Morrison, E.E.; Wood, D.M.; Dargan, P.I.; Thanacoody, R.H.; Thomas, S.H.L.; Elamin, M.; Francis, B.; et al. Safety and Efficacy of the SNAP 12-hour Acetylcysteine Regimen for the Treatment of Paracetamol Overdose. EClinicalMedicine 2019, 11, 11–17. [Google Scholar] [CrossRef]
- Bateman, D.N.; Dear, J.W.; Thanacoody, H.K.; Thomas, S.H.; Eddleston, M.; Sandilands, E.A.; Coyle, J.; Cooper, J.G.; Rodriguez, A.; Butcher, I.; et al. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: A randomised controlled trial. Lancet 2014, 383, 697–704. [Google Scholar] [CrossRef]
- Gaul, S.; Leszczynska, A.; Alegre, F.; Kaufmann, B.; Johnson, C.D.; Adams, L.A.; Wree, A.; Damm, G.; Seehofer, D.; Calvente, C.J.; et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol. 2021, 74, 156–167. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wang, Z.; Sun, R.; Zou, B.; Li, R.; Liu, D.; Lin, M.; Zhou, J.; Ning, S.; et al. Peroxiredoxin 3 Inhibits Acetaminophen-Induced Liver Pyroptosis Through the Regulation of Mitochondrial ROS. Front. Immunol. 2021, 12, 652782. [Google Scholar] [CrossRef]
- Geng, Y.; Ma, Q.; Liu, Y.N.; Peng, N.; Yuan, F.F.; Li, X.G.; Li, M.; Wu, Y.S.; Li, B.L.; Song, W.B.; et al. Heatstroke induces liver injury via IL-1β and HMGB1-induced pyroptosis. J. Hepatol. 2015, 63, 622–633. [Google Scholar] [CrossRef]
- Shu, B.; Zhou, Y.X.; Li, H.; Zhang, R.Z.; He, C.; Yang, X. The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis and M1 polarization of macrophages and contributes to liver fibrosis. Cell Death Discov. 2021, 7, 368. [Google Scholar] [CrossRef]
- Du, Y.C.; Lai, L.; Zhang, H.; Zhong, F.R.; Cheng, H.L.; Qian, B.L.; Tan, P.; Xia, X.M.; Fu, W.G. Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food Funct. 2020, 11, 7925–7934. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tohme, S.; Al-Khafaji, A.B.; Tai, S.; Loughran, P.; Chen, L.; Wang, S.; Kim, J.; Billiar, T.; Wang, Y.; et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 2015, 62, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Bukong, T.N.; Tornai, D.; Babuta, M.; Vlachos, I.S.; Kanata, E.; Catalano, D.; Szabo, G. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. J. Hepatol. 2023, 78, 28–44. [Google Scholar] [CrossRef]
- von Meijenfeldt, F.A.; Stravitz, R.T.; Zhang, J.; Adelmeijer, J.; Zen, Y.; Durkalski, V.; Lee, W.M.; Lisman, T. Generation of neutrophil extracellular traps in patients with acute liver failure is associated with poor outcome. Hepatology 2022, 75, 623–633. [Google Scholar] [CrossRef]
- Yang, T.; Qu, X.; Zhao, J.; Wang, X.; Wang, Q.; Dai, J.; Zhu, C.; Li, J.; Jiang, L. Macrophage PTEN controls STING-induced inflammation and necroptosis through NICD/NRF2 signaling in APAP-induced liver injury. Cell Commun. Signal. 2023, 21, 160. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, Y.; Lai, D.; Zhang, P.; Yang, Y.; Li, Y.; Fei, K.; Jiang, G.; Fan, J. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018, 9, 597. [Google Scholar] [CrossRef]
- Luo, X.; Wang, X.; Huang, S.; Xu, B.; Luo, S.; Li, Y.; Wang, Q.; Chen, Y.; Deng, X.; Liu, L.; et al. Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway. Int. Immunopharmacol. 2021, 90, 107224. [Google Scholar] [CrossRef]
