Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model
<p>Shenzhen city and the study region: (<b>a</b>) the position of the study region (red box); (<b>b</b>) the road network in the study area.</p> "> Figure 2
<p>The base distribution in the study region: (<b>a</b>) the facility points of interest (POI) counts in 98 communities; (<b>b</b>) the POI counts for the 4372 basic spatial units (BSUs).</p> "> Figure 3
<p>The spatial distribution of the hypothetical network and simulated network events: (<b>a</b>) a 10-km hypothetical network; (<b>b</b>) the number of randomly distributed 5000 network events along 80 BSUs.</p> "> Figure 4
<p>Distributions of relative risk: (<b>a</b>) crude risk; (<b>b</b>) smoothed risk.</p> "> Figure 5
<p>Distributions of spatial clusters, using: (<b>a</b>) ILINCS adjusted for the base distribution; (<b>b</b>) ILINCS using posterior risk and not adjusted for the base distribution; (<b>c</b>) GLINCS adjusted for the base distribution; (<b>d</b>) GLINCS using posterior risk and not adjusted for the base distribution.</p> "> Figure 6
<p>The results of local statistics: (<b>a</b>) ILINCS adjusted for the base distribution; (<b>b</b>) ILINCS using posterior risk and without adjustment for the base distribution; (<b>c</b>) GLINCS adjusted for the base distribution; (<b>d</b>) GLINCS using posterior risk without adjustment for the base distribution.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Hierarchical Bayesian Models for Network-Constrained Data
3.2. The ILINCS and GLINCS Approaches
3.3. POI Data and Analysis Design
4. Results and Discussion
4.1. A Simplified Hypothetical Network
4.2. Spatial Patterns of Urban Facilities in Futian
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gatrell, A.C. Distance and Space: A Geographical Perspective; Oxford University: Oxford, UK, 1983. [Google Scholar]
- Haining, R.P. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Okabe, A.; Okunuki, K.; Shiode, S. SANET: A toolbox for spatial analysis on a network. Geogr. Anal. 2006, 38, 57–66. [Google Scholar] [CrossRef]
- Yamada, I.; Thill, J.C. Local indicators of network-constrained clusters in spatial point patterns. Geogr. Anal. 2007, 39, 268–292. [Google Scholar] [CrossRef]
- Okabe, A.; Satoh, T.; Sugihara, K. A kernel density estimation method for networks, its computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 2009, 23, 7–32. [Google Scholar] [CrossRef]
- Black, W.R. Network autocorrelation in transport network and flow systems. Geogr. Anal. 1992, 24, 207–222. [Google Scholar] [CrossRef]
- Okabe, A.; Yomono, H.; Kitamura, M. Statistical analysis of the distribution of points on a network. Geogr. Anal. 1995, 27, 152–175. [Google Scholar] [CrossRef]
- Okabe, A.; Kitamura, M. A computational method for market area analysis on a network. Geogr. Anal. 1996, 28, 330–349. [Google Scholar] [CrossRef]
- Okabe, A.; Okunuki, K. A computational method for estimating the demand of retail stores on a street network and its implementation in GIS. Trans. GIS 2001, 5, 209–220. [Google Scholar] [CrossRef]
- Yamada, I.; Thill, J.C. Comparison of planar and network K-functions in traffic accident analysis. J. Transp. Geogr. 2004, 12, 149–158. [Google Scholar] [CrossRef]
- Flahaut, B.; Mouchart, M.; Martin, E.S.; Thomas, I. The local spatial autocorrelation and the kernel method for identifying black zones: A comparative approach. Accid. Anal. Prev. 2003, 35, 991–1004. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Yao, S. The identification of traffic crash hot zones under the link-attribute and event-based approaches in a network-constrained environment. Comput. Environ. Urban Syst. 2013, 41, 249–261. [Google Scholar] [CrossRef]
- Xie, Z.; Yan, J. Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban. 2008, 32, 396–406. [Google Scholar] [CrossRef]
- Nie, K.; Wang, Z.; Du, Q.; Ren, F.; Tian, Q. A network-constrained integrated method for detecting spatial cluster and risk location of traffic crash: A case study from Wuhan, China. Sustainability 2015, 7, 2662–2677. [Google Scholar] [CrossRef]
- Yamada, I.; Thill, J.C. Local indicators of network-constrained clusters in spatial patterns represented by a link attribute. Ann. Assoc. Am. Geogr. 2010, 100, 269–285. [Google Scholar] [CrossRef]
- Miller, H.J. Potential contributions of spatial analysis to geographic information systems for transportation (GIS-T). Geogr. Anal. 1999, 31, 373–399. [Google Scholar] [CrossRef]
- Miller, H.J.; Wentz, E.A. Representation and spatial analysis in geographic information systems. Ann. Assoc. Am. Geogr. 2003, 93, 574–594. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Q.; Liang, S.; Nie, K.; Lin, D.; Chen, Y.; Li, J. Analysis of the spatial variation of hospitalization admissions for hypertension disease in Shenzhen, China. Int. J. Environ. Res. Public Health 2014, 11, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, A.E.; Diggle, P.; Guttorp, P.; Fuentes, M. Handbook of Spatial Statistics; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Okabe, A.; Sugihara, K. Spatial Analysis along Networks: Statistical and Computational Methods; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Black, W.R.; Thomas, I. Accidents on Belgium’s motorways: A network autocorrelation analysis. J. Transp. Geogr. 1998, 6, 23–31. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Okabe, A.; Yamada, I. The K-function method on a network and its computational implementation. Geogr. Anal. 2001, 33, 271–290. [Google Scholar] [CrossRef]
