Risk Assessment of Landslide Collapse Disasters along National Highways Based on Information Quantity and Random Forest Coupling Methods: A Case Study of the G331 National Highway
<p>Geographical location of the study area.</p> "> Figure 2
<p>Workflow of the study.</p> "> Figure 3
<p>Spatial distribution of the hazard indicators. ((<b>a</b>) Slope, (<b>b</b>) aspect, (<b>c</b>) curvature, (<b>d</b>) NDVI, (<b>e</b>) mean annual precipitation, (<b>f</b>) distance from fault, (<b>g</b>) lithology, (<b>h</b>) distance from road).</p> "> Figure 3 Cont.
<p>Spatial distribution of the hazard indicators. ((<b>a</b>) Slope, (<b>b</b>) aspect, (<b>c</b>) curvature, (<b>d</b>) NDVI, (<b>e</b>) mean annual precipitation, (<b>f</b>) distance from fault, (<b>g</b>) lithology, (<b>h</b>) distance from road).</p> "> Figure 4
<p>Spatial distribution of the exposure indices. ((<b>a</b>) Population density, (<b>b</b>) road density, (<b>c</b>) building density).</p> "> Figure 5
<p>Spatial distribution of the vulnerability indices. ((<b>a</b>) Age of the structure, (<b>b</b>) road classification, (<b>c</b>) building types).</p> "> Figure 6
<p>Spatial distribution of the emergency responses and recovery capability indices. ((<b>a</b>) GDP, (<b>b</b>) educational status, (<b>c</b>) number of medical staff).</p> "> Figure 7
<p>Drawing of each criterion layer. ((<b>a</b>) Hazard map, (<b>b</b>) exposure map, (<b>c</b>) vulnerability map, (<b>d</b>) emergency responses and recovery capability map).</p> "> Figure 7 Cont.
<p>Drawing of each criterion layer. ((<b>a</b>) Hazard map, (<b>b</b>) exposure map, (<b>c</b>) vulnerability map, (<b>d</b>) emergency responses and recovery capability map).</p> "> Figure 8
<p>ROC curve for the information quantity method.</p> "> Figure 9
<p>ROC curve for the random forest model. ((<b>a</b>) Initial model, (<b>b</b>) optimizing n_estimators, (<b>c</b>) final model).</p> "> Figure 10
<p>Risk map.</p> "> Figure 11
<p>Risk map excluding emergency responses and recovery capability.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Establishing an Evaluation Index System
3.1. Hazard
3.2. Exposure
3.3. Vulnerability
3.4. Emergency Responses and Recovery Capability
4. Research Methods
4.1. Risk Assessment Model Construction
4.2. Entropy Weight Method
4.3. Variation Coefficient Method
4.4. Information Quantity Method
4.5. Random Forest
4.6. GridSearchCV
5. Research Results
5.1. Information Quantity Method
5.2. Random Forest
5.3. Risk Map
6. Discussion
6.1. Comparison with Other Evaluation Methods
6.2. Comparison with Others’ Studies
6.3. The Social Impact of Our Research Results
6.4. Limitations
7. Conclusions
- (1)
- The evaluation results obtained from the coupling model are more accurate compared to those obtained from the information quantity method, with an AUC value of 0.9329.
- (2)
- According to the results of the risk assessment, the highest and higher risk areas are mainly concentrated within a 1 km radius of the G331 national highway. The towns of Badaogou, Shierdaogou, and the northern part of Malugou town are at a higher risk. The risk levels are lower in other regions.
