First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation
"> Figure 1
<p>Chemical structures of some NSAID derivatives bearing Se [<a href="#B60-antioxidants-12-01666" class="html-bibr">60</a>,<a href="#B61-antioxidants-12-01666" class="html-bibr">61</a>,<a href="#B62-antioxidants-12-01666" class="html-bibr">62</a>,<a href="#B63-antioxidants-12-01666" class="html-bibr">63</a>,<a href="#B64-antioxidants-12-01666" class="html-bibr">64</a>,<a href="#B65-antioxidants-12-01666" class="html-bibr">65</a>].</p> "> Figure 2
<p>(<b>A</b>) Schematic diagrams of the chemical design of Se-modified NSAIDs, including previous possible cleavages according to where the bond is broken (1 or 2). (<b>B</b>) General structure of the new Se-NSAID derivatives <b>1</b>–<b>5</b> synthesized in this work and the parent NSAIDs used.</p> "> Figure 3
<p>(<b>A</b>) DPPH radical scavenging activity of the Se-NSAID derivatives at 0.06 mg/mL and measured at eight time points. (<b>B</b>) DPPH radical scavenging activity of the Se-NSAID derivatives at 0.03 mg/mL and measured at eight time points. Data are presented as the mean ± SD of three independent experiments.</p> "> Figure 4
<p>Induction of apoptosis in HCT-116 cells. (<b>A</b>) Cells were treated with five concentrations of <b>5</b> for 24 h and examined on a Muse™ automated cell analyzer with the Annexin V & Dead Cell apoptosis assay. (<b>B</b>) Analogous independent experiment performed with the Caspase 3/7 apoptosis assay. (<b>C</b>,<b>D</b>) Quantification of the cell population with the Annexin V & Dead Cell and Caspase 3/7 assays, respectively. Data are presented as the mean ± SEM of at least three independent experiments. ** <span class="html-italic">p</span> < 0.01, * <span class="html-italic">p</span> < 0.05 comparing control and different concentrations of compound <b>5</b>.</p> "> Figure 5
<p>In vivo toxicity of compound <b>5</b> in mice. Female nude mice (<span class="html-italic">n</span> = 5 in each group) were treated either with the vehicle or compound <b>5</b> for 27 days. (<b>A</b>) Biochemical analysis of the blood serum withdrawn at the endpoint. The treatment with a dose of 7.5 mg/Kg of <b>5</b> given thrice weekly showed no significant changes in the parameters measured compared to the control group. (<b>B</b>) Body weight changes of mice during the treatment. Data are presented as the mean ± SEM.</p> "> Figure 6
<p>In vivo efficacy of compound <b>5</b> in a colon cancer xenograft mouse model. Female nude mice were inoculated with 2.5 × 10<sup>6</sup> HCT-116 cells on each flank. After 15 days, the HCT-116 tumor-bearing mice (<span class="html-italic">n</span> = 5 in each group) were treated either with the vehicle or compound <b>5</b> for additional 23 days. (<b>A</b>) Growth curves of tumor volume. The treatment with a dose of 10 mg/Kg of <b>5</b> given thrice weekly achieved significant tumor growth inhibition compared to the control group. (<b>B</b>) Tumor weight measured at the endpoint. (<b>C</b>) Body weight changes of mice during the treatment. Data are presented as the mean ± SEM. **** <span class="html-italic">p</span> < 0.0001 comparing control and treatment with compound <b>5</b>.</p> "> Scheme 1
