Blackberries and Mulberries: Berries with Significant Health-Promoting Properties
<p>The main benefits linked to blackberries and mulberries consumption.</p> "> Figure 2
<p>(<b>A</b>) <span class="html-italic">Rubus fruticosus</span>, (<b>B</b>) <span class="html-italic">Rubus ulmifolius</span> [<a href="#B14-ijms-24-12024" class="html-bibr">14</a>], (<b>C</b>) <span class="html-italic">Morus nigra</span> [<a href="#B15-ijms-24-12024" class="html-bibr">15</a>].</p> "> Figure 3
<p>General composition of fruits.</p> "> Figure 4
<p>Phenolic compounds’ classification.</p> "> Figure 5
<p>Principal phenolic acids found in <span class="html-italic">Rubus fruticosus</span>, <span class="html-italic">Rubus ulmifolius</span>, and <span class="html-italic">Morus nigra</span>.</p> "> Figure 6
<p>Principal flavan-3-ols and flavonols present in <span class="html-italic">Rubus fruticosus</span>, <span class="html-italic">Rubus ulmifolius</span>, and <span class="html-italic">Morus nigra</span>.</p> "> Figure 7
<p>Principal anthocyanins present in <span class="html-italic">Rubus fruticosus</span>, <span class="html-italic">Rubus ulmifolius</span>, and <span class="html-italic">Morus nigra</span>.</p> ">
Abstract
:1. Introduction
2. Rubus fruticosus, Rubus ulmifolius and Morus nigra
3. Nutritional and Chemical Composition
3.1. Macronutrients
3.1.1. Carbohydrates
3.1.2. Proteins and Amino Acids
3.1.3. Fiber
3.1.4. Fatty Acids
3.1.5. Organic Acids
3.2. Micronutrients
3.2.1. Minerals
3.2.2. Vitamins
3.2.3. Tocopherols
3.3. Phytochemicals
3.3.1. Carotenoids
3.3.2. Volatile Compounds
3.3.3. Phenolic Compounds
Phenolic Acids
Flavonoids
4. Health Benefits
4.1. Antidiabetic Properties
4.2. Antimicrobial Properties
4.3. Antioxidant Activity
4.4. Anti-Inflammatory Properties
4.5. Neuroprotection
4.6. Anticancer Activity
4.7. Cardiovascular Protection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, J. Dietary Guidelines for Americans. JAMA 2016, 315, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoia, M.L.; Mukamal, K.J.; Cahill, L.E.; Hou, T.; Ludwig, D.S.; Mozaffarian, D.; Willett, W.C.; Hu, F.B.; Rimm, E.B. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: Analysis from three prospective cohort studies. PLoS Med. 2015, 12, e1001878. [Google Scholar] [CrossRef] [PubMed]
- Valtueña, J.; Huybrechts, I.; Breidenassel, C.; Henauw, S.; De Stehle, P.; Kafatos, A.; Kersting, M. Fruit and vegetables consumption is associated with higher vitamin intake and blood vitamin status among European adolescents. Eur. J. Clin. Nutr. 2017, 71, 458–467. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red fruits composition and their health benefits—A review. Foods 2022, 11, 644. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.W.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.; Haffner, K.; Baugerød, H.; Andersen, L.F.; et al. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving human health and healthy aging, and promoting quality life- A review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, B.; Fu, X.; You, L.J.; Abbasi, A.M.; Liu, R.H. The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions. Food Hydrocoll. 2016, 58, 171–178. [Google Scholar] [CrossRef]
- Morin, P. Anti-Inflammatory properties of blackberry phenolic and volatile compounds. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2020. [Google Scholar]
- Tavares, L.; Figueira, I.; MacEdo, D.; McDougall, G.J.; Leitão, M.C.; Vieira, H.L.A.; Stewart, D.; Alves, P.M.; Ferreira, R.B.; Santos, C.N. Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chem. 2012, 131, 1443–1452. [Google Scholar] [CrossRef]
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018, 58, 2491–2507. [Google Scholar] [CrossRef]
- Cooper, D.; Doucet, L.; Pratt, M. Influence of cultivar, conventional and organic agricultural practices on phenolic and sensory profile of blackberries (Rubus fruticosus). J. Organ. Behav. 2007, 28, 303–325. [Google Scholar] [CrossRef]
- Plants for a Future. Available online: https://pfaf.org/user/plant.aspx?latinname=Rubus+fruticosus (accessed on 16 March 2023).
- Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Jardim Botânico UTAD. Available online: https://jb.utad.pt/especie/Rubus_ulmifolius_var_ulmifolius (accessed on 15 April 2023).
- BioDiversity4All. Available online: https://www.biodiversity4all.org/taxa/126741-Morus-nigra (accessed on 15 April 2023).
- Foster, T.M.; Bassil, N.V.; Dossett, M.; Leigh Worthington, M.; Graham, J. Genetic and genomic resources for Rubus breeding: A roadmap for the future. Hortic. Res. 2019, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Marulanda, M.L.; López, A.M.; Aguilar, S.B. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breed. Appl. Biotechnol. 2007, 7, 242–252. [Google Scholar] [CrossRef]
- Verma, R.; Gangrade, T.; Punasiya, R.; Ghulaxe, C. Rubus fruticosus (blackberry) use as an herbal medicine. Pharmacogn. Rev. 2014, 8, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Hummer, K.E.; Janick, J. Rubus iconography: Antiquity to the renaissance. Acta Hortic. 2007, 759, 89–106. [Google Scholar] [CrossRef]
- Strik, B.C.; Finn, C.E.; Clark, J.R.; Bañados, M.P. Worldwide production of blackberries. Acta Hortic. 2008, 777, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Associação dos Jovens Agricultores de Portugal. Manual Competitividade e Mercados Para Culturas Emergentes—A Cultura da Amora; Associação dos Jovens Agricultores de Portugal: Lisboa, Portugal, 2018. [Google Scholar]
- Selina Wamucii Insights. Available online: https://www.selinawamucii.com/insights/prices/yemen/raspberries-blackberries-mulberries-and-log/ (accessed on 5 May 2023).
