A Graph-Based Min-# and Error-Optimal Trajectory Simplification Algorithm and Its Extension towards Online Services
"> Figure 1
<p>Illustration of trajectory simplification. The original trajectory consists of ten points and the simplified trajectory contains four points, namely <math display="inline"> <semantics> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>5</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mn>9</mn> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow> <mn>10</mn> </mrow> </msub> </mrow> <mo>}</mo> </mrow> </mrow> </semantics> </math>.</p> "> Figure 2
<p>(<b>a</b>) Enumeration of all compression schemas of a trajectory that contains 16 points. Each point in the graph represents a simplified track with <span class="html-italic">M</span> points and Y-axis shows the <span class="html-italic">ISSED</span> error. (<b>b</b>) Min-# problem is to find the minimum value of M below the error threshold, which is four below the horizontal red line. Min-ε problem is to find the minimum <span class="html-italic">ISSED</span> under the M-threshold, which is the lowest point along the vertical red line.</p> "> Figure 3
<p>Flow chart of the OPTTS.</p> "> Figure 4
<p>(<b>a</b>) The process of the Edge Test. (<b>b</b>) The trajectory graph.</p> "> Figure 5
<p>(<b>a</b>) The process of the breadth-first search. (<b>b</b>) The breadth-first spanning tree.</p> "> Figure 6
<p>(<b>a</b>) The process of the breadth-first search. (<b>b</b>) The breadth-first spanning tree.</p> "> Figure 7
<p>Regeneration Tree.</p> "> Figure 8
<p>Flow chart of the OLTS.</p> "> Figure 9
<p>Dynamic construction of the spanning tree.</p> "> Figure 10
<p>Running example of stopping criterion.</p> "> Figure 11
<p>Running example of the output process.</p> "> Figure 12
<p>The m generation of ancestors of <math display="inline"> <semantics> <mrow> <msub> <mi>V</mi> <mi>k</mi> </msub> </mrow> </semantics> </math>.</p> "> Figure 13
<p>(<b>a</b>) Mopsi: A jogging track in a park in Helsinki, Finland. (<b>b</b>) Geolife: A track of a student traveling from home to school in Beijing, China. (<b>c</b>) Movebank: A three-year track (January 2006~December 2008) of an osprey migrating from the United States to Brazil.</p> "> Figure 14
<p>(<b>a</b>) Average <span class="html-italic">SED</span> error. (<b>b</b>) Max <span class="html-italic">SED</span> error. (<b>c</b>) Median <span class="html-italic">SED</span> error. (<b>d</b>) Average <span class="html-italic">ISSED</span> error. (<b>e</b>) Average <span class="html-italic">SED</span> errors on different datasets.</p> "> Figure 15
<p>Visualization of compressed trajectories by different algorithms. (<b>a</b>) OPTTS vs. OLTS. (<b>b</b>) OPTTS vs. MRPA. (<b>c</b>) OPTTS vs. OPW. (<b>d</b>) OPTTS vs. D-P.5.3. Evaluation Based on Time Cost.</p> "> Figure 16
<p>(<b>a</b>) Time cost of different number of points. (<b>b</b>) Time cost of different compression rates.</p> "> Figure 17
<p>(<b>a</b>) Visualization of delay and gap. (<b>b</b>) Average delay. (<b>c</b>) Average gap.</p> ">
Abstract
:1. Introduction
- Minimum point number problem (min-#): Given an approximation error threshold of ε, trajectory T is compressed to achieve the minimum number of points, M.
- Minimum approximation error problem (min-ε): Given the maximum number of points M, trajectory T is compressed to achieve the minimum approximation error.