<p>Synthesis of the Se-NSAID derivatives. Reagents and conditions: (i) ClCOCOCl, CH<sub>2</sub>Cl<sub>2</sub>, 12 h, room temperature; (ii) ClCOCOCl, CH<sub>2</sub>Cl<sub>2</sub>/<span class="html-italic">N</span>,<span class="html-italic">N</span>-DMF, 12 h, room temperature; (iii) H<sub>2</sub>O, room temperature; (iv) THF/H<sub>2</sub>O, 30–60 min, room temperature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Remarks
2.1.2. General Procedure for the Preparation of the Diacyl Diselenide Derivatives
2.2. Biology
2.2.1. DPPH Radical Scavenging Assay
2.2.2. Cell Culture Conditions
2.2.3. Cell Viability Assay
2.2.4. Apoptosis Assays
2.2.5. In Vivo Xenograft Studies
2.2.6. Toxicity Study
2.2.7. Assay of Tumor Growth Inhibition on HCT-116 Colon Cancer Xenograft Model
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Structural Design
3.2. Chemistry
3.3. Evaluation of the Radical Scavenging Activity of the Se-NSAID Derivatives
3.4. Evaluation of the Antiproliferative Activities of the Se-NSAID Derivatives
3.5. Compound 5 Induced Cell Death by Partially Triggering Apoptosis in Colon Cancer Cells
3.6. Compound 5 Effectively Inhibited Tumor Growth in a Colon Cancer Xenograft Model without Any Apparent Systemic Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Chuai, H.; Zhang, S.Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem. 2021, 223, 113621. [Google Scholar] [PubMed]
- Barchielli, G.; Capperucci, A.; Tanini, D. The role of selenium in pathologies: An updated review. Antioxidants 2022, 11, 251. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Speckmann, B.; Klotz, L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 2016, 595, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med. 2018, 127, 80–97. [Google Scholar]
- Kim, S.J.; Choi, M.C.; Park, J.M.; Chung, A.S. Antitumor effects of selenium. Int. J. Mol. Sci. 2021, 22, 11844. [Google Scholar] [CrossRef] [PubMed]
- Vernia, F.; Longo, S.; Stefanelli, G.; Viscido, A.; Latella, G. Dietary factors modulating colorectal carcinogenesis. Nutrients 2021, 13, 143. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Wang, C.; Yu, W.; Fan, W.; Wang, S.; Shen, N.; Wu, P.; Li, X.; Wang, F. Selenium exposure and cancer risk: An updated meta-analysis and meta-regression. Sci. Rep. 2016, 6, 19213. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Cilloni, S.; Bargellini, A.; Vergoni, A.V.; Tsatsakis, A.; Ferrante, M. Health risk assessment of environmental selenium: Emerging evidence and challenges (Review). Mol. Med. Rep. 2017, 15, 3323–3335. [Google Scholar] [CrossRef]
- Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020, 9, 80. [Google Scholar] [CrossRef]
- Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life 2016, 68, 97–105. [Google Scholar] [CrossRef]
- Song, M.; Kumaran, M.N.; Gounder, M.; Gibbon, D.G.; Nieves-Neira, W.; Vaidya, A.; Hellmann, M.; Kane, M.P.; Buckley, B.; Shih, W.; et al. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol. Oncol. 2018, 150, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Stolwijk, J.M.; Garje, R.; Sieren, J.C.; Buettner, G.R.; Zakharia, Y. Understanding the redox biology of selenium in the search of targeted cancer therapies. Antioxidants 2020, 9, 420. [Google Scholar] [CrossRef]
