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Supplementary Texts 

Supplementary Text S1 

Text S1. Determining optimal protein sub_sequence lengths for feature extraction. 

To identify the optimal sub-sequence length for protein feature extraction, we tested various 
window sizes (W = 50, 60, 70, 80, 90, 100) centered on mutation sites. For W = 90, a sub-sequence of 
181 residues is generated, encompassing 90 residues upstream and downstream of the mutation site. 
For sequences shorter than 90 residues, padding with 'X' was applied. Extracted features from pre-
trained ESM and ProtTrans models were then fed into the PRITrans Transformer module, and 
performance was evaluated using the CV3 cross-validation strategy on benchmark datasets S315 and 
S630. As shown in Tables S2 and S3, the model performed worst at W = 50, with PCCs of 0.539 and 
0.647 and RMSEs of 1.153 and 1.354 on S315 and S630, respectively. Performance improved with W 
= 80, achieving PCCs of 0.578 and 0.727 and RMSEs of 1.080 and 1.208. The best results were 
obtained with W = 90, yielding PCCs of 0.581 and 0.741 and RMSEs of 1.071 and 1.168 on S315 and 
S630, representing improvements of 0.003 and 0.014 in PCC compared to W = 80. Performance 
metrics consistently improved as W increased from 50 to 90, but declined when W reached 100. 
Therefore, W = 90 was selected as the optimal sub-sequence length for feature extraction based on 
these findings. 

  



Supplementary Text S2 

Text S2. Performance evaluation metrics. 

The model's performance is assessed using three key metrics: Pearson Correlation Coefficient (PCC), 
Root Mean Square Error (RMSE), and Mean Absolute Error (MAE), defined as follows: 
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In Equations (S1) to (S3), i denotes the ith mutation, n  is the total number of mutations, x represents 
the experimental ∆∆G value, and y represents the predicted ∆∆G value. PCC measures the linear 
correlation between experimental and predicted values, indicating the strength of their relationship. 
RMSE captures the average size of prediction errors, with a greater emphasis on larger deviations. 
MAE measures the average absolute differences between experimental and predicted values, providing 
a straightforward assessment of prediction accuracy. 

  



Supplementary Figures 

Supplementary Figure S1 

 
Figure S1. Performance of PRITrans on the S315 dataset using CV3. (A) to (J) present the scatter plots for Fold_1 to Fold_10, illustrating 

the relationship between actual and predicted values. (K) provides the violin plots for PCC, RMSE, and MAE across Fold_1 to Fold_10. 



Supplementary Figure S2 

 

Figure S2. Heatmap of prediction results using CV1 and CV2 on S630 (repeated 20 times). (A)-(B) Heatmap for CV1 and CV2. 

  



Supplementary Figure S3 

 
Figure S3. Comparison metrics of CV1 and CV2 on the S630 dataset. (A)-(C) show the violin plots for PCC, RMSE, and MAE. 

  



Supplementary Figure S4 

 

Figure S4. Detailed architecture of the Encoder module and Multiscale block module. 

  



Supplementary Figure S5 

 

Figure S5. Model performance with different numbers of Encoder layers and multiheads when d_model is 512. 

(A)-(D) show the PCC and RMSE when num_head is 4 and num_layer is 2 for S630, S79, S158, respectively. 

  



Supplementary Tables 

Supplementary Table S1 

Table S1. Performance comparison of PRITrans and existing predictors using S79 mutation data. 

Method Data name PCC RMSE (kcal·mol-1) MAE (kcal·mol-1) 

PRITrans* S79 0.751 1.068 0.787 

PRITrans*** S158 0.699 1.592 1.126 

PRITrans** S79 0.635 1.276 0.934 

mCSM-NA S79 0.055 4.184 2.360 

PremPRI* S79 0.586 1.240 0.784 

PEMPNI* S79 0.346 1.455 0.911 

mCSM-NA* S64 0.384 1.486 1.205 

PremPRI S66 0.417 1.356 0.938 

PEMPNI S75 0.329 1.493 0.960 

Note: PRITrans*, trained on forward data using CV3. PRITrans**, trained on the entire dataset using CV3. PRITrans***, trained on the entire dataset 
using CV3 and evaluated on the S158 dataset, including reverse mutations. Additionally, PremPRI*, missing predictions for PDB_IDs 1C9S (10), 4MDX 
(2), and 5EV1 (1) were substituted with experimental ΔΔG values. PEMPNI*, Missing predictions for PDB_IDs 1VS5 (2), 3OL6 (1), and 5W1H (1) 
were replaced with experimental ΔΔG values. mCSM-NA*, excludes the 15 data points with the highest squared errors between predictions and 
experimental ΔΔG values. 

  



Supplementary Table S2 

Table S2. Detailed dataset information of PRITrans, PremPRI, mCSM-NA, PEMPNI, and Prabhot used for 

cross-validation. 

Dataset 
Mutation 

Count 
Complex 

Count 
Description 

S394 394 78 
constructed benchmark dataset of PRITrans (only containing forward 
mutations) 

S788 788 78 
constructed benchmark dataset of PRITrans (containing forward + reverse 
mutations) 

S509 509(233) 100(47) 
training set of PEMPNI[1], including mutations from both protein-DNA 
and protein-RNA complexes; the numbers in parentheses indicate the 
number of mutations from protein-RNA complexes. 

S248 248 50 training set of PremPRI[2] 

S264 264(67*) 33(5) 
training set of mCSM-NA[3], including mutations from both protein-
DNA and protein-RNA complexes; the numbers in parentheses indicate 
the mutations from protein-RNA complexes. 

S151 151 32 benchmark dataset of Prabhot[4] 

S58 58 15 independent dataset of Prabhot[4] 

S79/MPR79 79 14 independent dataset of mCSM-NA[3] and PEMPNI[1] 

S394 

S212 212 47 overlap mutation count between S394 and S248 

S52 52 12 mutations from S233 are added into S212 

S48 48 3 mutations from S67 are added into S212 

S26 26 6 mutations from S151 are added into S212 

S16 16 5 mutations from S58 are added into S212 

S40 40 5 mutations from S79 are added into S212 

Note: in mCSM-NA[3], the dataset values are the inverse of those in the baseline dataset S248. Therefore, we use the baseline dataset S248 as the primary 

reference and take the inverse values for the extended dataset in mCSM-NA. 

  



Supplementary Table S3 

Table S3. Comparison of experimental results using different W values for cutting protein sub-sequences on 

the forward mutation data using the CV3 strategy. 

Evaluation Metrics W=50 W=60 W=70 W=80 W=90 W=100 

PCC 0.539 0.562 0.571 0.578 0.581 0.550 

RMSE (kcal·mol-1) 1.153 1.114 1.097 1.080 1.071 1.140 

MAE (kcal·mol-1) 0.855 0.827 0.818 0.826 0.808 0.849 

 

Supplementary Table S4 

Table S4. Comparison of experimental results using different W values for cutting protein sub-sequences on the 

forward and reverse mutation data using the CV3 strategy. 

Evaluation Metrics W=50 W=60 W=70 W=80 W=90 W=100 

PCC 0.647 0.702 0.710 0.727 0.741 0.724 

RMSE (kcal·mol-1) 1.354 1.249 1.248 1.208 1.168 1.239 

MAE (kcal·mol-1) 0.962 0.899 0.861 0.850 0.809 0.851 
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