2. Related Work
2.1. Evaluation Criterion
2.1.1. Error Metric
2.1.2. Performance Metrics
2.2. Existing Algorithms
2.2.1. Curve Simplification Algorithms
2.2.2. Trajectory Simplification Algorithms
3. An Optimal Trajectory Simplification Algorithm Based on Graph Model
3.1. Optimal Solution
3.2. Solving the Min-# Problem Based on the Breadth-First Spanning Tree
3.2.1. Graph Construction
3.2.2. Breadth-First Search
3.3. Solving the Min-ε Problem Based on the Single Source Shortest Path Search
3.3.1. Edge Regeneration
3.3.2. Single-Source Shortest Path in DAG
Function 1 |
1. |
2. |
3. |
Function 2 |
1. |
2. |
3. |
3.4. Complexity Analysis
4. An Online Trajectory Simplification Algorithm Based on Directed Acyclic Graph
4.1. Problems of Adopting OPTTS to Online Services
4.2. Dynamic Construction of Breadth-First Spanning Tree
4.2.1. Dynamic Layer Construction
4.2.2. Stopping Criterion for Layer Construction of the Spanning Tree
Algorithm 1. Dynamic Breadth-First Spanning Tree Construction (Iteration k) |
Input: The current input , points set , temporary queue and error threshold . |
1. |
2. |
3. |
4. |
5. |
6. |
7. |
8. |
9. |
10. |
11. |
12. ; |
13. |
14. |
15. |
16. |
17. |
18. |
19. |
20. |
21. |
22. |
23. |
4.3. Real Time Minimizing the Approximation Error
Algorithm 2. Real-Time Minimizing Approximation Error (Iteration k) |
Input: Points set and , error threshold . |
1. |
2. |
3. |
4. |
5. |
6. |
7. |
4.4. Real Time Output
Algorithm 3. Real-Time Output (Iteration k) |
Input: Indice of the layer d, Points set to . |
1. |
2. |
3. |
4. |
5. |
6. |
7. |
8. |
4.5. Complexity Analysis
5. Experiments
5.1. Experimental Preparation
5.1.1. Datasets
5.1.2. Selection of Compared Algorithms
5.2. Evaluation Based on Error Metrics
5.3. Evaluation Based on Delay/Gap Analysis
5.4. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zheng, Y.; Zhou, X. Computing with Spatial Trajectories; Springer: New York, NY, USA, 2011. [Google Scholar]
- Meratnia, N.; de By, R.A. Spatiotemporal compression techniques for moving point objects. In Proceedings of the 9th International Conference on Extending Database Technology, Heraklion, Greece, 14–18 March 2004; pp. 765–782.
- Melkman, A.; O’Rourke, J. On polygonal chain approximation. In Computational Morphology; Elsevier Science: Amsterdam, The Netherlands, 1988; pp. 87–95. [Google Scholar]
- Salotti, M. Optimal polygonal approximation of digitized curves using the sum of square deviations criterion. Pattern Recognit. 2002, 35, 435–443. [Google Scholar] [CrossRef]
- Imai, H.; Iri, M. Polygonal approximations of a curve-formulations and algorithms. In Computational Morphology; Elsevier Science: Amsterdam, The Netherlands, 1988; pp. 71–86. [Google Scholar]
- Chen, M.; Xu, M.; Fränti, P. A fast multiresolution polygonal approximation algorithm for GPS trajectory simplification. IEEE Trans. Image Process. 2012, 21, 2770–2785. [Google Scholar] [CrossRef] [PubMed]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [Google Scholar] [CrossRef]
- Pikaz, A. An algorithm for polygonal approximation based on iterative point elimination. Pattern Recognit. Lett. 1995, 16, 557–563. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Varadarajan, K.R. Efficient algorithms for approximating polygonal chains. Discret. Comput. Geom. 2000, 23, 273–291. [Google Scholar] [CrossRef]
- Daescu, O.; Mi, N. Polygonal chain approximation: A query based approach. Comput. Geom. Theory Appl. 2005, 30, 41–58. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Fränti, P. Reduced-search dynamic programming for approximation of polygonal curves. Pattern Recognit. Lett. 2003, 24, 2243–2254. [Google Scholar] [CrossRef]
- Potamias, M.; Patroumpas, K.; Sellis, T. In sampling trajectory streams with spatiotemporal criteria. In Proceedings of the 18th International Conference on Scientific and Statistical Database Management, Vienna, Austria, 3–5 July 2006; pp. 275–284.
- Vitter, J.S. Random sampling with a reservoir. ACM Trans. Math. Softw. 1985, 11, 37–57. [Google Scholar] [CrossRef]
- Keogh, E.; Chu, S.; Pazzani, M. An online algorithm for segmenting time series. In Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001; pp. 289–296.