- Ruberte, A.C.; Sanmartin, C.; Aydillo, C.; Sharma, A.K.; Plano, D. Development and therapeutic potential of selenazo compounds. J. Med. Chem. 2020, 63, 1473–1489. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Ding, Z.; Li, N.; Xu, J.; Luo, G.; Liu, J.; Shen, J. Seleno-cyclodextrin sensitises human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-κB suppression. Eur. J. Cancer 2011, 47, 1890–1907. [Google Scholar] [CrossRef]
- Zeng, H.; Cheng, W.H.; Johnson, L.K. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice. J. Nutr. Biochem. 2013, 24, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawski, K. Selenium compounds as novel potential anticancer agents. Int. J. Mol. Sci. 2021, 22, 1009. [Google Scholar] [CrossRef]
- Ali, W.; Benedetti, R.; Handzlik, J.; Zwergel, C.; Battistelli, C. The innovative potential of selenium-containing agents for fighting cancer and viral infections. Drug Discov. Today 2021, 26, 256–263. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropic, M.S.; Carocci, A. Biological activity of selenium and its impact on human health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Álvarez-Pérez, M.; Ali, W.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and diselenides: A review of their anticancer and chemopreventive activity. Molecules 2018, 23, 628. [Google Scholar] [CrossRef]
- Pang, Y.; Lin, H.; Ou, C.; Cao, Y.; An, B.; Yan, J.; Li, X. Design, synthesis, and biological evaluation of novel benzodiazepine derivatives as anticancer agents through inhibition of tubulin polymerization in vitro and in vivo. Eur. J. Med. Chem. 2019, 182, 111670. [Google Scholar] [CrossRef]
- Ali, W.; Spengler, G.; Kincses, A.; Nové, M.; Battistelli, C.; Latacz, G.; Starek, M.; Dąbrowska, M.; Honkisz-Orzechowska, E.; Romanelli, A.; et al. Discovery of phenylselenoether-hydantoin hybrids as ABCB1 efflux pump modulating agents with cytotoxic and antiproliferative actions in resistant T-lymphoma. Eur. J. Med. Chem. 2020, 200, 112435. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Henriquez-Figuereo, A.; Moreno, E.; Berzosa, M.; Encío, I.; Plano, D.; Sanmartín, C. Unveiling a new selenocyanate as a multitarget candidate with anticancer, antileishmanial and antibacterial potential. Molecules 2022, 27, 7477. [Google Scholar] [CrossRef]
- Huang, Y.M.; Cheng, Y.; Peng, Z.N.; Pang, L.P.; Li, J.Y.; Xiao, J.A.; Zhang, Y.F.; Cui, J.G. Synthesis and antitumor activity of some cholesterol-based selenocyanate compounds. Steroids 2023, 194, 109217. [Google Scholar] [CrossRef]
- Nie, Y.; Zhong, M.; Li, S.; Li, X.; Zhang, Y.; Zhang, Y.; He, X. Synthesis and potential anticancer activity of some novel selenocyanates and diselenides. Chem. Biodivers. 2020, 17, e1900603. [Google Scholar] [CrossRef]
- Roldán-Peña, J.M.; Puerta, A.; Dinić, J.; Jovanović Stojanov, S.; González-Bakker, A.; Hicke, F.J.; Mishra, A.; Piyasaengthong, A.; Maya, I.; Walton, J.W.; et al. Biotinylated selenocyanates: Potent and selective cytostatic agents. Bioorg. Chem. 2023, 133, 106410. [Google Scholar] [PubMed]
- Huang, Y.; Wei, M.; Peng, Z.; Cheng, Y.; Zhang, Y.; Li, J.; Xiao, J.; Gan, C.; Cui, J. Synthesis of estrone selenocyanate compounds, anti-tumor activity evaluation and structure-activity relationship analysis. Bioorg. Med. Chem. 2022, 76, 117086. [Google Scholar] [CrossRef]
