Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways
<p>The chemical structure of paeoniflorin.</p> "> Figure 2
<p>Effects of paeoniflorin on the body weight and insulin sensitivity in rats. Data are expressed as the mean ± SEM (<span class="html-italic">n =</span> 8). (<b>A</b>) Body weight. (<b>B</b>) The oral glucose tolerance test. (<b>C</b>) The homeostasis model assessment insulin resistance index (HOMA-IR) index. (<b>D</b>) The area under curve during oral glucose tolerance test (OGTT). Data was analyzed by one-way ANOVA followed by Dunnett’s post hoc test. <sup>#</sup> <span class="html-italic">p</span> < 0.05 and <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. control group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 vs. fructose group. PF-10: 10 mg/kg of paeoniflorin; PF-20: 20 mg/kg of paeoniflorin; PF-40: 40 mg/kg of paeoniflorin. HOMA-IR: Homeostasis model assessment insulin resistance index; OGTT: Oral glucose tolerance test; AUC: Area under curve.</p> "> Figure 3
<p>Effects of paeoniflorin on the hepatic lipids and glycogen contents. (<b>A</b>) Hepatic lipids contents. (<b>B</b>) Hepatic glycogen contents. (<b>C</b>) HE staining (200 ×). (<b>D</b>) Oil-red O staining (200 ×). Insets from the images are magnified five times in order to highlight the lipid-staining morphology. (<b>E</b>) Relative area of Oil-red O staining. Data were expressed as the mean ± SEM. (<span class="html-italic">n =</span> 8). Data was analyzed by one-way ANOVA followed by Dunnett’s <span class="html-italic">post hoc</span> test. <sup>##</sup> <span class="html-italic">p</span> < 0.01 and <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. control group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. fructose group. PF-10: 10 mg/kg of paeoniflorin; PF-20: 20 mg/kg of paeoniflorin; PF-40: 40 mg/kg of paeoniflorin. The scale bar represents a length of 50 μm.</p> "> Figure 4
<p>Effects of paeoniflorin on the mRNA expression of SREBP1c, SCD-1, FAS and CPT-1 in liver. (<b>A</b>) The mRNA expression of SREBP1c. (<b>B</b>) The mRNA expression of SCD-1. (<b>C</b>) The mRNA expression of FAS. (<b>D</b>) The mRNA expression of CPT-1. Data were normalized by the abundance of GAPDH and expressed as the relative value to control. Data were expressed as the mean ± S.E.M. (<span class="html-italic">n =</span> 6) and analyzed by one-way ANOVA followed by Dunnett’s <span class="html-italic">post hoc</span> test. <sup>#</sup> <span class="html-italic">p</span> < 0.05 and <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. control group. * <span class="html-italic">p</span> < 0.05 vs. fructose group. PF-10: 10 mg/kg of paeoniflorin; PF-20: 20 mg/kg of paeoniflorin; PF-40: 40 mg/kg of paeoniflorin. SREBP1c: Sterol regulatory element-binding protein 1c; SCD-1: Stearyl coenzyme A decarboxylase; FAS: Fatty acid synthetase; CPT-1: Carnitine palmitoyltransferase I.</p> "> Figure 5
<p>Effects of paeoniflorin on the body weight and insulin sensitivity in rats. (<b>A</b>) The phosphorylation level of AKT. (<b>B</b>) The phosphorylation level of AMP-activated protein kinase (AMPK). (<b>C</b>) The phosphorylation level of ACC1. (<b>D</b>) The protein expression of CPT-1. (<b>E</b>) The protein expression of LKB1. (<b>F</b>) The protein expression of CaMKKβ. (<b>G</b>) Immunoblot bands. Data were normalized by the abundance of GAPDH and expressed as the relative value to control. Data were expressed as the mean ± SEM (<span class="html-italic">n =</span> 6) and analyzed by one-way ANOVA followed by Dunnett’s <span class="html-italic">post hoc</span> test. <sup>#</sup> <span class="html-italic">p</span> < 0.05 and <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. control group. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. fructose group. PF-10: 10 mg/kg of paeoniflorin; PF-20: 20 mg/kg of paeoniflorin; PF-40: 40 mg/kg of paeoniflorin; AKT: Protein kinase B; AMPK: AMP-activated protein kinase; ACC1: Acetyl coenzyme A carboxylase; CPT-1: Carnitine palmitoyltransferase I; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LKB1: Tumor suppressor serine/threonine kinase 1; CaMKKβ: Ca<sup>2+</sup>/CaM-dependent protein kinase kinase β.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Oral Glucose Tolerance Test
2.4. Blood Biochemical Analysis
2.5. Hepatic Lipids Analyses
2.6. Histological Analysis
2.7. Quantitative Real-Time polymerase chain reaction (qRT-PCR)
2.8. Western Blotting
2.9. Statistical Analysis
3. Results
3.1. Paeoniflorin Reversed the Metabolic Abnormalities Induced by Fructose
3.2. Paeoniflorin Improved the Liver Function in Fructose Rats
3.3. Paeoniflorin Reversed Fructose-Induced Hepatic Lipids Accumulation and the Reduction of Hepatic Glycogen
3.4. Paeoniflorin Inhibited the Hepatic Lipogenesis and Promoted Fatty Acid Oxidation
3.5. Paeoniflorin Enhanced the Activities of LKB1/AMPK and AKT Signaling in Liver
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gisela, W. Insulin and Insulin Resistance. Clin. Biochem. Rev. 2005, 26, 19–39. [Google Scholar]
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol. 2015, 418 Pt 1, 55–65. [Google Scholar] [CrossRef]
- Samuel, V.T. Fructose induced lipogenesis: From sugar to fat to insulin resistance. Trends Endocrinol. Metab. 2011, 22, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.M.; Lustig, R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.H.; Mulligan, K.; Noworolski, S.M.; Tai, V.W.; Wen, M.J.; Erkin-Cakmak, A.; Gugliucci, A.; Schwarz, J.M. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity 2016, 24, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B.; Gunn, P.J.; Fielding, B.A. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 2014, 6, 5679–5703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamikutty, N.; Thent, Z.C.; Sapri, S.R.; Sahruddin, N.N.; Mohd Yusof, M.R.; Haji Suhaimi, F. The establishment of metabolic syndrome model by induction of fructose drinking water in male wistar rats. Biomed. Res. Int. 2014, 2014, 263897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, B.; Yu, B. Paeoniflorin protects against nonalcoholic fatty liver disease induced by a high-fat diet in mice. Biol. Pharm. Bull. 2015, 38, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, H.; Wang, W.; Guan, S.; Yi, J.; Chu, L. Paeoniflorin suppresses lipid accumulation and alleviates insulin resistance by regulating the Rho kinase/IRS-1 pathway in palmitate-induced HepG2 cells. Biomed. Pharmacother. 2017, 90, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Chu, L.; Liu, H.; Li, J.; Zhang, Y.; Liu, W.; Dai, J.; Yi, J.; Gao, Y. Paeoniflorin alleviates non-alcoholic steatohepatitis in rats: Involvement with the ROCK/NF-κB pathway. Int. Immunopharmacol. 2016, 38, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Li, Y.C.; Kong, L.D.; Hu, Q.H. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology 2010, 51, 1555–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalavalapalli, S.; Bril, F.; Koelmel, J.P.; Abdo, K.; Guingab, J.; Andrews, P.; Li, W.Y.; Jose, D.; Yost, R.A.; Frye, R.F.; et al. Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E163–E173. [Google Scholar] [CrossRef] [PubMed]
