Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na+ and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33:1215–1223

    CAS  Google Scholar 

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517. doi:10.1094/mpmi-21-5-0507

    Article  CAS  PubMed  Google Scholar 

  • André S, Siebert H-C, Nishiguchi M, Tazaki K, Gabius H-J (2005) Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms. Biochim Biophys Acta (BBA) (General Subjects) 1725:222–232. doi:10.1016/j.bbagen.2005.04.004

    Article  Google Scholar 

  • Andrés Z, Pérez-Hormaeche J, Leidi EO, Schlücking K, Steinhorst L, McLachlan DH, Schumacher K, Hetherington AM, Kudla J, Cubero B, Pardo JM (2014) Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci 111(17):E1806–E1814

    Article  PubMed Central  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254. doi:10.1016/j.febslet.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24(3):1127–1142

    Article  PubMed Central  PubMed  Google Scholar 

  • Barre A, Hervé C, Lescure B, Rougé P (2002) Lectin receptor kinases in plants. Crit Rev Plant Sci 21:379–399. doi:10.1080/0735-260291044287

    Article  CAS  Google Scholar 

  • Bassil E, Tajima H, Liang Y-C, M-a Ohto, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na +/H + antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell Online 23(9):3482–3497

    Article  CAS  Google Scholar 

  • Becraft PW (1998) Receptor kinases in plant development. Trends Plant Sci 3:384–388

    Article  Google Scholar 

  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced beta subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6:287–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonaventure G (2011) The Nicotiana attenuata LECTIN RECEPTOR KINASE 1 is involved in the perception of insect feeding. Plant Signal Behav 6:2060–2063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804. doi:10.1111/j.1365-313X.2006.02739.x

    Article  CAS  PubMed  Google Scholar 

  • Cheng H et al (2002) Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway and its connection to calcineurin function. Mol Biol Cell 13:2963–2976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Cho E, Yuen CL, Kang B-H, Ondzighi C, Staehelin LA, Christopher D (2011) Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol Cells 32:459–475. doi:10.1007/s10059-011-0150-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343:290–294

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, MuÑOz-Mayor A, Jha D, Essah PA, Rus ANA, Tester M (2007) The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell Environ 30:497–507. doi:10.1111/j.1365-3040.2007.01637.x

    Article  CAS  Google Scholar 

  • Deng K, Wang Q, Zeng J, Guo X, Zhao X, Tang D, Liu X (2009) A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response. J Plant Biol 52:493–500. doi:10.1007/s12374-009-9063-5

    Article  CAS  Google Scholar 

  • Dere S, Güneş T, Sivaci R (1998) Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–17

    Google Scholar 

  • Desclos-Theveniau M, Arnaud D, Huang T-Y, Lin GJ-C, Chen W-Y, Lin Y-C, Zimmerli L (2012) The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 8:e1002513 doi:10.1371/journal.ppat.1002513

  • Dong C-H, Zolman BK, Bartel B, B-h Lee, Stevenson B, Agarwal M, Zhu J-K (2009) Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. Mol Plant 2:59–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi:10.1146/annurev.pp.28.060177.000513

    Article  CAS  Google Scholar 

  • Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell Online 23:3512–3532

    Article  CAS  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255. doi:10.1080/07352689991309207

    Article  Google Scholar 

  • Gouget A et al (2006) Lectin receptor kinases participate in protein–protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci 90:1629–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY (2004) A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor Appl Genet 109:377–383. doi:10.1007/s00122-004-1641-9

    Article  CAS  PubMed  Google Scholar 

  • Hervé C, Serres J, Dabos P, Canut H, Barre A, Rougé P, Lescure B (1999) Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol 39:671–682. doi:10.1023/a:1006136701595

    Article  PubMed  Google Scholar 

  • Huang P, Ju H-W, Min J-H, Zhang X, Kim S-H, Yang K-Y, Kim CS (2013) Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 203–204:98–106. doi:10.1016/j.plantsci.2012.12.019

    Article  PubMed  Google Scholar 

  • Joshi A, Dang HQ, Vaid N, Tuteja N (2010) Pea lectin receptor-like kinase promotes high salinity stress tolerance in bacteria and expresses in response to stress in planta. Glycoconj J 27:133–150. doi:10.1007/s10719-009-9265-6

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228:977–987. doi:10.1007/s00425-008-0797-y

    Article  CAS  PubMed  Google Scholar 

  • Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell Online 16:21–32

    Article  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322. doi:10.1016/j.jprot.2011.02.006

    Article  PubMed  Google Scholar 

  • Kültz D (2003) Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 206:3119–3124

    Article  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331. doi:10.1016/S1369-5266(02)00275-3

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live—programmed cell death in plants. Curr Opin Plant Biol 2:502–507. doi:10.1016/S1369-5266(99)00026-6