- Congdon, P. Applied Bayesian Modelling; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Lawson, A.B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Li, G.; Haining, R.; Richardson, S.; Best, N. Space–time variability in burglary risk: A Bayesian spatio-temporal modelling approach. Spat. Stat. 2014, 9, 180–191. [Google Scholar] [CrossRef]
- Pirani, M.; Gulliver, J.; Fuller, G.W.; Blangiardo, M. Bayesian spatiotemporal modelling for the assessment of short-term exposure to particle pollution in urban areas. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 319–327. [Google Scholar] [CrossRef] [PubMed]
- MacNab, Y.C. Bayesian spatial and ecological models for small-area accident and injury analysis. Accid. Anal. Prev. 2004, 36, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Best, N.; Richardson, S.; Thomson, A. A comparison of Bayesian spatial models for disease mapping. Stat. Methods Med. Res. 2005, 14, 35–59. [Google Scholar] [CrossRef] [PubMed]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Bernardinelli, L.; Clayton, D.; Montomoli, C. Bayesian estimates of disease maps: How important are priors? Stat. Med. 1995, 14, 2411–2431. [Google Scholar] [CrossRef] [PubMed]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D.J. WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Linde, A.V.D. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 583–639. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Myint, S.W. An exploration of spatial dispersion, pattern, and association of socio-economic functional units in an urban system. Appl. Geogr. 2008, 28, 168–188. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- She, B.; Zhu, X.; Ye, X.; Guo, W.; Su, K.; Lee, J. Weighted network Voronoi Diagrams for local spatial analysis. Comput. Environ. Urban Syst. 2015, 52, 70–80. [Google Scholar] [CrossRef]
Weight Matrix | Model | BSU Length | Event Counts | Dbar 1 | Dhat 2 | pD 3 | DIC 4 |
---|---|---|---|---|---|---|---|
Node-based | M1 | 100 | 50 | 199.457 | 192.344 | 7.113 | 206.570 |
M2 | 200 | 50 | 156.022 | 150.979 | 5.044 | 161.066 | |
M3 | 100 | 100 | 276.031 | 266.234 | 9.796 | 285.827 | |
M4 | 200 | 100 | 200.296 | 192.094 | 8.202 | 208.497 | |
M5 | 100 | 200 | 368.890 | 360.617 | 8.273 | 377.162 | |
M6 | 200 | 200 | 254.844 | 249.845 | 4.999 | 259.843 | |
Distance-based | M7 | 100 | 50 | 199.146 | 192.457 | 6.690 | 205.836 |
M8 | 200 | 50 | 155.513 | 149.565 | 5.948 | 161.461 | |
M9 | 100 | 100 | 275.655 | 265.605 | 10.050 | 285.705 | |
M10 | 200 | 100 | 203.896 | 196.413 | 7.483 | 211.379 | |
M11 | 100 | 200 | 368.364 | 360.303 | 8.062 | 376.426 | |
M12 | 200 | 200 | 254.877 | 249.359 | 5.518 | 260.395 |
Weight Matrix | Dbar 1 | Dhat 2 | pD 3 | DIC |
---|---|---|---|---|
Node-based | 1012.100 | 893.768 | 118.332 | 1130.430 |
Distance-based | 1011.310 | 891.668 | 119.647 | 1130.960 |
Weight Matrix | Node | Mean | sd 1 | MC Error 2 | Median | Credible Level | |
---|---|---|---|---|---|---|---|
2.5% | 97.5% | ||||||
Node-based | α | 0.05996 | 0.06838 | 2.781×10-4 | 0.06007 | −0.07689 | 0.1948 |
7.762 | 40.57 | 1.06 | 4.491 | 2.342 | 20.6 | ||
41.56 | 564.3 | 16.36 | 4.245 | 1.223 | 158.9 | ||
Distance-based | α | 0.08824 | 0.03024 | 1.332×10-4 | 0.0884 | 0.02829 | 0.1473 |
6.395 | 48.99 | 1.982 | 1.666 | 0.9203 | 19.41 | ||
36.74 | 489.1 | 21.28 | 5.871 | 1.814 | 264.5 |
Statistic Used | Pattern | Data Type | |
---|---|---|---|
Raw POI Counts Adjusted for Base Distribution | Posterior Risk without Adjustment | ||
ILINCS (local statistic) | High-high network autocorrelation | 0 | 121 |
GLINCS (local statistic) | Cluster of high values | 273 | 140 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yue, Y.; Li, Q.; Nie, K.; Yu, C. Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model. ISPRS Int. J. Geo-Inf. 2017, 6, 44. https://doi.org/10.3390/ijgi6020044
Wang Z, Yue Y, Li Q, Nie K, Yu C. Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model. ISPRS International Journal of Geo-Information. 2017; 6(2):44. https://doi.org/10.3390/ijgi6020044
Chicago/Turabian StyleWang, Zhensheng, Yang Yue, Qingquan Li, Ke Nie, and Changbin Yu. 2017. "Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model" ISPRS International Journal of Geo-Information 6, no. 2: 44. https://doi.org/10.3390/ijgi6020044
APA StyleWang, Z., Yue, Y., Li, Q., Nie, K., & Yu, C. (2017). Analysis of the Spatial Variation of Network-Constrained Phenomena Represented by a Link Attribute Using a Hierarchical Bayesian Model. ISPRS International Journal of Geo-Information, 6(2), 44. https://doi.org/10.3390/ijgi6020044