- Huang, W.Y.; Zhang, H.C.; Liu, W.X.; Li, C.Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.E.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef] [Green Version]
- Tomas, M.; Toydemir, G.; Boyacioglu, D.; Hall, R.D.; Beekwilder, J.; Capanoglu, E. Processing black mulberry into jam: Effects on antioxidant potential and in vitro bioaccessibility. J. Sci. Food Agric. 2016, 97, 3106–3113. [Google Scholar] [CrossRef]
- Choe, U.; Li, Y.; Yu, L.; Gao, B.; Wang, T.T.Y.; Sun, J.; Chen, P.; Yu, L. Chemical composition of cold-pressed blackberry seed flour extract and its potential health-beneficial properties. Food Sci. Nutr. 2020, 8, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Ali, L. Pre-harvest factors affecting quality and shelf-life in raspberries and blackberries (Rubus spp. L.). Doctoral Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2012. [Google Scholar]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Zorenc, Z.; Koron, D.; Senica, M. Fruit quality characteristics and biochemical composition of fully ripe blackberries harvested at different times. Foods 2021, 10, 1581. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Weli, A.M.; Al-Saadi, H.S.; Al-Fudhaili, R.S.; Hossain, A.; Putit, Z.B.; Jasim, M.K. Cytotoxic and antimicrobial potential of different leaves extracts of R. fruticosus used traditionally to treat diabetes. Toxicol. Rep. 2020, 7, 183–187. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, K.M.; Jilani, M.S.; Khan, M.M. Physico-chemical characteristics of different mulberry cultivars grown under agro-climatic conditions of Miran Shah, North Waziristan (Khyber Pakhtunkhwa), Pakistan. J. Agric. Res. 2010, 48, 209–217. [Google Scholar]
- Jiang, Y.; Nie, W.J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from northeast Anatolia region of Turkey. Sci. Hortic. 2008, 116, 41–46. [Google Scholar] [CrossRef]
- Gundogdu, M.; Canan, I.; Gecer, M.K.; Kan, T.; Ercisli, S. Phenolic compounds, bioactive content and antioxidant capacity of the fruits of mulberry (Morus spp.) germplasm in Turkey. Folia Hortic. 2017, 29, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.S.; Dong, P.H.; Shuai, X.X.; Chen, M.S. Evaluation of different black mulberry fruits (Morus nigra L.) based on phenolic compounds and antioxidant activity. Foods 2022, 11, 1252. [Google Scholar] [CrossRef]
- Yilmaz, K.U.; Zengin, Y.; Ercisli, S.; Serce, S.; Gunduz, K.; Sengul, M.; Asma, B.M. Some selected physico-chemical characteristics of wild and cultivated blackberry fruits (Rubus fruticosus L.) from Turkey. Rom. Biotechnol. Lett. 2009, 14, 4152–4163. [Google Scholar]
- Ryu, J.; Kwon, S.-J.; Jo, Y.D.; Jin, C.H.; Nam, B.M.; Lee, S.Y.; Jeong, S.W.; Im, S.B.; Oh, S.C.; Cho, L.; et al. Comparison of phytochemicals and antioxidant activity in blackberry (Rubus fruticosus L.) fruits of mutant lines at the different harvest time. Plant Breed. Biotechnol. 2016, 4, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.C.; Campos, G.; Alves, G.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L.R. Physical and phytochemical composition of 23 Portuguese sweet cherries as conditioned by variety (or genotype). Food Chem. 2021, 335, 127637. [Google Scholar] [CrossRef]
- Skrovankova, S.; Ercisli, S.; Ozkan, G.; Ilhan, G.; Sagbas, H.I.; Karatas, N.; Jurikova, T.; Mlcek, J. Diversity of phytochemical and antioxidant characteristics of black mulberry (Morus nigra L.) fruits from Turkey. Antioxidants 2022, 11, 1339. [Google Scholar] [CrossRef]
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980. [Google Scholar] [CrossRef]
- Ercisli, S.; Tosun, M.; Duralija, B.; Voća, S.; Sengul, M.; Turan, M. Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technol. Biotechnol. 2010, 48, 102–106. [Google Scholar]
- Okatan, V. Phenolic compounds and phytochemicals in fruits of black mulberry (Morus nigra L.) genotypes from the Aegean region in Turkey. Folia Hortic. 2018, 30, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.C.; Bento, C.; Silva, B.; Simões, M.; Silva, L.R. Nutrients, bioactive compounds and bioactivity: The health benefits of sweet cherries (Prunus avium L.). Curr. Nutr. Food Sci. 2019, 15, 208–227. [Google Scholar] [CrossRef]
- Mehta, M.; Kumar, A. Nutrient composition, phytochemical profile and antioxidant properties of Morus nigra: A review. Int. J. Innov. Sci. Res. Technol. 2021, 6, 424–432. [Google Scholar]
- Department of Agriculture. USDA. Available online: https://fdc.nal.usda.gov/ (accessed on 22 March 2023).
- European Food Safety Authority. Dietary Reference Values for Nutrients—Summary Report. ESFA J. 2017, 14, e15121E. [Google Scholar] [CrossRef] [Green Version]
- Vega, E.N.; Molina, A.K.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Stojković, D.; Soković, M.; et al. Anthocyanins from Rubus fruticosus L. and Morus nigra L. applied as food colorants: A natural alternative. Plants 2021, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic acids, antioxidants, and dietary fiber of Mexican blackberry (Rubus fruticosus) residues cv. Tupy. J. Food Qual. 2018, 2018, 5950761. [Google Scholar] [CrossRef] [Green Version]
- Hans, K.B.; Jana, T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Savarino, G.; Corsello, A.; Corsello, G. Macronutrient balance and micronutrient amounts through growth and development. Ital. J. Pediatr. 2021, 47, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Ahmad, H.; Maher, M.; Fang, C.; Luo, J. Benefiting others and self: Production of vitamins in plants. J. Integr. Plant Biol. 2021, 63, 210–227. [Google Scholar] [CrossRef]
- Croge, C.P.; Cuquel, F.L.; Pintro, P.T.M.; Biasi, L.A.; Bona, C.M. Antioxidant capacity and polyphenolic compounds of blackberries produced in different climates. HortScience 2019, 54, 2209–2213. [Google Scholar] [CrossRef]