- Yu, W.; Zeng, M.; Xu, P.; Liu, J.; Wang, H. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action. Phytomedicine 2021, 92, 153724. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Y.; Zhang, Y.; Yan, P.; Xiao, D.; Zhao, Y.; Jia, W.; Ding, L.; Dong, H.; Wei, C.; et al. Paeoniflorin alleviates AngII-induced cardiac hypertrophy in H9c2 cells by regulating oxidative stress and Nrf2 signaling pathway. Biomed. Pharmacother. 2023, 165, 115253. [Google Scholar] [CrossRef]
- Wang, Y.; You, K.; You, Y.; Li, Q.; Feng, G.; Ni, J.; Cao, X.; Zhang, X.; Wang, Y.; Bao, W.; et al. Paeoniflorin prevents aberrant proliferation and differentiation of intestinal stem cells by controlling C1q release from macrophages in chronic colitis. Pharmacol. Res. 2022, 182, 106309. [Google Scholar] [CrossRef]
- Ma, Y.; Lang, X.; Yang, Q.; Han, Y.; Kang, X.; Long, R.; Du, J.; Zhao, M.; Liu, L.; Li, P.; et al. Paeoniflorin promotes intestinal stem cell-mediated epithelial regeneration and repair via PI3K-AKT-mTOR signalling in ulcerative colitis. Int. Immunopharmacol. 2023, 119, 110247. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, Y.; Li, X.; Zhang, Z.; Dai, S.; Wu, H.; Zhang, F.; Hu, Q.; Chen, Y.; Zeng, J.; et al. Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway. Molecules 2022, 27, 8534. [Google Scholar] [CrossRef]
- Li, Y.C.; Qiao, J.Y.; Wang, B.Y.; Bai, M.; Shen, J.D.; Cheng, Y.X. Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways. Nutrients 2018, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Ma, X.; Niu, M.; Wang, R.; Yang, T.; Wang, D.; Wen, J.; Li, H.; Zhao, Y. Mechanism of Paeoniflorin in the Treatment of Bile Duct Ligation-Induced Cholestatic Liver Injury Using Integrated Metabolomics and Network Pharmacology. Front. Pharmacol. 2020, 11, 586806. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, W.; Chen, Y.; Hu, Q.; Wang, Z.; Jiang, T.; Zeng, Y.; Efferth, T. Paeoniflorin inhibited GSDMD to alleviate ANIT-induced cholestasis via pyroptosis signaling pathway. Phytomedicine 2024, 134, 156021. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, Y.; Chen, Y.; Hu, Q.; Zhang, W.; Chen, L.; Lu, X.; Zeng, J.; Ma, X.; Efferth, T. Paeoniflorin protects hepatocytes from APAP-induced damage through launching autophagy via the MAPK/mTOR signaling pathway. Cell. Mol. Biol. Lett. 2024, 29, 119. [Google Scholar] [CrossRef]
- Wang, A.; Gong, Y.; Pei, Z.; Jiang, L.; Xia, L.; Wu, Y. Paeoniflorin ameliorates diabetic liver injury by targeting the TXNIP-mediated NLRP3 inflammasome in db/db mice. Int. Immunopharmacol. 2022, 109, 108792. [Google Scholar] [CrossRef]
- Kader, M.; El Andaloussi, A.; Vorhaour, J.; Tamama, K.; Nieto, N.; Scott, M.J.; Ismail, N. Interferon Type I Regulates Inflammasome Activation and High Mobility Group Box 1 Translocation in Hepatocytes During Ehrlichia-Induced Acute Liver Injury. Hepatol. Commun. 2021, 5, 33–51. [Google Scholar] [CrossRef]
- Guo, H.; Sun, J.; Li, D.; Hu, Y.; Yu, X.; Hua, H.; Jing, X.; Chen, F.; Jia, Z.; Xu, J. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed. Pharmacother. 2019, 112, 108704. [Google Scholar] [CrossRef]
- Lőrincz, T.; Deák, V.; Makk-Merczel, K.; Varga, D.; Hajdinák, P.; Szarka, A. The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity. Life 2021, 11, 856. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, P.; Luan, X.; Yu, C.; Miao, L.; Zuo, Y.; Liu, A.; Sun, T.; Di, G. NLRP3 deficiency protects against acetaminophen-induced liver injury by inhibiting hepatocyte pyroptosis. Mol. Med. Rep. 2024, 29, 61. [Google Scholar] [CrossRef]