- Muckell, J.; Olsen, P.W.; Hwang, J.H.; Lawson, C.T.; Ravi, S.S. Compression of trajectory data: A comprehensive evaluation and new approach. Geoinformatica 2014, 18, 435–460. [Google Scholar] [CrossRef]
- Lawler, E.L. Combinatorial optimization: Networks and matroids. Bull. Am. Math. Soc. 2001, 84, 461–463. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Chen, D.Z.; Daescu, O. Space-efficient algorithms for approximation polygonal curves in two-dimentional space. Int. J. Comput. Geom. Appl. 2003, 13, 135–142. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Fränti, P. A fast near-optimal min-# polygonal approximation of digitized curves. In Proceedings of the IASTED International Conference on Automation, Control and Information Technology-ACIT’02, Novosibirsk, Russia, 10–13 June 2002; pp. 418–422.
- Mopsi Project. Available online: http://cs.joensuu.fi/mopsi/ (accessed on 3 October 2016).
- Zheng, Y.; Xie, X.; Ma, W.Y. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 2010, 33, 32–39. [Google Scholar]
- Movebank. Available online: http://www.movebank.org (accessed on 3 October 2016).
- Xiang, L.; Gao, M.; Wu, T. Extracting stops from noisy trajectories: A sequence oriented clustering approach. ISPRS Int. J. Geo-Inf. 2016, 5, 29. [Google Scholar] [CrossRef]
- Fu, Z.; Tian, Z.; Xu, Y.; Qiao, C. A two-step clustering approach to extract locations from individual GPS trajectory data. ISPRS Int. J. Geo-Inf. 2016, 5, 166. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Franti, P.; Wu, X. Multiresolution polygonal approximation of digital curves. In Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 23–26 August 2004; Volume 2, pp. 855–858.
- Marteau, P.F.; Nier, G. Speeding up simplification of polygonal curves using nested approximations. Pattern Anal. Appl. 2009, 12, 367–375. [Google Scholar] [CrossRef]
Heuristic | Optimal | Hybrid | ||
---|---|---|---|---|
Curve | Offline | Simple Simplify | Graph-Based | RSDP |
Douglas–Peucker | Iterative Map | |||
Merging | Priority Quere | |||
Trajectory | Offline | Threshold | OPTTS 1 | MRPA |
Time Ratio | ||||
Online | Uniform Sample | OLTS 1 | ||
Open Window | ||||
ST-Trace | ||||
Squish-E |
Dataset | Points | AvgRate (sec) | AvgDis (m) | StdDis (m2) | AvgSpd (m/s) | StdSpd (m2/s2) |
---|---|---|---|---|---|---|
Mopsi | 3747 | 2.2 | 10 | 6.3 | 4.5 | 2.1 |
Geolife | 3273 | 2.6 | 16.5 | 5.7 | 7.9 | 5.9 |
Movebank | 12,380 | 2 h | 3800 | 13,000 | 1 | 2.3 |
Scene | Proposed Algorithm | Mode | Compared Algorithm | Mode |
---|---|---|---|---|
Offline | OPTTS | Optimal | D-P | Heuristics |
MRPA | Hybrid | |||
Online | OLTS | Hybrid | OPW | Heuristics |
Error Metric | Abbr. | Calculation Formula |
---|---|---|
Average SED Error | ||
Max SED Error | ||
Median SED Error | ||
Average ISSED Error |
Algorithm | OPTTS | OLTS | MRPA | OPW | D-P |
---|---|---|---|---|---|
Time complexity |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Fu, K.; Wang, Y.; Xiao, Z. A Graph-Based Min-# and Error-Optimal Trajectory Simplification Algorithm and Its Extension towards Online Services. ISPRS Int. J. Geo-Inf. 2017, 6, 19. https://doi.org/10.3390/ijgi6010019
Wu F, Fu K, Wang Y, Xiao Z. A Graph-Based Min-# and Error-Optimal Trajectory Simplification Algorithm and Its Extension towards Online Services. ISPRS International Journal of Geo-Information. 2017; 6(1):19. https://doi.org/10.3390/ijgi6010019
Chicago/Turabian StyleWu, Fan, Kun Fu, Yang Wang, and Zhibin Xiao. 2017. "A Graph-Based Min-# and Error-Optimal Trajectory Simplification Algorithm and Its Extension towards Online Services" ISPRS International Journal of Geo-Information 6, no. 1: 19. https://doi.org/10.3390/ijgi6010019