- Xu, T.; Yin, Y.; Samtani, J.B. Blackberry Fruit: Nutrition Facts and Health Benefits; Virginia Tech, Virginia State University: Petersburg, VA, USA, 2015; pp. 1–5. [Google Scholar]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Fernández-Ruiz, V.; Sánchez-Mata, M.S.O.S.C.C.; Cámara, M.; Morales, R.; Tardío, J. Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. Eur. J. Lipid Sci. Technol. 2013, 115, 176–185. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 73, 735–750. [Google Scholar] [CrossRef]
- Ferreira, D.S.; de Rosso, V.V.; Mercadante, A.Z. Bioactive compounds of blackberry fruits (Rubus spp.) grown in Brazil|Compostos bioativos presentes em amora-preta (Rubus spp.). Rev. Bras. Frutic. 2010, 32, 664–674. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Campos, G.; Pinto, E.; Oliveira, A.S.; Almeida, A.; de Pinho, P.G.; Alves, G.; Silva, L.R. Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão, Portugal. Food Chem. 2022, 367, 130503. [Google Scholar] [CrossRef]
- Castro, R.I.; Vásquez-Rojas, C.; Cortiella, M.G.I.; Parra-Palma, C.; Ramos, P.; Morales-Quintana, L. Evolution of the volatile organic compounds, phenols and antioxidant capacity during fruit ripening and development of Rubus ulmifolius Schott fruits. Horticulturae 2023, 9, 13. [Google Scholar] [CrossRef]
- Padilla-Jimenez, S.M.; Angoa-Pérez, M.V.; Mena-Violante, H.G.; Oyoque-Salcedo, G.; Renteria-Ortega, M.; Oregel-Zamudio, E. Changes in the aroma of organic blackberries (Rubus fruticosus) during Ripeness. Anal. Chem. Lett. 2019, 9, 64–73. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Engmann, F.N.; Ye, H. Effect of enzymatic treatment on phytochemical compounds and volatile content of mulberry (Morus nigra) must by multivariate analysis. J. Food Nutr. Res. 2015, 54, 128–141. [Google Scholar]
- Jacques, A.C.; Chaves, F.C.; Zambiazi, R.C.; Brasil, M.C.; Caramão, E.B. Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus fruticosus) fruit cv. Tupy. Food Sci. Technol. 2014, 34, 636–643. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, M.F.; Sanz, J.; Martínez-Castro, I.; Giuffrè, A.M.; Sicari, V.; Soria, A.C. Statistical analysis for improving data precision in the SPME GC-MS analysis of blackberry (Rubus ulmifolius Schott) volatiles. Talanta 2014, 125, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Sarengaowa; Guan, Y.; Feng, K. Biosynthesis of phenolic compounds and antioxidant activity in fresh-cut fruits and vegetables. Front. Microbiol. 2022, 13, 906069. [Google Scholar] [CrossRef]
- El Cadi, H.; El Bouzidi, H.; Selama, G.; Ramdan, B.; Majdoub, Y.O.; El Alibrando, F.; Brigui, J.; Altemimi, A.B.; Dugo, P.; Mondello, L.; et al. Characterization of Rubus fruticosus L. berries growing wild in Morocco: Phytochemical screening, antioxidant activity and chromatography analysis. Eur. Food Res. Technol. 2021, 247, 1689–1699. [Google Scholar] [CrossRef]
- Schulz, M.; Seraglio, S.K.T.; Della Betta, F.; Nehring, P.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res. Int. 2019, 122, 627–634. [Google Scholar] [CrossRef]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodríguez, B.M.; Sánchez-Moreno, C.; De Ancos, B.; De Cortes Sánchez-Mata, M.; Fernández-Ruiz, V.; Cámara, M.; Tardío, J. Wild Arbutus unedo L. and Rubus ulmifolius Schott fruits are underutilized sources of valuable bioactive compounds with antioxidant capacity. Fruits 2014, 69, 435–448. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Bento, C.; Jesus, F.; Alves, G.; Silva, L.R. Sweet cherry phenolic compounds: Identification, characterization, and health benefits. In Studies in Natural Products Chemistry; Atta-ur-Rahman, F., Ed.; Science Publishers: Amesterdam, The Netherlands, 2018; pp. 31–78. [Google Scholar]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Törrönen, A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Pinheiro, C.; Wienkoop, S.; de Almeida, J.F.; Brunetti, C.; Zarrouk, O.; Planchon, S.; Gori, A.; Tattini, M.; Ricardo, C.P.; Renaut, J.; et al. Phellem cell-wall components are discriminants of cork quality in Quercus suber. Front. Plant Sci. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hayaloglu, A.A.; Demir, N. Phenolic compounds, volatiles, and sensory characteristics of twelve sweet cherry (Prunus avium L.) cultivars grown in Turkey. J. Food Sci. 2016, 81, C7–C18. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 2005, 53, 2118–2124. [Google Scholar] [CrossRef]
- Aly Maher Arafa, N. Utilization of Egyptian mulberry in manufacture of some high nutritional value products. Int. J. Food Sci. Nutr. Heal. Fam. Stud. 2021, 2, 1–19. [Google Scholar] [CrossRef]
- Sariburun, E.; Şahin, S.; Demir, C.; Türkben, C.; Uylaşer, V. Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J. Food Sci. 2010, 75. [Google Scholar] [CrossRef]
- Chanoca, A.; Kovinich, N.; Burkel, B.; Stecha, S.; Bohorquez-Restrepo, A.; Ueda, T.; Eliceiri, K.W.; Grotewold, E.; Otegui, M.S. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 2015, 27, 2545–2599. [Google Scholar] [CrossRef] [Green Version]
- Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential. Antioxidants 2023, 12, 48. [Google Scholar] [CrossRef]
- Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, 164–169. [Google Scholar] [CrossRef]
- Scalzo, J.; Currie, A.; Stephens, J.; McGhie, T.; Alspach, P. The anthocyanin composition of different Vaccinium, Ribes and Rubus genotypes. BioFactors 2008, 34, 13–21. [Google Scholar] [CrossRef]
- Silva, L.P.; Pereira, E.; Prieto, M.A.; Simal-Gandara, J.; Pires, T.C.S.P.; Alves, M.J.; Calhelha, R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott as a novel source of food colorant: Extraction optimization of coloring pigments and incorporation in a bakery product. Molecules 2019, 24, 2181. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Genetic differentiation in anthocyanin content among berry fruits. Curr. Issues Mol. Biol. 2021, 43, 36–51. [Google Scholar] [CrossRef]