- Shahataa, M.G.; Mostafa-Hedeab, G.; Ali, E.F.; Mahdi, E.A.; Mahmoud, F.A. Effects of telmisartan and pioglitazone on high fructose induced metabolic syndrome in rats. Can. J. Physiol. Pharmacol. 2016, 94, 907–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Abd El-Haleim, E.A.; Bahgat, A.K.; Saleh, S. Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression. World J. Gastroenterol. 2016, 22, 2931–2948. [Google Scholar] [CrossRef] [PubMed]
- Kraegen, E.W.; Clark, P.W.; Jenkins, A.B.; Daley, E.A.; Chisholm, D.J.; Storlien, L.H. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 1991, 40, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.E.; Ramos-Roman, M.A.; Browning, J.D.; Parks, E.J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014, 146, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018, 27, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.F.; Fielding, B.A.; Frayn, K.N. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr. 2007, 85, 1511–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, J.D.; Bashmakov, Y.; Shimomura, I.; Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA 1998, 95, 5987–5992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, M.; Dobrzyn, A.; Man, W.C.; Chu, K.; Sampath, H.; Kim, H.J.; Ntambi, J.M. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J. Biol. Chem. 2004, 279, 25164–25171. [Google Scholar] [CrossRef] [PubMed]
- Lirio, L.M.; Forechi, L.; Zanardo, T.C.; Batista, H.M.; Meira, E.F.; Nogueira, B.V.; Mill, J.G.; Baldo, M.P. Chronic fructose intake accelerates non-alcoholic fatty liver disease in the presence of essential hypertension. J. Diabetes Complicat. 2016, 30, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.; Sievenpiper, J.L.; de Souza, R.J.; Cozma, A.I.; Mirrahimi, A.; Carleton, A.J.; Ha, V.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 2014, 68, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Lee, Y.S.; Cha, S.H.; Jeong, H.W.; Choe, S.S.; Lee, M.R.; Oh, G.T.; Park, H.S.; Lee, K.U.; Lane, M.D.; et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E812–E819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.J.; Dai, W.; Scott, M.J.; Li, R.; Zhang, Y.Q.; Yang, Y.; Chen, L.Z.; Huang, X.S. Metformin improves nonalcoholic fatty liver disease in obese mice via down-regulation of apolipoprotein A5 as part of the AMPK/LXRα signaling pathway. Oncotarget 2017, 8, 108802–108809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.K.; Marcinko, K.; Desjardins, E.M.; Lally, J.S.; Ford, R.J.; Steinberg, G.R. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E730–E740. [Google Scholar] [CrossRef] [PubMed]
- Buettner, R.; Bettermann, I.; Hechtl, C.; Gabele, E.; Hellerbrand, C.; Scholmerich, J.; Bollheimer, L.C. Dietary folic acid activates AMPK and improves insulin resistance and hepatic inflammation in dietary rodent models of the metabolic syndrome. Horm. Metab. Res. 2010, 42, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Hillgartner, F.B.; Salati, L.M.; Goodridge, A.G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 1995, 75, 47–76. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Fructose surges damage hepatic adenosyl-monophosphate-dependent kinase and lead to increased lipogenesis and hepatic insulin resistance. Med. Hypotheses 2016, 93, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.; Johnstone, S.R.; Dickerson, K.; Leiper, F.C.; Fryer, L.G.; Neumann, D.; Schlattner, U.; Wallimann, T.; Carlson, M.; Carling, D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 2003, 13, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.; Dickerson, K.; Heath, R.; Hong, S.P.; Momcilovic, M.; Johnstone, S.R.; Carlson, M.; Carling, D. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Koike, T.; Qin, B.; Kubota, M.; Kawata, Y.; Jia, Y.J.; Oshida, Y. A high-fructose diet impairs Akt and PKCzeta phosphorylation and GLUT4 translocation in rat skeletal muscle. Horm. Metab. Res. 2008, 40, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Jin, R.; Yang, L.; Zhang, J.; Yang, Q.; Guo, Y.Y.; Li, X.B.; Liu, S.B.; Luo, X.X.; Zhao, M.G. Phosphatidylinositol 3 kinase/protein kinase b is responsible for the protection of paeoniflorin upon H2O2-induced neural progenitor cell injury. Neuroscience 2013, 240, 54–62. [Google Scholar] [CrossRef] [PubMed]
Genes | Accession | Sense | Antisense |
---|---|---|---|
SREBP1c | NM_001276707 | 5′-CCATGGACGAGCTACCCTTC-3′ | 5′-GCCTGTGTCTCCTGTCTCAC-3′ |
SCD-1 | AF509569.1 | 5′-CCTGGCTTACGACCGGAAA-3′ | 5′-CAGGAACTCAGAAGCCCAG-3′ |
FAS | NM_012820.1 | 5′-TGTGGGGTGGAAATCATCGG-3′ | 5′-CATTGCTCCTTTGGGGTTGC-3′ |
CPT-1 | NM_064320.3 | 5′-ACGAGCCGATTGGGCTAAA-3′ | 5′-ACCAACGATCGTGAGCCTTT-3′ |
GAPDH | NM_017008.4 | 5′-AGTGCCAGCCTCGTCTCATA-3′ | 5′-GGTAACCAGGCGTCCGATA-3′ |
Control | Fructose | Pioglitazone | PF-10 | PF-20 | PF-40 | |
---|---|---|---|---|---|---|
TG (mmol/L) | 0.87 ± 0.05 | 1.14 ± 0.10 # | 0.80 ± 0.06 ** | 0.96 ± 0.09 | 0.85 ± 0.08 ** | 0.71 ± 0.09 ** |
TC (mmol/L) | 1.92 ± 0.10 | 2.37 ± 0.08 ## | 2.05 ± 0.05 * | 2.16 ± 0.12 | 2.05 ± 0.06 * | 1.97 ± 0.07 ** |
HDL-C (mmol/L) | 0.63 ± 0.06 | 0.76 ± 0.05 # | 0.57 ± 0.03 * | 0.69 ± 0.07 | 0.60 ± 0.05 * | 0.62 ± 0.04 * |
LDL-C (mmol/L) | 0.95 ± 0.07 | 1.59 ± 0.10 ### | 1.20 ± 0.05 ** | 1.37 ± 0.09 * | 1.23 ± 0.04 ** | 1.18 ± 0.08 ** |
NEFA (mmol/L) | 0.92 ± 0.11 | 1.53 ± 0.07 ### | 0.88 ± 0.07 *** | 1.15 ± 0.08 ** | 1.07 ± 0.07 *** | 0.92 ± 0.05 *** |
Insulin (mIU/L) | 11.7 ± 0.5 | 18.3 ± 0.5 ### | 12.6 ± 0.8 *** | 15.9 ± 0.3 * | 14.1 ± 0.9 ** | 14.5 ± 0.9 ** |
Glucagon (pg/mL) | 194.0 ± 4.6 | 245.6 ± 8.6 ### | 227.7 ± 7.0 * | 235.4 ± 10.8 | 206.8 ± 9.4 ** | 188.7 ± 9.5 *** |
Glucose (mmol/L) | 5.27 ± 0.09 | 5.43 ± 0.13 | 5.11 ± 0.16 | 5.19 ± 0.16 | 5.08 ± 0.13 | 4.98 ± 0.25 |
ALB (g/L) | 37.9 ± 2.9 | 37.2 ± 1.4 | 37.4 ± 3.5 | 37.4 ± 4.3 | 38.9 ± 2.9 | 38.5 ± 1.9 |
AST (IU/L) | 17.1 ± 0.7 | 18.8 ± 0.4 | 16.9 ± 0.6 | 15.3 ± 0.8 * | 12.8 ± 0.5 ** | 12.2 ± 0.9 ** |
ALT (IU/L) | 7.70 ± 1.34 | 8.23 ± 0.75 | 9.42 ± 1.54 | 9.34 ± 0.82 | 8.23 ± 1.15 | 8.84 ± 0.95 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-C.; Qiao, J.-Y.; Wang, B.-Y.; Bai, M.; Shen, J.-D.; Cheng, Y.-X. Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways. Nutrients 2018, 10, 1024. https://doi.org/10.3390/nu10081024
Li Y-C, Qiao J-Y, Wang B-Y, Bai M, Shen J-D, Cheng Y-X. Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways. Nutrients. 2018; 10(8):1024. https://doi.org/10.3390/nu10081024
Chicago/Turabian StyleLi, Yu-Cheng, Jing-Yi Qiao, Bao-Ying Wang, Ming Bai, Ji-Duo Shen, and Yong-Xian Cheng. 2018. "Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways" Nutrients 10, no. 8: 1024. https://doi.org/10.3390/nu10081024
APA StyleLi, Y.-C., Qiao, J.-Y., Wang, B.-Y., Bai, M., Shen, J.-D., & Cheng, Y.-X. (2018). Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways. Nutrients, 10(8), 1024. https://doi.org/10.3390/nu10081024