- Crampsie, M.A.; Jones, N.; Das, A.; Aliaga, C.; Desai, D.; Lazarus, P.; Amin, S.; Sharma, A.K. Phenylbutyl isoselenocyanate modulates phase I and II enzymes and inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA adducts in mice. Cancer Prev. Res. 2011, 4, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Karelia, D.; Pramanik, K.; Amin, S.G.; Sharma, A.K.; Jiang, C.; Lu, J.X. Phenylbutyl isoselenocyanate induces reactive oxygen species to inhibit androgen receptor and to initiate p53-mediated apoptosis in LNCaP prostate cancer cells. Mol. Carcinog. 2018, 57, 1055–1066. [Google Scholar] [CrossRef]
- Milczarek, M.; Cierpiał, T.; Kiełbasiński, P.; Małecka-Giełdowska, M.; Świtalska, M.; Wietrzyk, J.; Mazur, M.; Wiktorska, K. An organofluorine isoselenocyanate analogue of sulforaphane affects antimetabolite 5-fluorouracil’s anticancer activity: A perspective for new combinatory therapy in triple-negative breast cancer. Molecules 2023, 28, 5808. [Google Scholar] [CrossRef]
- Marković, S.B.; Maciejewska, N.; Olszewski, M.; Višnjevac, A.; Puerta, A.; Padrón, J.M.; Novaković, I.; Kojić, S.; Fernandes, H.S.; Sousa, S.F.; et al. Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. Eur. J. Med. Chem. 2022, 238, 114449. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, D.; Xu, N.; Fang, J.; Yu, Y.; Hou, W.; Ruan, H.; Zhu, P.; Ma, R.; Lu, S.; et al. Novel 1,3,4-selenadiazole-containing kidney-type glutaminase inhibitors showed improved cellular uptake and antitumor activity. J. Med. Chem. 2019, 62, 589–603. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Szymanowska, A.; Radomski, D.; Domínguez-Álvarez, E.; Bielawska, A.; Bielawski, K. Novel selenoesters as a potential tool in triple-negative breast cancer treatment. Cancers 2022, 14, 4304. [Google Scholar] [CrossRef]
- Khalkar, P.; Díaz-Argelich, N.; Antonio Palop, J.; Sanmartín, C.; Fernandes, A.P. Novel methylselenoesters induce programed cell death via entosis in pancreatic cancer cells. Int. J. Mol. Sci. 2018, 19, 2849. [Google Scholar] [CrossRef] [PubMed]
- Szemerédi, N.; Dobiasová, S.; Salardón-Jiménez, N.; Kincses, A.; Nové, M.; Habibullah, G.; Sevilla-Hernández, C.; Benito-Lama, M.; Alonso-Martínez, F.J.; Viktorová, J.; et al. Cyano- and ketone-containing selenoesters as multi-target compounds against resistant cancers. Cancers 2021, 13, 4563. [Google Scholar] [CrossRef]
- Moussa, Z.; Kaddoura, R.; Saadeh, H.A.; Abutaha, N.; Ahmed, S.A. Highly bioactive novel aryl-, benzyl-, and piperazine-selenoureas: Synthesis, structural characterization and in vitro biological evaluation. Heliyon 2022, 8, e10709. [Google Scholar] [CrossRef]
- Barbosa, F.A.R.; Siminski, T.; Canto, R.F.S.; Almeida, G.M.; Mota, N.; Ourique, F.; Pedrosa, R.C.; Braga, A.L. Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma. Eur. J. Med. Chem. 2018, 155, 503–515. [Google Scholar] [CrossRef]
- Ruberte, A.C.; Ramos-Inza, S.; Aydillo, C.; Talavera, I.; Encío, I.; Plano, D.; Sanmartín, C. Novel N,N’-disubstituted acylselenoureas as potential antioxidant and cytotoxic agents. Antioxidants 2020, 9, 55. [Google Scholar] [CrossRef]
- De Franco, M.; Saab, M.; Porchia, M.; Marzano, C.; Nolan, S.P.; Nahra, F.; Van Hecke, K.; Gandin, V. Unveiling the potential of innovative gold(I) and silver(I) selenourea complexes as anticancer agents targeting TrxR and cellular redox homeostasis. Chemistry 2022, 28, e202201898. [Google Scholar] [CrossRef]