- Gundogdu, M.; Muradoglu, F.; Sensoy, R.I.G.; Yilmaz, H. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Veličković, I.; Žižak, Ž.; Simin, N.; Bekvalac, K.; Ivanov, M.; Soković, M.; Marin, P.D.; Grujić, S. Phenolic profile and biological potential of wild blackberry (Rubus discolor) fruits. Bot. Serbica 2021, 45, 215–222. [Google Scholar] [CrossRef]
- Krzepiłko, A.; Prażak, R.; Święciło, A. Chemical composition, antioxidant and antimicrobial activity of raspberry, blackberry and raspberry-blackberry hybrid leaf buds. Molecules 2021, 26, 327. [Google Scholar] [CrossRef]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef]
- Ezzati, M.; Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 2013, 369, 954–964. [Google Scholar] [CrossRef] [Green Version]
- Gil-Martínez, L.; Mut-Salud, N.; Ruiz-García, J.A.; Falcón-Piñeiro, A.; Maijó-Ferré, M.; Baños, A.; De la Torre-Ramírez, J.M.; Guillamón, E.; Verardo, V.; Gómez-Caravaca, A.M. Phytochemicals determination, and antioxidant, antimicrobial, anti-inflammatory and anticancer activities of blackberry fruits. Foods 2023, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.F.; Hussain, A.; Tazeddinova, D.; Abylgazinova, A.; Xu, B. Assessing the nutritional-value-based therapeutic potentials and non-destructive approaches for mulberry fruit assessment: An overview. Comput. Intell. Neurosci. 2022. [Google Scholar] [CrossRef]
- Solverson, P.M.; Rumpler, W.V.; Leger, J.L.; Redan, B.W.; Ferruzzi, M.G.; Baer, D.J.; Castonguay, T.W.; Novotny, J.A. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 2018, 10, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salau, V.F.; Erukainure, O.L.; Islam, M.S. Phenolics: Therapeutic applications against oxidative injury in obesity and type 2 diabetes pathology. In Pathology-Oxidative Stress and Dietary Antioxidants; Victor, R.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 297–307. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pr. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.I.; Yazdi, Z.S.; Beitelshees, A.L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest. 2021, 131, 1–14. [Google Scholar] [CrossRef]
- Kambale, E.K.; Quetin-Leclercq, J.; Memvanga, P.B.; Beloqui, A. An overview of herbal-based antidiabetic drug delivery systems: Focus on lipid- and inorganic-based nanoformulations. Pharmaceutics 2022, 14, 2135. [Google Scholar] [CrossRef]
- Volpato, G.T.; Calderon, I.M.P.; Sinzato, S.; Campos, K.E.; Rudge, M.V.C.; Damasceno, D.C. Effect of Morus nigra aqueous extract treatment on the maternal-fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2011, 138, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Samappito, S.; Butkhup, L. Effect of skin contact treatments on the aroma profile and chemical components of mulberry (Morus alba Linn.) wines. Afr. J. Food Sci. 2010, 4, 52–61. [Google Scholar]
- Abouzed, T.K.; Sadek, K.M.; Ghazy, E.W.; Abdo, W.; Kassab, M.A.; Hago, S.; Abdel-Wahab, S.; Mahrous, E.A.; Abdel-Sattar, E.; Assar, D.H. Black mulberry fruit extract alleviates streptozotocin-induced diabetic nephropathy in rats: Targeting TNF-α inflammatory pathway. J. Pharm. Pharmacol. 2020, 72, 1615–1628. [Google Scholar] [CrossRef]
- Ştefănuţ, M.N.; Căta, A.; Pop, R.; Tănasie, C.; Boc, D.; Ienaşcu, I.; Ordodi, V. Anti-hyperglycemic effect of bilberry, blackberry and mulberry ultrasonic extracts on diabetic rats. Plant Foods Hum. Nutr. 2013, 68, 378–384. [Google Scholar] [CrossRef]
- Lim, S.H.; Choi, C.I. Pharmacological properties of Morus nigra L. (Black mulberry) as a promising nutraceutical resource. Nutrients 2019, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Fabroni, S.; Ballistreri, G.; Amenta, M.; Romeo, F.V.; Rapisarda, P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. J. Sci. Food Agric. 2016, 96, 4713–4723. [Google Scholar] [CrossRef]
- Xu, M.; Hu, J.; Zhao, W.; Gao, X.; Jiang, C.; Liu, K.; Liu, B.; Huang, F. Quercetin differently regulates insulin-mediated glucose transporter 4 translocation under basal and inflammatory conditions in adipocytes. Mol. Nutr. Food Res. 2014, 58, 931–941. [Google Scholar] [CrossRef]
- Yi, H.; Peng, H.; Wu, X.; Xu, X.; Kuang, T.; Zhang, J.; Du, L.; Fan, G. The therapeutic effects and mechanisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid. Med. Cell. Longev. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, M.J.; Choi, H.N.; Jeong, S.M.; Lee, Y.M.; Kim, J.I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011, 5, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2018, 10, 713. [Google Scholar] [CrossRef] [Green Version]
- Adeyi, O.E.; Somade, O.T.; Ajayi, B.O.; James, A.S.; Adeboye, T.R.; Olufemi, D.A.; Oyinlola, E.V.; Sanyaolu, E.T.; Mufutau, I.O. The anti-inflammatory effect of ferulic acid is via the modulation of NFκB-TNF-α-IL-6 and STAT1-PIAS1 signaling pathways in 2-methoxyethanol-induced testicular inflammation in rats. Phytomedicine Plus 2023, 3, 100464. [Google Scholar] [CrossRef]
- Rai, V.; Jamuna, B.; Joceline, C.; Moreira, S.; Joceline, C.; Moreira, S. Science against microbial pathogens: Communicating current research and technological advances. Microbiol. Ser. 2011, 1, 197. [Google Scholar]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising natural products with diverse pharmacological activities. Molecules 2021, 26, 3807. [Google Scholar] [PubMed]