- Wang, L.; Jiao, X.F.; Wu, C.; Li, X.Q.; Sun, H.X.; Shen, X.Y.; Zhang, K.Z.; Zhao, C.; Liu, L.; Wang, M.; et al. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discov. 2021, 7, 251. [Google Scholar] [CrossRef] [PubMed]
- Kayagaki, N.; Stowe, I.B.; Alegre, K.; Deshpande, I.; Wu, S.; Lin, Z.; Kornfeld, O.S.; Lee, B.L.; Zhang, J.; Liu, J.; et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 2023, 618, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tao, Y.; Wu, Y.; Zhao, X.; Ye, W.; Zhao, D.; Fu, L.; Tian, C.; Yang, J.; He, F.; et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 2019, 10, 1076. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, J.; Mao, Y. Incidence and risk factors of drug-induced liver injury. Liver Int. 2022, 42, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- Gorrochategui, E.; Le Vee, M.; Selmi, H.; Gérard, A.; Chaker, J.; Krais, A.M.; Lindh, C.; Fardel, O.; Chevrier, C.; Le Cann, P.; et al. High-resolution mass spectrometry identifies delayed biomarkers for improved precision in acetaminophen/paracetamol human biomonitoring. Environ. Int. 2023, 181, 108299. [Google Scholar] [CrossRef]
- McGill, M.R.; Jaeschke, H. Animal models of drug-induced liver injury. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2019, 1865, 1031–1039. [Google Scholar] [CrossRef]
- Yuan, T.; Lv, S.; Zhang, W.; Tang, Y.; Chang, H.; Hu, Z.; Fang, L.; Du, J.; Wu, S.; Yang, X.; et al. PF-PLC micelles ameliorate cholestatic liver injury via regulating TLR4/MyD88/NF-κB and PXR/CAR/UGT1A1 signaling pathways in EE-induced rats. Int. J. Pharm. 2022, 615, 121480. [Google Scholar] [CrossRef]
- Shi, D.; Ma, A.; Zheng, H.; Huo, G.; Yan, H.; Fu, H.; Qiu, Y.; Liu, W. Paeoniflorin inhibits the maturation and immunostimulatory function of allergen-induced murine dendritic cells. Int. Immunopharmacol. 2014, 19, 221–232. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, L.; Chen, L.; Han, Y.; Tang, J.; Yang, Y.; Zhang, G.; Liu, W. Selective suppression of microglial activation by paeoniflorin attenuates morphine tolerance. Eur. J. Pain 2015, 19, 908–919. [Google Scholar] [CrossRef]
- Vasudevan, S.O.; Behl, B.; Rathinam, V.A. Pyroptosis-induced inflammation and tissue damage. Semin. Immunol. 2023, 69, 101781. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Kang, R.; Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, J.; He, Y.; Cai, J.; Xie, J.; Wu, M.; Xing, M.; Zhang, Z.; Chang, H.; Yu, P.; et al. Pregabalin mitigates microglial activation and neuronal injury by inhibiting HMGB1 signaling pathway in radiation-induced brain injury. J. Neuroinflamm. 2022, 19, 231. [Google Scholar] [CrossRef] [PubMed]
- Erkes, D.A.; Cai, W.; Sanchez, I.M.; Purwin, T.J.; Rogers, C.; Field, C.O.; Berger, A.C.; Hartsough, E.J.; Rodeck, U.; Alnemri, E.S.; et al. Mutant BRAF and MEK Inhibitors Regulate the Tumor Immune Microenvironment via Pyroptosis. Cancer Discov. 2020, 10, 254–269. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, C.; Zhang, J.; Kai, G.; Lu, B.; Huang, Z.; Ji, L. The involvement of DAMPs-mediated inflammation in cyclophosphamide-induced liver injury and the protection of liquiritigenin and liquiritin. Eur. J. Pharmacol. 2019, 856, 172421. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, H.; Huang, L.; Sun, C.; Yue, Y.; Cao, X.; Jia, H.; Wang, C.; Gao, Y. Disulfiram with Cu(2+) alleviates dextran sulfate sodium-induced ulcerative colitis in mice. Theranostics 2023, 13, 2879–2895. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, P.; Zhou, J.; Hu, S.; Hao, J.; Zhong, Z.; Yu, H.; Yang, J.; Chi, J.; Guo, H. Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. Am. J. Physiol. Cell Physiol. 2024, 326, C724–C741. [Google Scholar] [CrossRef]
- Zhao, F.; Peng, C.; Li, H.; Chen, H.; Yang, Y.; Ai, Q.; Chen, N.; Liu, F. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. J. Ethnopharmacol. 2023, 315, 116567. [Google Scholar] [CrossRef]
- Qiu, W.; Guo, R.; Yu, H.; Chen, X.; Chen, Z.; Ding, D.; Zhong, J.; Yang, Y.; Fang, F. Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity. J. Adv. Res. 2024, in press. [Google Scholar]
- Mutua, V.; Gershwin, L.J. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin. Rev. Allergy Immunol. 2021, 61, 194–211. [Google Scholar] [CrossRef]
- Denorme, F.; Portier, I.; Rustad, J.L.; Cody, M.J.; de Araujo, C.V.; Hoki, C.; Alexander, M.D.; Grandhi, R.; Dyer, M.R.; Neal, M.D.; et al. Neutrophil extracellular traps regulate ischemic stroke brain injury. J. Clin. Investig. 2022, 132, e154225. [Google Scholar] [CrossRef]
- Zheng, F.; Ma, L.; Li, X.; Wang, Z.; Gao, R.; Peng, C.; Kang, B.; Wang, Y.; Luo, T.; Wu, J.; et al. Neutrophil Extracellular Traps Induce Glomerular Endothelial Cell Dysfunction and Pyroptosis in Diabetic Kidney Disease. Diabetes 2022, 71, 2739–2750. [Google Scholar] [CrossRef]
- Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016, 8, 361ra138. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Gao, Y.; Ng, D.; Michalopoulou, E.; George, S.; Adrover, J.M.; Sun, L.; Albrengues, J.; Daßler-Plenker, J.; Han, X.; et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024, 42, 474–486.e12. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, X.; Wang, Y.; Wang, P.; Sun, N.; Chen, J.; Han, L.; Li, Z.; Fan, H.; Gong, Y. Delayed step-by-step decompression with DSF alleviates skeletal muscle crush injury by inhibiting NLRP3/CASP-1/GSDMD pathway. Cell Death Discov. 2023, 9, 280. [Google Scholar] [CrossRef]
- Shen, Y.; Gong, X.; Qian, L.; Ruan, Y.; Lin, S.; Yu, Z.; Si, Z.; Wei, W.; Liu, Y. Inhibition of GSDMD-dependent pyroptosis decreased methamphetamine self-administration in rats. Brain Behav. Immun. 2024, 120, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Baali, N.; Belloum, Z.; Baali, S.; Chabi, B.; Pessemesse, L.; Fouret, G.; Ameddah, S.; Benayache, F.; Benayache, S.; Feillet-Coudray, C.; et al. Protective Activity of Total Polyphenols from Genista quadriflora Munby and Teucrium polium geyrii Maire in Acetaminophen-Induced Hepatotoxicity in Rats. Nutrients 2016, 8, 193. [Google Scholar] [CrossRef]
- Wang, W.; Guan, C.; Sun, X.; Zhao, Z.; Li, J.; Fu, X.; Qiu, Y.; Huang, M.; Jin, J.; Huang, Z. Tanshinone IIA protects against acetaminophen-induced hepatotoxicity via activating the Nrf2 pathway. Phytomedicine 2016, 23, 589–596. [Google Scholar] [CrossRef]
- Zhuang, L.; Luo, X.; Wu, S.; Lin, Z.; Zhang, Y.; Zhai, Z.; Yang, F.; Li, Y.; Zhuang, J.; Luo, G.; et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. Cell Death Discov. 2022, 8, 379. [Google Scholar] [CrossRef]
