PRITrans: A Transformer-Based Approach for the Prediction of the Effects of Missense Mutation on Protein–RNA Interactions
"> Figure 1
<p>Error distribution for each fold in the S315 dataset using CV3. (<b>A</b>–<b>J</b>) depict the error (predicted–experimental) ∆∆G value distributions for Fold_1 to Fold_10. Note: the dotted lines in each histogram denote the mean error per fold, highlighting the central tendency and potential biases in the error distribution.</p> "> Figure 2
<p>Error distribution for each fold in the S630 dataset using CV3. (<b>A</b>–<b>J</b>) depict the error (predicted–experimental) ∆∆G value distributions for Fold_1 to Fold_10. Note: the dotted lines in the histograms indicate the mean error for each fold, serving as a visual marker for the central tendency of the error distribution.</p> "> Figure 3
<p>Performance comparison of PRITrans and existing predictors using S79 mutation data. Note: PRITrans*, trained on forward data using CV3. PRITrans**, trained on the entire dataset using CV3. PRITrans***, trained on the entire dataset using CV3 and evaluated on the S158 dataset, including reverse mutations. mCSM-NA*, excludes the 15 mutation data points with the highest squared errors between predictions and experimental ΔΔG values. PremPRI*, missing predictions for PDB_IDs 1C9S (10), 4MDX (2), and 5EV1 (1) were substituted with experimental ΔΔG values. PEMPNI*, missing predictions for PDB_IDs 1VS5 (2), 3OL6 (1), and 5W1H (1) were replaced with experimental ΔΔG values.</p> "> Figure 4
<p>Analysis of prediction results for S79 mutation data using different methods. (<b>A</b>–<b>E</b>) present predicted versus experimental ΔΔG values for mCSM-NA, PremPRI, PEMPNI, PRITrans*, and PRITrans**, respectively, with each line representing the average predicted values for multiple mutations of each PDB_ID.</p> "> Figure 5
<p>Structural impact of missense mutations on protein-RNA interaction sites. (<b>A</b>) shows the interaction site with a mutation (in PDB_ID: 1AUD) from G to A at position 52. (<b>B</b>) illustrates the interaction site with a mutation (in PDB_ID: 4JVH) from K to A at position 120.</p> "> Figure 6
<p>Workflow of PRITrans. (<b>A</b>) Dataset reconstruction. (<b>B</b>) Feature generation. (<b>C</b>) Model implementation and prediction. Note: as illustrated in the “Extracting Mutation Residue” part of (<b>C</b>), the central light blue region represents the mutant site, whereas the adjacent green regions depict the 90 amino acid residues positioned upstream and downstream of the mutant site, respectively.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model Evaluation with Three Cross-Validation Strategies on Forwardand Reverse Mutations
- (1)
- CV1, CV2, and CV3 comparison on S315
- (2)
- CV1, CV2, and CV3 comparison on S630
- (3)
- Error distribution analysis of CV3 results on S315 and S630
2.2. Comparative Analysis of Prediction Performance with Various Modules
2.2.1. Impact of the Encoder Module on PRITrans Performance
2.2.2. Contribution of the Multiscale Convolution Module to Performance
2.2.3. Synergistic Effects of Combining Encoder and Multiscale Convolution Modules
2.3. Comparison with Existing Methods
2.4. Case Study
3. Materials and Methods
3.1. Reconstruction of Benchmark Datasets
3.2. Feature Representation
3.3. Architecture of PRITrans
3.3.1. Encoder Module
3.3.2. Multiscale Convolution Module