- Mihok, E.; György, É.; Máthé, E. The Carpathian lingonberry, raspberry and blackberry fruit extracts feature variable antimicrobial efficiency. Acta Agrar. Debreceniensis 2019, 23, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Hajaji, S.; Jabri, M.A.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; B’chir, F.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Exp. Parasitol. 2017, 183, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules 2018, 23, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budiman, A.; Aulifa, D.L.; Kusuma, A.S.W.; Sulastri, A. Antibacterial and antioxidant activity of black mulberry (Morus nigra L.) extract for acne treatment. Pharmacogn. J. 2017, 9, 611–614. [Google Scholar] [CrossRef] [Green Version]
- Khalid, N.; Fawad, S.A.; Ahmed, I. Antimicrobial activity, phytochemical profile and trace minerals of black mulberry (Morus nigra L.) fresh juice. Pak. J. Bot. 2011, 43, 91–96. [Google Scholar]
- Wang, S.; Melnyk, J.P.; Tsao, R.; Marcone, M.F. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Res. Int. 2011, 44, 14–22. [Google Scholar] [CrossRef]
- Shahat, A.A.; Cos, P.; De Bruyne, T.; Apers, S.; Hammouda, F.M.; Ismail, S.I.; Azzam, S.; Claeys, M.; Goovaerts, E.; Pieters, L.; et al. Antiviral and antioxidant activity of flavonoids and proanthocyanidins from Crataegus sinaica. Planta Med. 2002, 68, 539–541. [Google Scholar] [CrossRef]
- Youdim, K.A.; Joseph, J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic. Biol. Med. 2001, 30, 583–594. [Google Scholar] [CrossRef]
- Olas, B. Berry phenolic antioxidants—Implications for human health? Front. Pharmacol. 2018, 26, 78. [Google Scholar] [CrossRef]
- Nowak, R.; Olech, M.; Nowacka, N. Plant polyphenols as chemopreventive agents. Polyphen. Hum. Health Dis. 2013, 2, 1289–1307. [Google Scholar] [CrossRef]
- Wang, S.Y.; Jiao, H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agric. Food Chem. 2000, 48, 5677–5684. [Google Scholar] [CrossRef]
- Shih, P.H.; Yeh, C.T.; Yen, G.C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 2007, 55, 9427–9435. [Google Scholar] [CrossRef]
- Yiğit, D.; Mavi, A.; Aktaş, M. Antıoxıdant actıvıtıes of black mulberry (Morus nigra). Fen Bilim. Enstitüsü Derg. 2008, 1, 223–232. [Google Scholar]
- Koczka, N.; Stefanovits-Bányai, É.; Prokaj, E. Element composition, total phenolics and antioxidant activity of wild and cultivated blackberry (Rubus fruticosus L.) fruits and leaves during the harvest time. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of mulberry fruit extracts. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef]
- Bae, S.H.; Suh, H.J. Antioxidant activities of five different mulberry cultivars in Korea. LWT 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Li, J.; Shi, C.; Shen, D.; Han, T.; Wu, W.; Lyu, L.; Li, W. Composition and antioxidant activity of anthocyanins and non-anthocyanin flavonoids in blackberry from different growth stages. Foods 2022, 11, 2902. [Google Scholar] [CrossRef]
- Feng, R.; Wang, Q.; Tong, W.; Xiong, J.; Wei, Q.; Zhou, W.; Yin, Z.; Jia, R.; Song, X.; Zou, Y.; et al. Extraction and antioxidant activity of flavonoids of Morus nigra. Int. J. Clin. Exp. Med. 2015, 8, 22328–22336. [Google Scholar]
- Miller, D.D.; Li, T.; Liu, R.H. Antioxidants and phytochemicals. Ref. Modul. Biomed. Sci. 2014, 1–13. [Google Scholar] [CrossRef]
- Chaves, V.C.; Boff, L.; Vizzotto, M.; Calvete, E.; Reginatto, F.H.; Simões, C.M. Berries grown in Brazil: Anthocyanin profiles and biological properties. J. Sci. Food Agric. 2018, 98, 4331–4338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Rapjut, S.; Wilber, A. Roles of inflammation in cancer initiation, progression, and metastasis. Front. Biosci. (Schol. Ed.) 2010, 2, 810–818. [Google Scholar]
- Lail, H.L.; Feresin, R.G.; Hicks, D.; Stone, B.; Price, E.; Wanders, D. Berries as a treatment for obesity-induced inflammation: Evidence from preclinical models. Nutrients 2021, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Kaume, L.; Gilbert, W.C.; Brownmiller, C.; Howard, L.R.; Devareddy, L. Cyanidin 3-O-β-d-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats. J. Funct. Foods 2012, 4, 480–488. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health beneficts of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Serra, D.; Paixão, J.; Nunes, C.; Dinis, T.C.P.; Almeida, L.M. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: Comparison with 5-aminosalicylic acid. PLoS ONE 2013, 8, e0073001. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.H.; De Mejia, E.G.; Fan, J.; Lila, M.A.; Yousef, G.G. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res. 2013, 57, 1182–1197. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, B.; Yang, Y.; Pham, T.X.; Park, Y.K.; Manatou, J.; Koo, S.I.; Chun, O.K.; Lee, J.Y. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NF-κB independent of NRF2-mediated mechanism. J. Nutr. Biochem. 2014, 25, 404–411. [Google Scholar] [CrossRef]
- Sangiovanni, E.; Vrhovsek, U.; Rossoni, G.; Colombo, E.; Brunelli, C.; Brembati, L.; Trivulzio, S.; Gasperotti, M.; Mattivi, F.; Bosisio, E.; et al. Ellagitannins from Rubus berries for the control of gastric inflammation: In vitro and in vivo studies. PLoS ONE 2013, 8, e0071762. [Google Scholar] [CrossRef] [Green Version]
- González-Sarrías, A.; Larrosa, M.; Toms-Barberán, F.A.; Dolara, P.; Espín, J.C. NF-κB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br. J. Nutr. 2010, 104, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wang, Q. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Biomed. Res. 2017, 28, 3568–3573. [Google Scholar]
- Kang, T.H.; Hur, J.Y.; Kim, H.B.; Ryu, J.H.; Kim, S.Y. Neuroprotective effects of the cyanidin-3-O-β-D-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 2006, 391, 122–126. [Google Scholar] [CrossRef]
- Tavares, L.; Figueira, I.; McDougall, G.J.; Vieira, H.L.A.; Stewart, D.; Alves, P.M.; Ferreira, R.B.; Santos, C.N. Neuroprotective effects of digested polyphenols from wild blackberry species. Eur. J. Nutr. 2013, 52, 225–236. [Google Scholar] [CrossRef]