- (3)
- After considering the emergency response and recovery capability index, the risk levels in the higher- and highest-risk areas of the study area decreased. The proportion of higher risk areas decreased by 2.65%, and the proportion of the highest risk areas decreased by 2.01%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, Z.; Lang, Q.; Zhang, Y. Hazard assessment of collapse along national highways based on information quantity model and geodetector. J. Catastrophology 2023, 38, 193–199. [Google Scholar]
- Qian, L.; Zang, S. Differentiation Rule and Driving Mechanisms of Collapse Disasters in Changbai County. Sustainability 2022, 14, 2074. [Google Scholar] [CrossRef]
- Li, Y.; Sheng, Y.; Chai, B.; Zhang, W.; Zhang, T.; Wang, J. Collapse susceptibility assessment using a support vector machine compared with back-propagation and radial basis function neural networks. Geomat. Nat. Hazards Risk 2020, 11, 510–534. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, L.; Mei, G.; Liu, T.; Ning, Y. A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map. Entropy 2017, 19, 396. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth. Sci. 2019, 78, 47. [Google Scholar] [CrossRef]
- Raghuvanshi, T.K.; Ibrahim, J.; Ayalew, D. Slope stability susceptibility evaluation parameter (SSEP) rating scheme—An approach for landslide hazard zonation. J. Afr. Earth Sci. 2014, 99, 595–612. [Google Scholar] [CrossRef]
- Meten, M.; Bhandary, N.P.; Yatabe, R. Application of GIS-based fuzzy logic and rock engineering system (RES) approaches for landslide susceptibility mapping in Selelkula area of the Lower Jema River Gorge, Central Ethiopia. Environ. Earth Sci. 2015, 74, 3395–3416. [Google Scholar] [CrossRef]
- Akgun, A.; Erkan, O. Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: In an artificial reservoir area at Northern Turkey. Arab. J. Geo. Sci. 2016, 9, 165. [Google Scholar] [CrossRef]
- Seong, Y.; Choi, C.-K.; Jung, Y. Assessment of Uncertainty in Grid-Based Rainfall-Runoff Model Based on Formal and Informal Likelihood Measures. Water 2022, 14, 2210. [Google Scholar] [CrossRef]
- Alsabhan, A.H.; Singh, K.; Sharma, A.; Alam, S.; Pandey, D.D.; Rahman, S.A.S.; Khursheed, A.; Munshi, F.M. Landslide susceptibility assessment in the Himalayan range based along Kasauli—Parwanoo road corridor using weight of evidence, information value, and frequency ratio. J. King Saud Univ. Sci. 2022, 34, 101759. [Google Scholar] [CrossRef]
- Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth. Sci. 2013, 68, 1443–1464. [Google Scholar] [CrossRef]
- Gu, F.; Chen, J.; Sun, X.; Li, Y.; Zhang, Y.; Wang, Q. Comparison of Machine Learning and Traditional Statistical Methods in Debris Flow Susceptibility Assessment: A Case Study of Changping District, Beijing. Water 2023, 15, 705. [Google Scholar] [CrossRef]
- Batar, A.K.; Watanabe, T. Landslide Susceptibility Mapping and Assessment Using Geospatial Platforms and Weights of Evidence (WoE) Method in the Indian Himalayan Region: Recent Developments, Gaps, and Future Directions. ISPRS Int. J. Geo.-Inf. 2021, 10, 114. [Google Scholar] [CrossRef]
- Lin, J.; Chen, W.; Qi, X.; Hou, H. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment. J. Clean. Prod. 2021, 309, 127077. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, S.; Luo, X.; Chen, G.; Xu, Z.; Liu, X.; Li, Y. Refined micro-scale geological disaster susceptibility evaluation based on UAV tilt photography data and weighted certainty factor method in Mountainous Area. Ecotoxicol. Environ. Saf. 2020, 189, 110005. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lin, M.; Chen, W.; Zhang, A.; Qi, X.; Hou, H. Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region. Ecol. Indic. 2021, 125, 107475. [Google Scholar] [CrossRef]
- Sun, D.; Shi, S.; Wen, H.; Xu, J.; Zhou, X.; Wu, J. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology 2021, 379, 107623. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, J.; Zhao, S.; Wang, L.; Liu, J.; Guo, J. Comparative Assessment of Three Nonlinear Approaches for Landslide Susceptibility Mapping in a Coal Mine Area. ISPRS Int. J. Geo.-Inf. 2017, 6, 228. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, M.; Ma, Y.; Liu, J.; Wang, Y.; Ma, X.; Chen, J. Multiclassification Method of Landslide Risk Assessment in Consideration of Disaster Levels: A Case Study of Xianyang City, Shaanxi Province. ISPRS Int. J. Geo.-Inf. 2021, 10, 646. [Google Scholar] [CrossRef]
- Nurwatik, N.; Ummah, M.H.; Cahyono, A.B.; Darminto, M.R.; Hong, J.-H. A Comparison Study of Landslide Susceptibility Spatial Modeling Using Machine Learning. ISPRS Int. J. Geo.-Inf. 2022, 11, 602. [Google Scholar] [CrossRef]