- Zhou, J.N.; Zhang, B.; Wang, H.Y.; Wang, D.X.; Zhang, M.M.; Zhang, M.; Wang, X.K.; Fan, S.Y.; Xu, Y.C.; Zeng, Q.; et al. A functional screening identifies a new organic selenium compound targeting cancer stem cells: Role of c-Myc transcription activity inhibition in liver cancer. Adv. Sci. 2022, 9, e2201166. [Google Scholar] [CrossRef] [PubMed]
- Krasowska, D.; Iraci, N.; Santi, C.; Drabowicz, J.; Cieslak, M.; Kaźmierczak-Barańska, J.; Palomba, M.; Królewska-Golińska, K.; Magiera, J.; Sancineto, L. Diselenides and benzisoselenazolones as antiproliferative agents and glutathione-S-transferase inhibitors. Molecules 2019, 24, 2914. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Inza, S.; Ruberte, A.C.; Sanmartín, C.; Sharma, A.K.; Plano, D. NSAIDs: Old acquaintance in the pipeline for cancer treatment and prevention─Structural modulation, mechanisms of action, and bright future. J. Med. Chem. 2021, 64, 16380–16421. [Google Scholar] [CrossRef]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef]
- Sauer, C.M.; Myran, D.T.; Costentin, C.E.; Zwisler, G.; Safder, T.; Papatheodorou, S.; Mucci, L.A. Effect of long term aspirin use on the incidence of prostate cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2018, 132, 66–75. [Google Scholar] [CrossRef]
- Simon, T.G.; Duberg, A.S.; Aleman, S.; Chung, R.T.; Chan, A.T.; Ludvigsson, J.F. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N. Engl. J. Med. 2020, 382, 1018–1028. [Google Scholar] [CrossRef]
- Ma, S.; Guo, C.; Sun, C.; Han, T.; Zhang, H.; Qu, G.; Jiang, Y.; Zhou, Q.; Sun, Y. Aspirin use and risk of breast cancer: A meta-analysis of observational studies from 1989 to 2019. Clin. Breast Cancer 2021, 21, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, F.; Yang, M.; Wu, X.; Liu, A. Effect of aspirin use on survival benefits of breast cancer patients: A meta-analysis. Medicine 2021, 100, e26870. [Google Scholar] [CrossRef]
- Mohammed, A.; Yarla, N.S.; Madka, V.; Rao, C.V. Clinically relevant anti-inflammatory agents for chemoprevention of colorectal cancer: New perspectives. Int. J. Mol. Sci. 2018, 19, 2332. [Google Scholar] [CrossRef]
- Kuo, C.N.; Pan, J.J.; Huang, Y.W.; Tsai, H.J.; Chang, W.C. Association between nonsteroidal anti-inflammatory drugs and colorectal cancer: A population-based case-control study. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 737–745. [Google Scholar] [CrossRef]
- Tomić, T.; Domínguez-López, S.; Barrios-Rodríguez, R. Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiol. 2019, 58, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, J.C.; Jacobs, E.J.; Newton, C.C.; Guinter, M.A.; Cance, W.G.; Campbell, P.T. Associations of aspirin and non-aspirin non-steroidal anti-inflammatory drugs with colorectal cancer mortality after diagnosis. J. Natl. Cancer Inst. 2021, 113, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chan, A.T.; Meyerhardt, J.A.; Giovannucci, E.L. Timing of aspirin use in colorectal cancer chemoprevention: A prospective cohort study. J. Natl. Cancer Inst. 2021, 113, 841–851. [Google Scholar] [CrossRef]
- Ait Ouakrim, D.; Dashti, S.G.; Chau, R.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Winship, I.M.; Young, J.P.; Giles, G.G.; Leggett, B.; et al. Aspirin, ibuprofen, and the risk of colorectal cancer in Lynch Syndrome. J. Natl. Cancer Inst. 2015, 107, djv170. [Google Scholar] [CrossRef]