- Subash, S.; Essa, M.M.; Al-Adawi, S.; Memon, M.A.; Manivasagam, T.; Akbar, M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen. Res. 2014, 9, 1557–1566. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R.; McPhee, D.J. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Chen, G.; Bower, K.A.; Xu, M.; Ding, M.; Shi, X.; Ke, Z.J.; Luo, J. Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth: Role of glycogen synthase kinase 3 beta. Neurotox. Res. 2009, 15, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Sukprasansap, M.; Chanvorachote, P.; Tencomnao, T. Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells. BMC Complement. Med. Ther. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Demeneghi, R.; Rodríguez-Landa, J.F.; Guzmán-Gerónimo, R.I.; Acosta-Mesa, H.G.; Meza-Alvarado, E.; Vargas-Moreno, I.; Herrera-Meza, S. Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. Int. J. Food Sci. Nutr. 2019, 70, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Wang, N.; Zou, Y.; Fahim, M.; Zhou, Y.; Yang, H.; Liu, Y.; Li, H. Black mulberry (Morus nigra) fruit extract alleviated AD-like symptoms induced by toxic Aβ protein in transgenic Caenorhabditis elegans via insulin DAF-16 signaling pathway. Food Res. Int. 2022, 160, 111696. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S. World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418–419. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, M.S. Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutr. J. 2004, 3, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kristo, A.S.; Klimis-Zacas, D.; Sikalidis, A.K. Protective role of dietary berries in cancer. Antioxidants 2016, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Dharmawansa, K.V.S.; Hoskin, D.W.; Vasantha, H.P.R. Chemopreventive effect of dietary anthocyanins against gastrointestinal cancers: A review of recent advances and perspectives. Int. J. Mol. Sci. 2020, 21, 6555. [Google Scholar] [CrossRef]
- Tatar, M.; Bagheri, Z.; Varedi, M.; Naghibalhossaini, F. Blackberry extract inhibits telomerase activity in human colorectal cancer cells. Nutr. Cancer 2019, 71, 461–471. [Google Scholar] [CrossRef]
- Feng, R.; Bowman, L.L.; Lu, Y.; Leonard, S.S.; Shi, X.; Jiang, B.H.; Castranova, V.; Vallyathan, V.; Ding, M. Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway. Nutr. Cancer 2004, 50, 80–89. [Google Scholar] [CrossRef]
- Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Yang, S.-F.; Hsieh, Y.-S. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr. Cancer 2005, 53, 37–41. [Google Scholar] [CrossRef]
- Qian, Z.; Wu, Z.; Huang, L.; Qiu, H.; Wang, L.; Li, L.; Yao, L.; Kang, K.; Qu, J.; Wu, Y.; et al. Mulberry fruit prevents LPS-induced NF-ΚB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci. Rep. 2015, 5, 17348. [Google Scholar] [CrossRef] [Green Version]
- Namara, K.M.; Alzubaidi, H.; Jackson, J.K. Cardiovascular disease as a leading cause of death: How are pharmacists getting involved? Integr. Pharm. Res. Pract. 2019, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 2, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Rambaran, T.F.; Nembhard, N.; Bowen-Forbes, C.S.; Alexander-Lindo, R.L. Hypoglycemic effect of the fruit extracts of two varieties of Rubus rosifolius. J. Food Biochem. 2020, 44, 1–11. [Google Scholar] [CrossRef]
- Ghorbani, A.; Hooshmand, S. Protective effects of Morus nigra and its phytochemicals against hepatotoxicity: A review of preclinical studies. Pharmacology 2021, 106, 233–243. [Google Scholar] [CrossRef]
- Jiang, Y.; Dai, M.; Nie, W.J.; Yang, X.R.; Zeng, X.C. Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats. J. Ethnopharmacol. 2017, 200, 228–235. [Google Scholar] [CrossRef]
- Freedman, J.E.; Parker, C.; Li, L.; Perlman, J.A.; Frei, B.; Ivanov, V.; Deak, L.R.; Iafrati, M.D.; Folts, J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 2001, 103, 2792–2798. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013, 54, 1195–1207. [Google Scholar] [CrossRef]
Nutrient (Unit) | Basic Chemical Composition | |
---|---|---|
Raw Blackberry | Raw Black Mulberry | |
Water (g/100 g) | 88.2 | 87.7 |
Energy (kcal/100 g) | 43–125.25 | 43 |
Macronutrients | ||
Protein (g/100 g) | 1.39–2.4 | 1.44 |
Total lipid (fat) | 0.49–1.22 | 0.39 |
Fatty acids, total monounsaturated (g/100 g) | 0.047 | 0.041 |
Fatty acids, total polyunsaturated (g/100 g) | 0.28 | 0.207 |
Ash (g/100 g) | 0.37–0.58 | 0.69 |
Carbohydrate, by difference (g/100 g) | 9.61–26.2 | 9.8 |
Dietary fiber (g/100 g) | 5.3 | 1.7 |
Total sugars (g/100 g) | 4.78–16.3 | 10.14–21.32 |
Sucrose (g/100 g) | 0.07–0.34 | 1.08–2.14 |
Glucose (g/100 g) | 2.31–8.1 | 7.18–10.33 |
Fructose (g/100 g) | 2.4–7.8 | 1.88–8.85 |
Maltose (g/100 g) | 0.07 | - |
Galactose (g/100 g) | 0.03 | - |
Micronutrients | ||
Minerals | ||
Calcium, Ca (mg/100 g) | 12.5–29 | 39–502 |
Iron, Fe (mg/100 g) | 0.62–3.4 | 1.85–77.6 |
Magnesium, Mg (mg/100 g) | 20 | 18–386 |
Phosphorus, P (mg/100 g) | 22 | 38–2520 |
Potassium, K (mg/100 g) | 11.9–162 | 194–2234 |
Sodium, Na (mg/100 g) | 1 | 5.9–302 |
Zinc, Zn (mg/100 g) | 0.53 | 0.10–62 |
Cooper, Cu (mg/100 g) | 0.165 | 0.06–0.10 |
Manganese, Mn (mg/100 g) | 0.646 | 0.40–19 |
Selenium, Se (µg/100 g) | 0.4 | 0.008–0.6 |
Organic Acid | R. ulmifolius | R. fruticosus | M. nigra |
---|---|---|---|
Citric acid | - | 125.54 mg per 100 g dw | 1084–7020 mg per 100 g fw |
Oxalic acid | 71 mg per 100 g fw | 59.51 mg per 100 g dw | 450–1250 mg per 100 g fw |
Quinic acid | 119 mg per 100 g fw | - | - |
Malic acid | 29 mg per 100 g fw | 5706.37 mg per 100 g dw | 1323–13,650 mg per 100 g fw |
Succinic acid | - | - | 342 mg per 100 g fw |
Shikimic acid | 11.33 mg per 100 g fw | - | 1.36 mg per 100 g fw |