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G, Lee Y (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12:547–556. doi:10.1046/j.1365-313X.1997.00547.x

    Article  CAS  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  • Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49:801–813

    Article  CAS  PubMed  Google Scholar 

  • Maruyama D, Endo T, S-i Nishikawa (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci 107:1684–1689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669. doi:10.1111/j.1365-313X.2007.03169.x

    Article  CAS  PubMed  Google Scholar 

  • Miyahara K, Mizunuma M, Hirata D, Tsuchiya E, Miyakawa T (1996) The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance. FEBS Lett 399:317–320. doi:10.1016/S0014-5793(96)01353-1

    Article  CAS  PubMed  Google Scholar 

  • Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342. doi:10.1016/S1369-5266(03)00055-4

    Article  CAS  PubMed  Google Scholar 

  • Msanne J, Lin J, Stone J, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234:97–107. doi:10.1007/s00425-011-1387-y

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630. doi:10.1111/j.1365-313X.2007.03168.x

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Vicente MJ, Martínez-Sánchez JJ, Franco JA, Fernández JA, Bañón S (2008) Influence of deficit irrigation and paclobutrazol on plant growth and water status in Lonicera implexa seedlings. Acta Hort (ISHS) 782:299–304

    CAS  Google Scholar 

  • Park M, Lee H, Lee J-S, Byun M-O, Kim B-G (2009) In planta measurements of Na+ using fluorescent dye CoroNa Green. J Plant Biol 52:298–302. doi:10.1007/s12374-009-9036-8

    Article  CAS  Google Scholar 

  • Pöpping B, Gibbons T, Watson M (1996) The Pisum sativum MAP kinase homologue (PsMAPK) rescues the Saccharomyces cerevisiae hog1 deletion mutant under conditions of high osmotic stress. Plant Mol Biol 31:355–363. doi:10.1007/bf00021795

    Article  PubMed  Google Scholar 

  • Price ER, Jin M, Lim D, Pati S, Walsh CT, McKeon FD (1994) Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci 91:3931–3935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa K-I, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51. doi:10.1016/S0014-5793(98)00483-9

    Article  CAS  PubMed  Google Scholar 

  • Singh P et al (2012) The lectin receptor kinase-VI.2 is required for priming and positively regulates arabidopsis pattern-triggered immunity. Plant Cell Online 24:1256–1270

    Article  CAS  Google Scholar 

  • Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S (2012) Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PLoS ONE 7(12):e53136. doi:10.1371/journal.pone.0053136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun X-L et al (2013) GsSRK, a G-type lectin S-receptor-like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol 170:505–515. doi:10.1016/j.jplph.2012.11.017

    Article  CAS  PubMed  Google Scholar 

  • Tajima H, Iwata Y, Iwano M, Takayama S, Koizumi N (2008) Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem Biophys Res Commun 374:242–247. doi:10.1016/j.bbrc.2008.07.021

    Article  CAS  PubMed  Google Scholar 

  • Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8:231–237

    Article  CAS  PubMed  Google Scholar 

  • Trivedi D, Ansari M, Dutta T, Singh P, Tuteja N (2013) Molecular characterization of cyclophilin A-like protein of Piriformospora indica for its potential role to abiotic stress tolerance in E. coli. BMC Res Notes. doi:10.1186/1756-0500-6-5552014

    PubMed Central  PubMed  Google Scholar 

  • Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3:79–86

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127. doi:10.1111/tpj.12277

    CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Huda KMK, Tula S, Tuteja R (2014) OsBAT1 augments salinity stress tolerance by enhancing detoxification of ROS and expression of stress-responsive genes in transgenic rice. Plant Mol Biol Report. doi:10.1007/s11105-014-0827-9

  • Vaid N, Pandey PK, Tuteja N (2012) Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 80:365–388. doi:10.1007/s11103-012-9952-8

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Macovei A, Tuteja N (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses. Mol Plant 6:1405–1418

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66. doi:10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277:2413–2418

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283:3200–3210

    Article  CAS  PubMed  Google Scholar 

  • Willekens H et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816. doi:10.1093/emboj/16.16.4806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Online 14:S165–S183

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang D, Zheng Y (2009) Transcriptional and post-transcriptional regulation of gene expression in submerged root cells of maize. Plant Signal Behav 4:132–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on signal transduction and plant stress signaling in NT’s laboratory is partially supported by Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India. We thank Miss Irum Rizvi for her help in localization experiment. Neha Vaid duly acknowledges Council of Scientific and Industrial Research (CSIR) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaid, N., Pandey, P., Srivastava, V.K. et al. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Biol 88, 193–206 (2015). https://doi.org/10.1007/s11103-015-0319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0319-9

Keywords

Navigation