- Bowen, C.M.; Walter, L.; Borras, E.; Wu, W.; Ozcan, Z.; Chang, K.; Bommi, P.V.; Taggart, M.W.; Thirumurthi, S.; Lynch, P.M.; et al. Combination of sulindac and bexarotene for prevention of intestinal carcinogenesis in familial adenomatous polyposis. Cancer Prev. Res. 2021, 14, 851–862. [Google Scholar] [CrossRef]
- Grahn, O.; Lundin, M.; Chapman, S.J.; Rutegård, J.; Matthiessen, P.; Rutegård, M. Postoperative nonsteroidal anti-inflammatory drugs in relation to recurrence, survival and anastomotic leakage after surgery for colorectal cancer. Colorectal Dis. 2022, 24, 933–942. [Google Scholar] [CrossRef]
- Knights, K.M.; Mangoni, A.A.; Miners, J.O. Defining the COX inhibitor selectivity of NSAIDs: Implications for understanding toxicity. Expert Rev. Clin. Pharmacol. 2010, 3, 769–776. [Google Scholar] [CrossRef]
- Kolawole, O.R.; Kashfi, K. NSAIDs and cancer resolution: New paradigms beyond cyclooxygenase. Int. J. Mol. Sci. 2022, 23, 1432. [Google Scholar] [CrossRef]
- Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol. 2013, 3, 181. [Google Scholar] [CrossRef]
- Feng, Y.; Tao, L.; Wang, G.; Li, Z.; Yang, M.; He, W.; Zhong, X.; Zhang, Y.; Yang, J.; Cheung, S.; et al. Aspirin inhibits prostaglandins to prevents colon tumor formation via down-regulating Wnt production. Eur. J. Pharmacol. 2021, 906, 174173. [Google Scholar] [CrossRef]
- Farhangian, M.; Azarafrouz, F.; Fallahi, H.; Akrami, H. Investigating the effect of ibuprofen on DLL1 and NOTCH1 expression in gastric cancer stem cells derived from MKN-45 cell line. Middle East J. Cancer 2019, 10, 292–298. [Google Scholar]
- Karelia, D.N.; Kim, S.; Pandey, M.K.; Plano, D.; Amin, S.; Lu, J.; Sharma, A.K. Novel seleno-aspirinyl compound AS-10 induces apoptosis, G1 arrest of pancreatic ductal adenocarcinoma cells, inhibits their NF-κB signaling, and synergizes with gemcitabine cytotoxicity. Int. J. Mol. Sci. 2021, 22, 4966. [Google Scholar] [CrossRef]
- Plano, D.; Karelia, D.N.; Pandey, M.K.; Spallholz, J.E.; Amin, S.; Sharma, A.K. Design, synthesis, and biological evaluation of novel selenium (Se-NSAID) molecules as anticancer agents. J. Med. Chem. 2016, 59, 1946–1959. [Google Scholar] [CrossRef]
- He, X.; Zhong, M.; Li, S.; Li, X.; Li, Y.; Li, Z.; Gao, Y.; Ding, F.; Wen, D.; Lei, Y.; et al. Synthesis and biological evaluation of organoselenium (NSAIDs-SeCN and SeCF3) derivatives as potential anticancer agents. Eur. J. Med. Chem. 2020, 208, 112864. [Google Scholar] [CrossRef]
- He, X.; Nie, Y.; Zhong, M.; Li, S.; Li, X.; Guo, Y.; Liu, Z.; Gao, Y.; Ding, F.; Wen, D.; et al. New organoselenides (NSAIDs-Se derivatives) as potential anticancer agents: Synthesis, biological evaluation and in silico calculations. Eur. J. Med. Chem. 2021, 218, 113384. [Google Scholar] [CrossRef]
- Desai, D.; Sinha, I.; Null, K.; Wolter, W.; Suckow, M.A.; King, T.; Amin, S.; Sinha, R. Synthesis and antitumor properties of selenocoxib-1 against rat prostate adenocarcinoma cells. Int. J. Cancer 2010, 127, 230–238. [Google Scholar] [CrossRef]