Tartaric acid | - | - | 220–860 mg per 100 g fw |
Ascorbic acid | 6.66 mg per 100 g fw | 6.00 mg per 100 g dw | 12.81–15.37 mg per 100 g fw |
Fumaric acid | tr | 230.25 mg per 100 g dw | - |
Total | 238 mg per 100 g fw | 6127.67 mg per 100 g dw | 2951 mg per 100 g fw |
Vitamins | Raw Blackberry | Raw Black Mulberry |
---|---|---|
Vitamin C (mg/100 g) | 21.0 | 19.3–36.4 |
Thiamin (mg/100 g) | 0.02 | 0.029 |
Riboflavin (mg/100 g) | 0.026 | 0.04–0.10 |
Niacin (mg/100 g) | 0.646 | 0.62–1.60 |
Vitamin B-6 (mg/100 g) | 0.03 | 0.05 |
Folate total (µg /100 g) | 25.0 | 6.0 |
Folate, DFE (µg /100 g) | 25.0 | 6.0 |
Folate, food (µg /100 g) | 25.0 | 6.0 |
Choline, total (mg/100 g) | 8.5 | 12.3 |
Vitamin K (phylloquinone) (µg /100 g) | 19.8 | 7.8 |
Tocopherols | R. ulmifolius (mg per 100 g fw) | R. fruticosus (mg per g Extract) | M. nigra (mg per g Extract) |
---|---|---|---|
α-tocopherol | 1.15–3.38 | 6.1 | 43 |
β-tocopherol | 0.02–0.24 | nd | 1.27 |
γ-tocopherol | 1.34–3.73 | nd | 12.5 |
δ-tocopherol | 0.9–3.69 | nd | 5.5 |
Total | 5.1–13.48 | 6.1 | 62 |
Carotenoids | R. fruticosus | M. nigra |
---|---|---|
Carotene, beta (µg per 100 g) | 128.0 | 9.0 |
Carotene, alfa (µg per 100 g) | 0.0 | 12.0 |
Vitamin A, RAE (µg per 100 g) | 11.0 | 1.0 |
Vitamin A, IU (µg per 100 g) | 214.0 | 25.0 |
Lutein + zeaxanthin (µg per 100 g) | 118.0 | 136.0 |
Volatile Compounds | Fruit Species | Volatile Compounds | Fruit Species |
---|---|---|---|
Esters | |||
Methoxyphenyl oxime | R. ulmifolius | Methyl salicylate | R. ulmifolius |
Ethyl octanoate | R. ulmifolius | Methyl acetate | M. nigra |
Etyl acetate | M. nigra | Etyl propanoate | M. nigra |
Etyl 2-metylbutanoate | M. nigra | Propyl acetate | M. nigra |
Ethyl 3-metylbutanoate | M. nigra | Etyl butanoate | M. nigra |
Isopentyl acetate | M. nigra | Etyl pentanoate | M. nigra |
Ethyl 2-hydroxyhexanoate | M. nigra | Ethyl lactate | M. nigra |
Isoamyl lactate | M. nigra | Ethyl octanoate | M. nigra |
Ethyl decanoate | M. nigra | Ethyl 9-decenoate | M. nigra |
Diethyl succinate | M. nigra | Benzyl acetate | M. nigra |
2-Phenylethyl acetate | M. nigra | Methyl salicytate | M. nigra |
Ethyl dodecanoate | M. nigra | Diethyl pentanedioate | M. nigra |
Ethyl-3phenylpropanoate | M. nigra | Ethyl phenoylethanoate | M. nigra |
Ethyl tetradecanoate | M. nigra | Ethyl hexadecanoate | M. nigra |
Metyl-hexanoate | R. futicosus | Ethyl-hexanoate | R. fruticosus M nigra |
Ethyl benzoate | R. futicosus | Methyl salicylate | R. futicosus |
Terpenes | |||
D-limonene | R. ulmifolius | b-Linalool | R. ulmifolius |
L-α-terpineol | R. ulmifolius | b-Myricene | R. ulmifolius |
Terpenoids | |||
α-Thujene | R. futicosus | β-Myrcene | R. futicosus |
α-Pinene | R. futicosus | α-Phellandrene | R. futicosus |
1-Octanol | R. futicosus M. nigra | Terpinolene | R. futicosus |
Camphene | R. futicosus | Limonene | R. futicosus |
o-Cimene | R. futicosus | α-Terpinene | R. futicosus |
Linalool | R. futicosus | Linalool oxide | R. futicosus |
trans Limonene oxide | R. futicosus | Isoborneol | R. futicosus |
Isopinocarveol | R. futicosus | Terpinen-4-ol | R. futicosus |
(-)-Carvone | R. futicosus | p-Cymen-8-ol | R. futicosus |
Geraniol | R. futicosus | α-Copaene | R. futicosus |
Vitispirane | R. futicosus | α-Terpineol | R. futicosus |
Theaspirane | R. futicosus | ||
Aldehydes | |||
Pentanal | R. ulmifolius | Hexanal | R. futicosus R. ulmifolius |
E-2-Pentenal | R. ulmifoliu | Nonanal | R. futicosus R. ulmifolius |
E-2-Hexenal | R. ulmifolius | Z-2-Heptenal | R. ulmifolius |
2-Hexenal | R. futicosus | Octanal | R. futicosu |
Heptanal | R. futicosus | Decanal | R. futicosus |
Nonenal | R. futicosus | p-Mentenal | R. futicosus |
Acetaldehyde | M. nigra | Benzaldehyde | R. futicosus M. nigra |
Alcohols | |||
2-Ethyl-1-pentanol | R. ulmifolius | Phenylthyl alcohol | M. nigra |
1-Penten-3-ol | R. ulmifolius | 1-Octen-3-ol | R. ulmifolius |
Isoamyl alcohol | R. ulmifolius | Sulcatol | R. ulmifolius |
2-Heptanol | R. ulmifolius R. futicosus M. nigra | (s)-3-Ethyl-4- methylpentanol | R. ulmifolius |
Z-2-Penten-ol | R. ulmifolius | Z-5-Octen-1-ol | R. ulmifolius |
1-Hexanol | R. ulmifolius M. nigra | Benzyl alcohol | M. nigra R. ulmifolius |
1-Heptanol | R. futicosus R. ulmifolius | E-2-Hexen-1-ol | R. ulmifolius |
Z-3-Hexen-1-ol | R. ulmifolius | 2-Tetradecanol | M. nigra |
2-Butanol | M. nigra | 2-Pentadecanol | M. nigra |
1-Propanol | M. nigra | 2-Nonanol | M. nigra |
3-Methyl-2-butanol | M. nigra | 1-Octanol | M. nigra R. fruticosus |
2-Metyl-1-butanol | M. nigra | 4-Methyl-1-pentanol | M. nigra |
3-Methyl-1-butanol | M. nigra | 3-Methyl-1-pentanol | M. nigra |
3-Methyl-3-buten-1-ol | M. nigra | Terpene-4-ol | M. nigra |
1,3-Butanediol | M. nigra | 2-Decanol | M. nigra |
2-Undecanol | M. nigra | Ethanol | M. nigra |
2-Methyl-1-propanol | M. nigra | 2,3-Butanediol | M. nigra |
2-Butyl-1-octanol | M. nigra | 3-Ethyl-4-methyl-pentanol | M. nigra |
Ketones | |||
Methyl ethyl ketone | R. futicosus | Damascenone | R. futicosus |
2-Heptanone | R. futicosus | Verbenone | R. futicosus |
3-Hydroxy-2-butanone | M. nigra | ||
Hydrocarbons | |||
Pentadecane | M. nigra | Dodecane | M. nigra |
Nonadecane | M. nigra | Tridecane | M. nigra |
Heptane | R. futicosus | Tetradecane | M. nigra |
Toluene | R. futicosus | ||
Acids | |||
Hexanoic acid | M. nigra | Acetic acid | M. nigra |
Octanoic acid | M. nigra | Butanoic acid | M. nigra |
Isovaleric acid | M. nigra | ||
Carbonyls | |||
1-Penten-3-one | R. ulmifolius | 2-Heptanone | R. ulmifolius |
Sulcatone | R. ulmifolius | 2-Methyl butanoic acid | R. ulmifolius |
Phenols | |||
2,4-Di-tert-butylphenol | M. nigra | 2-Methoxyphenol | M. nigra |
4-Methyl-2-methoxyphenol | M. nigra | ||
Acids | |||
Hexanoic acid | M. nigra | Acetic acid | M. nigra |