3.4. Evaluation Metrics and Cross-Validation Strategies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- König, J.; Zarnack, K.; Luscombe, N.M.; Ule, J. Protein–RNA interactions: New genomic technologies and perspectives. Nat. Rev. Genet. 2012, 13, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef] [PubMed]
- Licatalosi, D.D.; Darnell, R.B. RNA processing and its regulation: Global insights into biological networks. Nat. Rev. Genet. 2010, 11, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.F.; Parker, R. Principles and properties of eukaryotic mRNPs. Mol. Cell 2014, 54, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 829–845. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Jiang, Y.; Yu, X.; Wang, W.; Wang, L.; Cao, S.; Zhu, H.; Wang, Y.; Ke, Z.; et al. Emerging roles of RNA-binding proteins in cancers. Chem. Life 2024, 44, 1620–1628. (In Chinese) [Google Scholar]
- Maurya, P.K.; Mishra, A.; Yadav, B.S.; Singh, S.; Kumar, P.; Chaudhary, A.; Srivastava, S.; Murugesan, S.N.; Mani, A. Role of Y Box Protein-1 in cancer: As potential biomarker and novel therapeutic target. J. Cancer 2017, 8, 1900. [Google Scholar] [CrossRef]
- Feng, M.; Xie, X.; Han, G.; Zhang, T.; Li, Y.; Li, Y.; Yin, R.; Wang, Q.; Zhang, T.; Wang, P. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood J. Am. Soc. Hematol. 2021, 138, 71–85. [Google Scholar] [CrossRef]
- Chen, X.; Li, A.; Sun, B.-F.; Yang, Y.; Han, Y.-N.; Yuan, X.; Chen, R.-X.; Wei, W.-S.; Liu, Y.; Gao, C.-C. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 2019, 21, 978–990. [Google Scholar] [CrossRef]
- El-Naggar, A.M.; Veinotte, C.J.; Cheng, H.; Grunewald, T.G.; Negri, G.L.; Somasekharan, S.P.; Corkery, D.P.; Tirode, F.; Mathers, J.; Khan, D. Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell 2015, 27, 682–697. [Google Scholar] [CrossRef]
- Stratford, A.L.; Habibi, G.; Astanehe, A.; Jiang, H.; Hu, K.; Park, E.; Shadeo, A.; Buys, T.P.; Lam, W.; Pugh, T. Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y-box binding protein-1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy. Breast Cancer Res. 2007, 9, R61. [Google Scholar] [CrossRef] [PubMed]
- Kechavarzi, B.; Janga, S.C. Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biol. 2014, 15, R14. [Google Scholar] [CrossRef] [PubMed]
- Katainen, R.; Dave, K.; Pitkänen, E.; Palin, K.; Kivioja, T.; Välimäki, N.; Gylfe, A.E.; Ristolainen, H.; Hänninen, U.A.; Cajuso, T. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 2015, 47, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, B.L.; Chirgadze, D.Y.; Ascher, D.B.; Blundell, T.L. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science 2017, 355, 520–524. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.-F.; Liu, R. Systematic comparison and prediction of the effects of missense mutations on protein-DNA and protein-RNA interactions. PLoS Comput. Biol. 2021, 17, e1008951. [Google Scholar] [CrossRef]
- Doyle, M.L. Characterization of binding interactions by isothermal titration calorimetry. Curr. Opin. Biotechnol. 1997, 8, 31–35. [Google Scholar] [CrossRef]
- Teh, H.F.; Peh, W.Y.; Su, X.; Thomsen, J.S. Characterization of protein− DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 2007, 46, 2127–2135. [Google Scholar] [CrossRef]