- Gowda, R.; Madhunapantula, S.V.; Desai, D.; Amin, S.; Robertson, G.P. Simultaneous targeting of COX-2 and AKT using selenocoxib-1-GSH to inhibit melanoma. Mol. Cancer Ther. 2013, 12, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Inza, S.; Encío, I.; Raza, A.; Sharma, A.K.; Sanmartín, C.; Plano, D. Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: Identification of a Se-indomethacin analog as a potential therapeutic for breast cancer. Eur. J. Med. Chem. 2022, 244, 114839. [Google Scholar] [CrossRef]
- Pauli, G.F.; Chen, S.N.; Simmler, C.; Lankin, D.C.; Godecke, T.; Jaki, B.U.; Friesen, J.B.; McAlpine, J.B.; Napoitano, J.G. Importance of purity evaluation and the potential of quantitative 1H NMR as a purity assay. J. Med. Chem. 2014, 57, 9220–9231. [Google Scholar] [CrossRef]
- Sanmartín, C.; Plano, D.; Domínguez, E.; Font, M.; Calvo, A.; Prior, C.; Encío, I.; Palop, J.A. Synthesis and pharmacological screening of several aroyl and heteroaroyl selenylacetic acid derivatives as cytotoxic and antiproliferative agents. Molecules 2009, 14, 3313–3338. [Google Scholar] [CrossRef]
- Tanini, D.; Capperucci, A.; Locuoco, M.; Ferraroni, M.; Costantino, G.; Angeli, A.; Supuran, C.T. Benzoselenoates: A novel class of carbonic anhydrase inhibitors. Bioorg. Chem. 2022, 122, 105751. [Google Scholar] [CrossRef]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.; Zhang, J.; Jiang, C.; Deng, Y.; Özten, N.; Bosland, M.C. Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges. Nutr. Cancer 2016, 68, 1–17. [Google Scholar] [CrossRef]
- Capperucci, A.; Degl’Innocenti, A.; Tiberi, C. Organoselenosilane-mediated selective mild access to selenolesters, selenoanhydrides and diacyl diselenides. Synlett 2011, 2011, 2248–2252. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, Y.; Zhou, X. Samarium diiodide-induced reduction of elemental selenium leading to a selenolate anion species. A selective synthesis of diacyl diselenides. Synth. Commun. 1993, 23, 1403–1408. [Google Scholar] [CrossRef]
- Ishihara, H.; Koketsu, M.; Fukuta, Y.; Nada, F. Reaction of lithium aluminum hydride with elemental selenium: Its application as a selenating reagent into organic molecules. J. Am. Chem. Soc. 2001, 123, 8408–8409. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, M.; Nada, F.; Hiramatsu, S.; Ishihara, H. Reactions of acyl chlorides with LiAlHSeH. Preparation of diacyl selenides, diacyl diselenides, selenocarboxylates and cyclic selenoanhydrides. J. Chem. Soc. Perkin Trans. 2002, 1, 737–740. [Google Scholar] [CrossRef]
- Kumar, S.; Tripathi, S.K.; Singh, H.B.; Wolmershäuser, G. Synthesis, reactivity, electrochemical and crystallographic studies of diferrocenoyl diselenide and ferrocenoyl selenides. J. Organomet. Chem. 2004, 689, 3046–3055. [Google Scholar] [CrossRef]
- Niyomura, O.; Tani, K.; Kato, S. A facile synthesis of potassium selenocarboxylates and their oxidation with XeF2 to diacyl diselenides: An X-ray structural analysis of di(4-methoxybenzoyl) diselenide. Heteroat. Chem. 1999, 10, 373–379. [Google Scholar] [CrossRef]
- Astrain-Redin, N.; Talavera, I.; Moreno, E.; Ramírez, M.J.; Martínez-Sáez, N.; Encío, I.; Sharma, A.K.; Sanmartín, C.; Plano, D. Seleno-analogs of scaffolds resembling natural products a novel warhead toward dual compounds. Antioxidants 2023, 12, 139. [Google Scholar] [CrossRef]
- Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 2020, 38, 567–595. [Google Scholar] [CrossRef]