Octanoic acid | M. nigra | Butanoic acid | M. nigra |
Isovaleric acid | M. nigra |
Phenolic Compounds | R. fruticosus | R. ulmifolius | M. nigra | References |
---|---|---|---|---|
Phenolic Acids | ||||
Hydroxybenzoic acids | ||||
p-Hydroxybenzoic acid | 1.44 mg per 100 g fw | - | 0.053–0.47 mg per 100 g dw | [36,65] |
Gallic Acid | 145.85 mg per 100 g fw | 268.72 mg per 100 g fw | 21.83–40.90 mg per 100 g fw | [44,65,68] |
Syringic acid | - | 40.84 µg per 100 g dw | - | [69] |
Vanillic acid | 14.72 mg per 100 g | - | 0.014–0.10 mg per 100 g dw | [37,68] |
Salicylic acid | - | 296.62 µg per 100 g dw | 0.007–0.12 mg per 100 g dw | [37,69] |
Ellagic acid | 30.01–33.81 mg per 100 g fw | - | 1.36–6.32 mg per 100 g fw | [44,70] |
Hydroxycinnamic acids | ||||
Caffeic acid | - | 75.52 µg per100 g dw | 6.14–21.93 mg per 100 g fw | [44,69] |
Ferulic acid | 2.99–22.09 mg per 100 g fw | 388.59 µg per 100 g dw | 0.009–00.056 mg per 100 g dw | [37,69,70] |
Chlorogenic acid | - | - | 43.76–97.59 mg per 100 g fw | [44] |
p-Coumaric acid | 0.40–2.08 mg per 100 g fw | 39.65 µg per 100 g dw | - | [69,70] |
Sinapic acid | - | 228.69 µg per 100 g dw | 0.013–0.11 mg per 100 g dw | [37,69] |
Flavonoids | ||||
Flavonols | ||||
Quercetin | 20.62 mg per 100 g fw | 5509.61 µg per 100 g dw | 2.33–11.25 mg per 100 g fw | [44,65,69] |
Rutin | 4.16–6.45 mg per 100 g | - | 32.06–133.60 mg per 100 g fw | [44,68] |
Quercetin 3-O-galactoside | 5.44 mg per 100 g fw | - | - | [71] |
Quercetin 3-O-glucoside | 18.18 mg per 100 g fw | 36.46 mg per 100 g | - | [68,71] |
Kaempferol | 0.63 mg per 100 g | 399.48 µg per 100 g dw | 0.009–0.17 mg per 100 g dw | [37,68,69] |
Flavan-3-ols | ||||
(+)-Catechin | 265.75–312.86 mg per 100 g fw | 156.61 µg per 100 g dw | 2.28–10.54 mg per 100 g fw | [44,69,70] |
(+)-Epicatechin | - | 250.82 µg per 100 g dw | 0.004–0.054 mg per 100 g dw | [37,69] |
(-)-Epicatechin | 94.29 mg per 100 g fw | - | - | [65] |
Flavone | ||||
Myricetin | 9.99 mg per 100 g fw | - | - | [70] |
Luteolin | - | 5.97 µg per 100 g dw | 0.098–2.26 mg per 100 g dw | [37,69] |
Flavanone | ||||
Naringenin | - | 28.34 µg per 100 g dw | - | [69] |
Anthocyanins | ||||
Cyanidin 3-O-glucoside | 19.49–86.73 mg per 100 g fw | 92.3-335.6 mg per 100 g | 6.01 mg per g extract | [39,49,71] |
Cyanidin O-hexoside | - | 3.76 mg per g extract | - | [49] |
Cyanidin 3,5-diglucoside | 55,447.28 µg per 100 g | - | 0.51–7.28 mg per 100 g dw | [37,72] |
Cyanidin 3-O-rutinoside | 330,616.73 µg per 100 g | - | 1.00–9.21 mg per 100 g dw | [37,72] |
Cyanidin O-rhamnoside-O-hexoside | - | - | 2.43 mg per g extract | [49] |
Cyanidin O-pentoside | - | 1.27 mg per g extract | - | [49] |
Cyanidin 3-O-xyloside | 2.62 mg per g extract | 12.1–47.1 mg per 100 g | - | [13,39] |
Cyanidin 3-O-malonylglucoside | - | 5.7–20.9 mg per 100 g | - | [39] |
Cyanidin 3-O-dioxalylglucoside | 1.20–2.04 mg per g extract | 16.90–107.50 mg per 100 g | - | [39,71] |
Delphinidin 3-O-glucoside | - | - | 0.24–7.42 mg per 100 g dw | [37] |
Pelargonidin 3-O-glucoside | 102,936.30 µg per 100 g | - | 0.012–0.068 mg per 100 g dw | [37,72] |
Pelargonidin 3-O-rutinoside | 4.23 mg per 100 g fw | - | - | [71] |
Antimicrobial Activity | ||||||||
---|---|---|---|---|---|---|---|---|
Microorganisms | M. nigra juice (100 µL) | R. fruticosus | R. ulmifolius | |||||
Crude Extract | Ethanolic Extract | Methanolic Extract (15 µL) | Hydroethanolic Extract | |||||
Mean Zone of Inhibition (mm) | MIC | MBC | MIC | MBC | ||||
Gram-negative bacteria | ||||||||
Escherichia coli | 9.98 | 9.37 | 16.70 | 28 | 4.03 | 8.92 | 5 | >20 |
Klebsiella pneumoniae | - | - | - | - | - | - | >20 | >20 |
Morganella morganii | - | - | - | - | - | - | 5 | >20 |
Porteus mirabilis | - | - | - | - | - | - | 10 | >20 |
Proteus vulgaris | - | 12.75 | 20.53 | - | - | - | - | - |
Pseudomonas aeruginosa | 19.87 | - | - | - | - | - | >20 | >20 |
Pseudomonas baetica | - | 9.76 | 14.30 | - | - | - | - | - |
Salmonella typhimurium | 11.73 | - | - | 22.5 | 4.13 | 8.24 | - | - |
Salmonella Hartford | - | 14.49 | 9.54 | - | - | - | - | - |
Gram-positive bacteria | ||||||||
Enterococcus faecium | - | - | - | 16 | 4.76 | 8.70 | - | - |
Enterococcus faecalis | 16.03 | - | - | - | - | - | 5 | >20 |
Listeria monocytogenes | - | - | - | - | - | - | 5 | >20 |
Bacillus spizizenii | 19.68 | - | - | - | - | - | - | - |
Bacillus cereus | - | 11.20 | 14.00 | - | - | - | - | - |
Bacillus subtilus | 18.46 | 8.10 | 14.04 | - | - | - | - | - |
Bacillus mojavensis | - | 9.79 | 15.43 | - | - | - | - | - |
Corynebacterium diphtheriae | 15.57 | - | - | - | - | - | - | - |
Micrococcus luteus | - | 10.64 | 15.00 | - | - | - | - | - |
Saccharomyces cerevisiae | - | - | 11.52 | - | - | - | - | - |
Staphylococus aureus | 17.37 | 7.28 | 15.64 | 39 | 3.22 | 7.17 | - | - |
Streptococcus agalactiae | - | - | - | 50 | 2.29 | 4.38 | - | - |
MRSA | - | - | - | - | - | - | 10 | >20 |
MSSA | - | - | - | - | - | - | - | >20 |
Fungi | ||||||||
Candida albicans | - | - | - | 39 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. https://doi.org/10.3390/ijms241512024
Martins MS, Gonçalves AC, Alves G, Silva LR. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. International Journal of Molecular Sciences. 2023; 24(15):12024. https://doi.org/10.3390/ijms241512024
Chicago/Turabian StyleMartins, Mariana S., Ana C. Gonçalves, Gilberto Alves, and Luís R. Silva. 2023. "Blackberries and Mulberries: Berries with Significant Health-Promoting Properties" International Journal of Molecular Sciences 24, no. 15: 12024. https://doi.org/10.3390/ijms241512024
APA StyleMartins, M. S., Gonçalves, A. C., Alves, G., & Silva, L. R. (2023). Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. International Journal of Molecular Sciences, 24(15), 12024. https://doi.org/10.3390/ijms241512024