- Yang, J.H.; Ku, S.K.; Cho, I.L.J.; Lee, J.H.; Na, C.S.; Ki, S.H. Neoagarooligosaccharide Protects against Hepatic Fibrosis via Inhibition of TGF-β/Smad Signaling Pathway. Int. J. Mol. Sci. 2021, 22, 2041. [Google Scholar] [CrossRef]
- Cui, W.; Cao, Q.; Liu, L.; Yin, X.; Wang, X.; Zhao, Y.; Wang, Y.; Wei, B.; Xu, X.; Tang, Y. Artemisia Argyi essential oil ameliorates acetaminophen-induced hepatotoxicity via CYP2E1 and γ-glutamyl cycle reprogramming. Phytomedicine 2024, 135, 156106. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Cheng, N.; Zhu, Y.; Li, H.; Zhang, S.; Guo, W.; Ge, G. Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners. Phytomedicine 2023, 113, 154726. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Li, K.J.; Wu, C.H.; Shen, C.Y.; Kuo, Y.M.; Hsieh, S.C.; Yu, C.L. The FcγRIII Engagement Augments PMA-Stimulated Neutrophil Extracellular Traps (NETs) Formation by Granulocytes Partially via Cross-Talk between Syk-ERK-NF-κB and PKC-ROS Signaling Pathways. Biomedicines 2021, 9, 1127. [Google Scholar] [CrossRef]
- Zeng, Z.; Yoshida, Y.; Wang, D.; Fujii, Y.; Shen, M.; Mimura, T.; Tanaka, Y. Inflammatory Cytokines and Chemokines Are Synergistically Induced in a ROS-Dependent Manner by a Co-Culture of Corneal Epithelial Cells and Neutrophil-like Cells in the Presence of Particulate Matter. Antioxidants 2024, 13, 467. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; Kim, H.Y.; Cho, K.A.; Kim, Y.H.; Woo, S.Y.; Kim, H.S.; Kang, J.L.; Ryu, K.H.; Park, J.W. Procollagen C-Endopeptidase Enhancer 2 Secreted by Tonsil-Derived Mesenchymal Stem Cells Increases the Oxidative Burst of Promyelocytic HL-60 Cells. Biology 2022, 11, 255. [Google Scholar] [CrossRef]
- Wan, S.; Zhao, E.; Kryczek, I.; Vatan, L.; Sadovskaya, A.; Ludema, G.; Simeone, D.M.; Zou, W.; Welling, T.H. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 2014, 147, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- van Laar, A.; Grootaert, C.; Van Nieuwerburgh, F.; Deforce, D.; Desmet, T.; Beerens, K.; Van Camp, J. Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients 2022, 14, 611. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.-R.; Yang, Y.-Q.; Ruan, D.-D.; Que, Y.-M.; Gao, H.; Yang, Y.-Z.; Zhao, H.-J. Paeoniflorin Attenuates APAP-Induced Liver Injury via Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs. Int. J. Mol. Sci. 2025, 26, 1493. https://doi.org/10.3390/ijms26041493
Zhu Y-R, Yang Y-Q, Ruan D-D, Que Y-M, Gao H, Yang Y-Z, Zhao H-J. Paeoniflorin Attenuates APAP-Induced Liver Injury via Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs. International Journal of Molecular Sciences. 2025; 26(4):1493. https://doi.org/10.3390/ijms26041493
Chicago/Turabian StyleZhu, Yu-Ru, Ya-Qin Yang, Dan-Dan Ruan, Yue-Mei Que, Hang Gao, Yan-Zi Yang, and Hua-Jun Zhao. 2025. "Paeoniflorin Attenuates APAP-Induced Liver Injury via Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs" International Journal of Molecular Sciences 26, no. 4: 1493. https://doi.org/10.3390/ijms26041493
APA StyleZhu, Y.-R., Yang, Y.-Q., Ruan, D.-D., Que, Y.-M., Gao, H., Yang, Y.-Z., & Zhao, H.-J. (2025). Paeoniflorin Attenuates APAP-Induced Liver Injury via Intervening the Crosstalk Between Hepatocyte Pyroptosis and NETs. International Journal of Molecular Sciences, 26(4), 1493. https://doi.org/10.3390/ijms26041493