- Arisan, E.D.; Ergül, Z.; Bozdağ, G.; Rencüzoğulları, Ö.; Çoker-Gürkan, A.; Obakan-Yerlikaya, P.; Coşkun, D.; Palavan-Ünsal, N. Diclofenac induced apoptosis via altering PI3K/Akt/MAPK signaling axis in HCT 116 more efficiently compared to SW480 colon cancer cells. Mol. Biol. Rep. 2018, 45, 2175–2184. [Google Scholar] [CrossRef]
- Din, F.V.; Valanciute, A.; Houde, V.P.; Zibrova, D.; Green, K.A.; Sakamoto, K.; Alessi, D.R.; Dunlop, M.G. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 2012, 142, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
Comp. | Colon Cell Lines | Prostate Cell Lines | Breast Cell Lines | Lung Cell Lines | ||||
---|---|---|---|---|---|---|---|---|
HT-29 | HCT-116 | DU-145 | PC-3 | MDA-MB-231 | T-47D | H1299 | A549 | |
1 | 6.6 ± 2.2 | 39.2 ± 7.3 | 5.0 ± 0.1 | 3.3 ± 0.6 | 18.3 ± 6.9 | 5.9 ± 1.4 | 8.6 ± 0.8 | 7.0 ± 1.3 |
2 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
3 | >50 | 9.1 ± 5.9 | 6.1 ± 0.6 | 5.2 ± 0.2 | 5.7 ± 0.8 | 5.6 ± 0.1 | 8.1 ± 2.5 | >50 |
4 | 39.7 ± 3.3 | 5.9 ± 1.1 | 27.9 ± 3.2 | 5.8 ± 0.6 | 4.3 ± 1.2 | 26.0 ± 2.0 | 31.6 ± 1.7 | 11.7 ± 0.9 |
5 | 8.5 ± 2.7 | 9.0 ± 3.0 | 7.0 ± 1.3 | 7.4 ± 0.5 | 8.3 ± 2.5 | 3.8 ± 0.2 | 9.3 ± 0.6 | 4.5 ± 0.6 |
ASA 2 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
Ind | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
Nap | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
Ket | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
Ibup | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
Comp. | Breast Cell Lines | Lung Cell Lines | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
184B5 | MDA-MB-231 | SI 2 | T-47D | SI 3 | BEAS-2B | H1299 | SI 4 | A549 | SI 5 | |
1 | 14.4 ± 1.5 | 18.3 ± 6.9 | 0.8 | 5.9 ± 1.4 | 2.4 | 18.5 ± 3.0 | 8.6 ± 0.8 | 2.2 | 7.0 ± 1.3 | 2.6 |
2 | >100 | >100 | - | >100 | - | >100 | >100 | - | >100 | - |
3 | 11.9 ± 1.0 | 5.7 ± 0.8 | 2.1 | 5.6 ± 0.1 | 2.1 | 11.2 ± 1.0 | 8.1 ± 2.5 | 1.4 | >100 | >0.1 |
4 | 5.9 ± 0.8 | 4.3 ± 1.2 | 1.4 | 26.0 ± 2.0 | 0.2 | 5.2 ± 0.4 | 31.6 ± 1.7 | 0.2 | 11.7 ± 0.9 | 0.4 |
5 | 18.2 ± 0.8 | 8.3 ± 2.5 | 2.2 | 3.8 ± 0.2 | 4.8 | 15.9 ± 2.4 | 9.3 ± 0.6 | 1.7 | 4.5 ± 0.6 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Inza, S.; Aliaga, C.; Encío, I.; Raza, A.; Sharma, A.K.; Aydillo, C.; Martínez-Sáez, N.; Sanmartín, C.; Plano, D. First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation. Antioxidants 2023, 12, 1666. https://doi.org/10.3390/antiox12091666
Ramos-Inza S, Aliaga C, Encío I, Raza A, Sharma AK, Aydillo C, Martínez-Sáez N, Sanmartín C, Plano D. First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation. Antioxidants. 2023; 12(9):1666. https://doi.org/10.3390/antiox12091666
Chicago/Turabian StyleRamos-Inza, Sandra, Cesar Aliaga, Ignacio Encío, Asif Raza, Arun K. Sharma, Carlos Aydillo, Nuria Martínez-Sáez, Carmen Sanmartín, and Daniel Plano. 2023. "First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation" Antioxidants 12, no. 9: 1666. https://doi.org/10.3390/antiox12091666
APA StyleRamos-Inza, S., Aliaga, C., Encío, I., Raza, A., Sharma, A. K., Aydillo, C., Martínez-Sáez, N., Sanmartín, C., & Plano, D. (2023). First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation. Antioxidants, 12(9), 1666. https://doi.org/10.3390/antiox12091666