- Hillisch, A.; Lorenz, M.; Diekmann, S. Recent advances in FRET: Distance determination in protein–DNA complexes. Curr. Opin. Struct. Biol. 2001, 11, 201–207. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, H.; Zhang, N.; Zhu, Z.; Wang, S.; Li, M. PremPS: Predicting the impact of missense mutations on protein stability. PLoS Comput. Biol. 2020, 16, e1008543. [Google Scholar] [CrossRef]
- Gerasimavicius, L.; Liu, X.; Marsh, J.A. Identification of pathogenic missense mutations using protein stability predictors. Sci. Rep. 2020, 10, 15387. [Google Scholar] [CrossRef]
- Iqbal, S.; Li, F.; Akutsu, T.; Ascher, D.B.; Webb, G.I.; Song, J. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations. Brief. Bioinform. 2021, 22, bbab184. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021, 30, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Ge, F.; Li, F.; Akutsu, T.; Zheng, Y.; Gasser, R.B.; Yu, D.-J.; Webb, G.I.; Song, J. PROST: AlphaFold2-aware sequence-based predictor to estimate protein stability changes upon missense mutations. J. Chem. Inf. Model. 2022, 62, 4270–4282. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Nguyen, T.B.; Ascher, D.B.; Pires, D.E. Systematic evaluation of computational tools to predict the effects of mutations on protein stability in the absence of experimental structures. Brief. Bioinform. 2022, 23, bbac025. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent advances in the development of protein–protein interactions modulators: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2020, 5, 213. [Google Scholar] [CrossRef]
- Hu, L.; Wang, X.; Huang, Y.-A.; Hu, P.; You, Z.-H. A survey on computational models for predicting protein–protein interactions. Brief. Bioinform. 2021, 22, bbab036. [Google Scholar] [CrossRef]
- Bryant, P.; Pozzati, G.; Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022, 13, 1265. [Google Scholar] [CrossRef]
- Soleymani, F.; Paquet, E.; Viktor, H.; Michalowski, W.; Spinello, D. Protein–protein interaction prediction with deep learning: A comprehensive review. Comput. Struct. Biotechnol. J. 2022, 20, 5316–5341. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, H.; Chen, Y.; Zhu, Z.; Yang, Q.; Wang, S.; Li, M. PremPRI: Predicting the effects of missense mutations on protein–RNA interactions. Int. J. Mol. Sci. 2020, 21, 5560. [Google Scholar] [CrossRef]
- Jones, S.; Daley, D.T.; Luscombe, N.M.; Berman, H.M.; Thornton, J.M. Protein–RNA interactions: A structural analysis. Nucleic Acids Res. 2001, 29, 943–954. [Google Scholar] [CrossRef]
- Pires, D.E.; Ascher, D.B. mCSM–NA: Predicting the effects of mutations on protein–nucleic acids interactions. Nucleic Acids Res. 2017, 45, W241–W246. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sun, L.; Jia, Z.; Li, L.; Alexov, E. Predicting protein–DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver. Bioinformatics 2018, 34, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chen, Y.; Zhao, F.; Yang, Q.; Simonetti, F.L.; Li, M. PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions. PLoS Comput. Biol. 2018, 14, e1006615. [Google Scholar] [CrossRef] [PubMed]
- Barik, A.; Nithin, C.; Karampudi, N.B.R.; Mukherjee, S.; Bahadur, R.P. Probing binding hot spots at protein–RNA recognition sites. Nucleic Acids Res. 2016, 44, e9. [Google Scholar] [CrossRef]
- Krüger, D.M.; Neubacher, S.; Grossmann, T.N. Protein–RNA interactions: Structural characteristics and hotspot amino acids. Rna 2018, 24, 1457–1465. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Z.; Zhan, W.; Deng, L. Computational identification of binding energy hot spots in protein–RNA complexes using an ensemble approach. Bioinformatics 2018, 34, 1473–1480. [Google Scholar] [CrossRef]
