Angiopoietin 1 Attenuates Dysregulated Angiogenesis in the Gastrocnemius of DMD Mice
<p>Histology of anti-CD31-stained endothelial cells and anti-laminin-stained myofibers in Healthy (<b>a</b>–<b>f</b>), Diseased (<b>g</b>–<b>l</b>), Vehicle-only (<b>m</b>–<b>r</b>), and Ang 1-Treated (<b>s</b>–<b>x</b>) transverse gastrocnemius samples. Scale bar = 50 µm (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>,<b>m</b>,<b>o</b>,<b>q</b>,<b>s</b>,<b>u</b>,<b>w</b>), 10 µm (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>,<b>n</b>,<b>p</b>,<b>r</b>,<b>t</b>,<b>v</b>,<b>x</b>).</p> "> Figure 2
<p>Microvessel morphometry in Healthy, Diseased, Vehicle-only, and Ang 1-Treated gastrocnemius samples: (<b>a</b>,<b>b</b>) percent area CD31 positively stained tissue, (<b>c</b>,<b>d</b>) capillary-to-fibre perimeter exchange (CFPE) index, (<b>e</b>,<b>f</b>) microvessel area, (<b>g</b>,<b>h</b>) microvessel density, and (<b>i</b>,<b>j</b>) microvessel circularity. Data are mean ± SEM. <span class="html-italic">n</span> = 6–7. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>Analysis of endothelial cell-related gene expression by Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR). Gene expression was measured in the gastrocnemius of (<b>a</b>) Diseased relative to Healthy and (<b>b</b>) Ang 1-Treated relative to Vehicle-only. Data are mean ± SEM. <span class="html-italic">n</span> = 6. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 4
<p><span class="html-italic">Ang 1</span>:<span class="html-italic">Ang 2</span> relative fold change ratio of (<b>a</b>) Healthy and Diseased and (<b>b</b>) Vehicle-only and Ang 1-Treated gastrocnemii. Data are mean ± SEM. <span class="html-italic">n</span> = 6. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Distribution of myofiber area of (<b>a</b>) Healthy, Diseased <span class="html-italic">p</span> = 0.0642, (<b>b</b>) Vehicle-only, and Ang 1-Treated <span class="html-italic">p</span> = 0.0792 gastrocnemius samples. <span class="html-italic">n</span> = 6.</p> "> Figure 6
<p>Representative histology of Masson’s Trichrome staining. Blue arrows indicate collagen deposition in (<b>a</b>) Healthy, (<b>b</b>) Diseased, (<b>c</b>) Vehicle-only, and (<b>d</b>) Ang 1-Treated gastrocnemius with scale bar = 150 μm. (<b>e</b>) Healthy, (<b>f</b>) Diseased, (<b>g</b>) Vehicle-only, and (<b>h</b>) Ang 1-Treated gastrocnemius with scale bar = 35 μm.</p> "> Figure 7
<p>Quantitative analysis of collagen deposition in (<b>a</b>) Healthy and Diseased, and (<b>b</b>) Vehicle-only, and Ang 1-Treated gastrocnemius. <span class="html-italic">n</span> = 6. * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Angiogenesis Is Robust in Mdx/Utrn+/− Mice
2.2. Endothelial Cell RNA Transcription Is Dysregulated in Mdx/Utrn+/− Mice
2.3. Ang 1-Induced Alterations in the Microvascular Niche
2.4. Ang 1 Had Additional Influences on the Skeletal Muscle Niche Gene Expression
2.5. DMD Mice Had Minor Changes to the Skeletal Muscle Composition
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Local Delivery of Growth Factors
4.3. Tissue Preparation
4.4. Immunohistochemistry
4.5. Microscopy and Image Analysis
4.6. RNA Extraction and cDNA Preparation
4.7. RT-qPCR
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gargioli, C.; Coletta, M.; De Grandis, F.; Cannata, S.M.; Cossu, G. PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat. Med. 2008, 14, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Demos, J.; Treumann, F.; Schroeder, W. Anomalies of regulation of the muscular microcirculation in children having progressive muscular dystrophy compared to normal children of the same age. Rev. Fr. Etud. Clin. Biol. 1968, 13, 467–483. [Google Scholar] [PubMed]
- Loufrani, L.; Dubroca, C.; You, D.; Li, Z.; Levy, B.; Paulin, D.; Henrion, D. Absence of Dystrophin in Mice Reduces NO-Dependent Vascular Function and Vascular Density: Total Recovery after a Treatment with the Aminoglycoside Gentamicin. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Palladino, M.; Gatto, I.; Neri, V.; Straino, S.; Smith, R.C.; Silver, M.; Gaetani, E.; Marcantoni, M.; Giarretta, I.; Stigliano, E.; et al. Angiogenic impairment of the vascular endothelium: A novel mechanism and potential therapeutic target in muscular dystrophy. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2867–2876. [Google Scholar] [CrossRef]
- Latroche, C.; Matot, B.; Martins-Bach, A.; Briand, D.; Chazaud, B.; Wary, C.; Carlier, P.G.; Chrétien, F.; Jouvion, G. Structural and Functional Alterations of Skeletal Muscle Microvasculature in Dystrophin-Deficient mdx Mice. Am. J. Pathol. 2015, 185, 2482–2494. [Google Scholar] [CrossRef]
- Deasy, B.M.; Feduska, J.M.; Payne, T.R.; Li, Y.; Ambrosio, F.; Huard, J. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol. Ther. 2009, 17, 1788–1798. [Google Scholar] [CrossRef]