- Yu, D.-J.; Hu, J.; Yan, H.; Yang, X.-B.; Yang, J.-Y.; Shen, H.-B. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble. BMC Bioinform. 2014, 15, 297. [Google Scholar] [CrossRef]
- Yu, D.-J.; Hu, J.; Li, Q.-M.; Tang, Z.-M.; Yang, J.-Y.; Shen, H.-B. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction. IEEE Trans. Nanobioscience 2015, 14, 45–58. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime Multi-Person 2d Pose Estimation Using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Hua, Y.; Li, J.; Feng, Z.; Song, X.; Sun, J.; Yu, D. Protein drug interaction prediction based on attention feature fusion. J. Comput. Res. Dev. 2022, 59, 2051–2065. [Google Scholar]
- Zhang, M.; Gong, C.; Ge, F.; Yu, D.-J. FCMSTrans: Accurate Prediction of Disease-Associated nsSNPs by Utilizing Multiscale Convolution and Deep Feature Combination within a Transformer Framework. J. Chem. Inf. Model. 2024, 64, 1394–1406. [Google Scholar] [CrossRef]
- Umerenkov, D.; Nikolaev, F.; Shashkova, T.I.; Strashnov, P.V.; Sindeeva, M.; Shevtsov, A.; Ivanisenko, N.V.; Kardymon, O.L. PROSTATA: A framework for protein stability assessment using transformers. Bioinformatics 2023, 39, btad671. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M. Prottrans: Toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7112–7127. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Li, C.; Iqbal, S.; Muhammad, A.; Li, F.; Thafar, M.A.; Yan, Z.; Worachartcheewan, A.; Xu, X.; Song, J. VPatho: A deep learning-based two-stage approach for accurate prediction of gain-of-function and loss-of-function variants. Brief. Bioinform. 2023, 24, bbac535. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, G.; Li, C.; Shen, L.-C.; Gasser, R.B.; Song, J.; Chen, D.; Yu, D.-J. TripletCell: A deep metric learning framework for accurate annotation of cell types at the single-cell level. Brief. Bioinform. 2023, 24, bbad132. [Google Scholar] [CrossRef]
- Wu, J.-S.; Liu, Y.; Ge, F.; Yu, D.-J. Prediction of protein-ATP binding residues using multi-view feature learning via contextual-based co-attention network. Comput. Biol. Med. 2024, 172, 108227. [Google Scholar] [CrossRef]
- Yan, Z.; Ge, F.; Liu, Y.; Zhang, Y.; Li, F.; Song, J.; Yu, D.-J. TransEFVP: A Two-Stage Approach for the Prediction of Human Pathogenic Variants Based on Protein Sequence Embedding Fusion. J. Chem. Inf. Model. 2024, 64, 1407–1418. [Google Scholar] [CrossRef]
- Ge, F.; Arif, M.; Yan, Z.; Alahmadi, H.; Worachartcheewan, A.; Yu, D.-J.; Shoombuatong, W. MMPatho: Leveraging Multilevel Consensus and Evolutionary Information for Enhanced Missense Mutation Pathogenic Prediction. J. Chem. Inf. Model. 2023, 63, 7239–7257. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Graham, B. Fractional max-pooling. arXiv 2014, arXiv:1412.6071. [Google Scholar]
- Lučić, B.; Batista, J.; Bojović, V.; Lovrić, M.; Sović Kržić, A.; Bešlo, D.; Nadramija, D.; Vikić-Topić, D. Estimation of random accuracy and its use in validation of predictive quality of classification models within predictive challenges. Croat. Chem. Acta 2019, 92, 379–391. [Google Scholar] [CrossRef]
Dataset | Cross-Validation Strategies | PCC | RMSE (kcal·mol−1) | MAE (kcal·mol−1) |
---|---|---|---|---|
S315 (Forward) | CV1 | 0.776 ± 0.048 | 0.768 ± 0.094 | 0.557 ± 0.052 |
CV2 | 0.743 ± 0.034 | 0.744 ± 0.054 | 0.538 ± 0.039 | |
CV3 | 0.581 ± 0.184 | 1.071 ± 0.307 | 0.808 ± 0.226 | |
S630 (Forward + Reverse) | CV1 | 0.729 ± 0.047 | 1.250 ± 0.094 | 0.794 ± 0.060 |
CV2 | 0.728 ± 0.017 | 1.197 ± 0.038 | 0.850 ± 0.033 | |
CV3 | 0.741 ± 0.065 | 1.168 ± 0.205 | 0.809 ± 0.112 |
PRITrans with Different Encoder Module | PCC | RMSE (kcal·mol−1) | MAE (kcal·mol−1) |
---|---|---|---|
ESM-2p + PTp | 0.610 | 1.372 | 0.983 |
ESM-2Ep + PTp | 0.641 | 1.339 | 0.943 |
ESM-2p + PTEp | 0.614 | 1.391 | 0.983 |
ESM-2Ep + PTEp | 0.670 | 1.315 | 0.918 |
PRITrans with Different Convolution Module | PCC | RMSE (kcal·mol−1) | MAE (kcal·mol−1) |
---|---|---|---|
ESM-2m + PTp | 0.597 | 1.435 | 1.028 |
ESM-2p + PTm | 0.684 | 1.284 | 0.902 |
ESM-2m + PTm | 0.750 | 1.207 | 0.861 |
PRITrans with Different Modules | PCC | RMSE (kcal·mol−1) | MAE (kcal·mol−1) |
---|---|---|---|
ESM-2Ep | 0.674 | 1.328 | 0.841 |
PTm | 0.601 | 1.495 | 1.117 |
ESM-2Ep + PTm | 0.741 | 1.168 | 0.809 |
PDB_ID | Chain | Mutation | ∆∆G | PRITrans*_pred | PRITrans**_pred | PEMPNI_pred | PremPRI_pred | mCSM-NA_pred |
---|---|---|---|---|---|---|---|---|
1AUD | A | G52A | 3.25 | 3.62 | 3.07 | 0.985 | 0.84 | −0.543 |
1AUD | A | Q53A | 4.85 | 4.79 | 3.44 | 1.147 | 1.06 | 2.166 |
1AUD | A | Q53E | 6.6 | 3.94 | 5.01 | 0.781 | 1.47 | 2.359 |
1B23 | P | K90A | 0.57 | 0.15 | 0.22 | 0.920 | 1.51 | 1.920 |
1B23 | P | N64A | −0.51 | −0.05 | 0.26 | 1.031 | 1.26 | 0.562 |
2M8D | B | K138A | 1.43 | 1.72 | 1.40 | 1.020 | 1.93 | −1.574 |
2ZZN | A | R181A | 0.15 | 0.00 | 0.17 | 1.010 | 0.21 | 0.681 |
2ZZN | A | N265Q | 0.08 | 0.35 | 0.23 | 0.837 | 1.10 | −1.576 |
4CIO | A | K104M | 0.09 | 0.27 | 0.34 | 0.397 | 1.30 | 2.358 |
4JVH | A | K120A | 1.87 | 1.69 | 1.29 | 0.877 | 0.23 | 2.094 |
Dataset | Mutation Type | Complex Count | Mutation Count | ∆∆G < 0 | ∆∆G ≥ 0 | ∆∆G < 1 | ∆∆G ≥ 1 |
---|---|---|---|---|---|---|---|
S394 | Forward | 78 | 394 | 41 | 353 | 197 | 197 |
S315 | Forward for training | 68 | 315 | 31 | 284 | 161 | 154 |
S79 | Forward for independent test | 35 | 79 | 10 | 69 | 36 | 43 |
S630 | Forward and reverse for training | 68 | 630 | 309 | 321 | / | / |
S158 | Forward and reverse for independent test | 35 | 158 | 79 | 79 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, F.; Li, C.-F.; Zhang, C.-M.; Zhang, M.; Yu, D.-J. PRITrans: A Transformer-Based Approach for the Prediction of the Effects of Missense Mutation on Protein–RNA Interactions. Int. J. Mol. Sci. 2024, 25, 12348. https://doi.org/10.3390/ijms252212348
Ge F, Li C-F, Zhang C-M, Zhang M, Yu D-J. PRITrans: A Transformer-Based Approach for the Prediction of the Effects of Missense Mutation on Protein–RNA Interactions. International Journal of Molecular Sciences. 2024; 25(22):12348. https://doi.org/10.3390/ijms252212348
Chicago/Turabian StyleGe, Fang, Cui-Feng Li, Chao-Ming Zhang, Ming Zhang, and Dong-Jun Yu. 2024. "PRITrans: A Transformer-Based Approach for the Prediction of the Effects of Missense Mutation on Protein–RNA Interactions" International Journal of Molecular Sciences 25, no. 22: 12348. https://doi.org/10.3390/ijms252212348
APA StyleGe, F., Li, C.-F., Zhang, C.-M., Zhang, M., & Yu, D.-J. (2024). PRITrans: A Transformer-Based Approach for the Prediction of the Effects of Missense Mutation on Protein–RNA Interactions. International Journal of Molecular Sciences, 25(22), 12348. https://doi.org/10.3390/ijms252212348