- Messina, S.; Mazzeo, A.; Bitto, A.; Aguennouz, M.; Migliorato, A.; De Pasquale, M.G.; Minutoli, L.; Altavilla, D.; Zentilin, L.; Giacca, M.; et al. VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J. 2007, 21, 3737–3746. [Google Scholar] [CrossRef]
- Xin, C.; Chu, X.; Wei, W.; Kuang, B.; Wang, Y.; Tang, Y.; Chen, J.; You, H.; Li, C.; Wang, B. Combined gene therapy via VEGF and mini-dystrophin synergistically improves pathologies in temporalis muscle of dystrophin/utrophin double knockout mice. Hum. Mol. Genet. 2021, 30, 1349–1359. [Google Scholar] [CrossRef]
- Thurston, G.; Suri, C.; Smith, K.; McClain, J.; Sato, T.N.; Yancopoulos, G.D.; McDonald, D.M. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999, 286, 2511–2514. [Google Scholar] [CrossRef]
- Gutpell, K.M.; Tasevski, N.; Wong, B.; Hrinivich, W.T.; Su, F.; Hadway, J.; Desjardins, L.; Lee, T.Y.; Hoffman, L.M. ANG1 treatment reduces muscle pathology and prevents a decline in perfusion in DMD mice. PLoS ONE 2017, 12, e0174315. [Google Scholar] [CrossRef]
- Fagiani, E.; Christofori, G. Angiopoietins in angiogenesis. Cancer Lett. 2013, 328, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Gavard, J.; Patel, V.; Gutkind, J.S. Angiopoietin-1 Prevents VEGF-Induced Endothelial Permeability by Sequestering Src through mDia. Dev. Cell 2008, 14, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Milam, K.E.; Parikh, S.M. The angiopoietin-Tie2 signaling axis in the vascular leakage of systemic inflammation. Tissue Barriers 2015, 3, e957508. [Google Scholar] [CrossRef]
- Kim, I.; Kim, H.G.; So, J.N.; Kim, J.H.; Kwak, H.J.; Koh, G.Y. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ. Res. 2000, 86, 24–29. [Google Scholar] [CrossRef]
- Khoury, C.C.; Ziyadeh, F.N. Angiogenic factors. Contrib. Nephrol. 2011, 170, 83–92. [Google Scholar] [CrossRef]
- Broermann, A.; Winderlich, M.; Block, H.; Frye, M.; Rossaint, J.; Zarbock, A.; Cagna, G.; Linnepe, R.; Schulte, D.; Nottebaum, A.F.; et al. Dissociation of VE-PTP from ve-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J. Exp. Med. 2011, 208, 2393–2401. [Google Scholar] [CrossRef]
- Gavard, J.; Gutkind, J.S. VEGF Controls endothelial-cell permeability promoting β-arrestin-dependent Endocytosis VE-cadherin. Nat. Cell Biol. 2006, 8, 1223–1234. [Google Scholar] [CrossRef]
- Lin, Y.; McClennan, A.; Hoffman, L. Characterization of the Ang/Tie2 Signaling Pathway in the Diaphragm Muscle of DMD Mice. Biomedicines 2023, 11, 2265. [Google Scholar] [CrossRef]
- Ahmad, N.; Welch, I.; Grange, R.; Hadway, J.; Dhanvantari, S.; Hill, D.; Lee, T.Y.; Hoffman, L.M. Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice. BMC Musculoskelet. Disord. 2011, 12, 127. [Google Scholar] [CrossRef]
- Chong, D.C.; Yu, Z.; Brighton, H.E.; Bear, J.E.; Bautch, V.L. Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1903–1912. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R. Angiogenesis in cancer and other diseases, insight review articles. Nature 2000, 407, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J.W.; Thurston, G.; Roberge, S.; Jain, R.K.; McDonald, D.M. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 2000, 156, 1363–1380. [Google Scholar] [CrossRef] [PubMed]
- Dor, Y.; Rinnat, P.; Keshet, E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am. J. Physiol.-Cell Physiol. 2001, 280, C1367–C1374. [Google Scholar] [CrossRef] [PubMed]
- Gutpell, K.M.; Hrinivich, W.T.; Hoffman, L.M. Skeletal muscle fibrosis in the mdx/utrn+/-mouse validates its suitability as a murine model of duchenne muscular dystrophy. PLoS ONE 2015, 10, e0117306. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–41. [Google Scholar] [CrossRef]
- Hepple, R.T. A new measurement of tissue capillarity: The capillary-to-fibre perimeter exchange index. Can. J. Appl. Physiol. 1997, 22, 11–22. [Google Scholar] [CrossRef]
- Hildyard, J.C.W.; Finch, A.M.; Wells, D.J. Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy. PLoS ONE 2019, 14, e0211384. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McClennan, A.; Hoffman, L. Angiopoietin 1 Attenuates Dysregulated Angiogenesis in the Gastrocnemius of DMD Mice. Int. J. Mol. Sci. 2024, 25, 11824. https://doi.org/10.3390/ijms252111824
McClennan A, Hoffman L. Angiopoietin 1 Attenuates Dysregulated Angiogenesis in the Gastrocnemius of DMD Mice. International Journal of Molecular Sciences. 2024; 25(21):11824. https://doi.org/10.3390/ijms252111824
Chicago/Turabian StyleMcClennan, Andrew, and Lisa Hoffman. 2024. "Angiopoietin 1 Attenuates Dysregulated Angiogenesis in the Gastrocnemius of DMD Mice" International Journal of Molecular Sciences 25, no. 21: 11824. https://doi.org/10.3390/ijms252111824
APA StyleMcClennan, A., & Hoffman, L. (2024). Angiopoietin 1 Attenuates Dysregulated Angiogenesis in the Gastrocnemius of DMD Mice. International Journal of Molecular Sciences, 25(21), 11824. https://doi.org/10.3390/ijms252111824