- Đurić, U.; Marjanović, M.; Radić, Z.; Abolmasov, B. Machine learning based landslide assessment of the Belgrade metropolitan area: Pixel resolution effects and a cross-scaling concept. Eng. Geol. 2019, 256, 23–38. [Google Scholar] [CrossRef]
- Kohestani, V.R.; Hassanlourad, M.; Ardakani, A. Evaluation of liquefaction potential based on CPT data using random forest. Nat. Hazards 2015, 79, 1079–1089. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Wang, C.; Liu, G.; Wang, H. GIS-based for prediction and prevention of environmental geological disaster susceptibility: From a perspective of sustainable development. Ecotoxicol. Environ. Saf. 2021, 226, 112881. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Horna, L.; Zevallos, J.; Yepez, Y. An integrated approach to seismic risk assessment using random forest and hierarchical analysis: Pisco, Peru. Heliyon 2022, 8, e10926. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ding, M.; Huang, T.; Liu, X.; Hao, Z.; Hu, X.; Chuanjie, X. Landslide risk assessment of high-mountain settlements using Gaussian process classification combined with improved weight-based generalized objective function. Int. J. Disaster Risk Reduct. 2022, 67, 102662. [Google Scholar] [CrossRef]
- Xiong, J.; Sun, M.; Zhang, H.; Cheng, W.; Yang, Y.; Sun, M.; Cao, Y.; Wang, J. Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments. Nat. Hazards Earth Syst. Sci. 2019, 9, 629–653. [Google Scholar] [CrossRef]
- Sui, H.; Hu, R.; Gao, W. Risk assessment of individual landslide based on the risk acceptable model: A case study of the Shiyantan landslide in Mayang County, China. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2500–2519. [Google Scholar] [CrossRef]
- Chang, M.; Cui, P.; Dou, X.; Su, F. Quantitative risk assessment of landslides over the China-Pakistan economic corridor. Int. J. Disaster Risk Reduct. 2021, 63, 102441. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, M. Neotectonics, active tectonics and earthquake geology: Terminology, applications and advances. J. Geodyn. 2019, 127, 1–15. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Yuan, G. Evaluation of Geological Hazard Susceptibility Based on the Regional Division Information Value Method. ISPRS Int. J. Geo.-Inf. 2023, 12, 17. [Google Scholar] [CrossRef]
- Ohlmacher, G.C. Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng. Geol. 2007, 91, 117–134. [Google Scholar] [CrossRef]
- Mind’Je, R.; Li, L.; Amanambu, A.C.; Nahayo, L.; Nsengiyumva, J.B.; Gasirabo, A.; Mindje, M. Flood susceptibility modeling and hazard perception in Rwanda. Int. J. Disaster Risk Reduct. 2019, 38, 101211. [Google Scholar] [CrossRef]
- Liu, K.; Wang, M.; Cao, Y.; Zhu, W.; Yang, G. Susceptibility of existing and planned Chinese railway system subjected to rainfall-induced multi-hazards. Transp. Res. Part A Policy Pract. 2018, 117, 214–226. [Google Scholar] [CrossRef]
- Hadji, R.; Limani, Y.; Baghem, M.; Demdoum, A. Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: A case study of Souk Ahras region, NE Algeria. Quat. Int. 2013, 302, 224–237. [Google Scholar] [CrossRef]
- Siddique, T.; Pradhan, S.P.; Vishal, V.; Mondal, M.E.A.; Singh, T.N. Stability assessment of Himalayan road cut slopes along National Highway 58. India Env. Earth. Sci. 2017, 76, 759. [Google Scholar] [CrossRef]
- Alam, R.; Quayyum, Z.; Moulds, S.; Radia, M.A.; Butler, A. Dhaka City Water logging Hazards: Area Identification and Vulnerability Assessment through GIS-Remote Sensing Techniques. Res. Sq. 2021, 1, 27. [Google Scholar] [CrossRef]
- Duan, C.; Zhang, J.; Chen, Y.; Lang, Q.; Zhang, Y.; Wu, C.; Zhang, Z. Comprehensive Risk Assessment of Urban Waterlogging Disaster Based on MCDA-GIS Integration: The Case Study of Changchun, China. Remote Sens. 2022, 14, 3101. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, J.; Xu, K. A spatial case-based reasoning method for regional landslide risk assessment. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102381. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, Q.; Chen, Y. Provincial geological disaster risk zoning method based on natural disaster risk assessmet framework: A case sthdy in Jilin Province. Chin. J. Geol. Hazard Control 2020, 31, 104–110. [Google Scholar] [CrossRef]
- Zhan, J.; Norio, O.; Toda, Y. Integrative Natural Disaster Risk Management: Comprehensive Integration Model and China’s Strategic Choice. J. Nat. Disasters 2006, 1, 29–37. [Google Scholar]
- Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S. Modelling gully-erosion susceptibility in a semi-arid region, iran: Investigation of applicability of certainty factor and maximum entropy models. Sci. Total Env. 2019, 655, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Alamanis, N.; Dakoulas, P. Impact of Soil Properties’ Spatial Correlation Lengths and Inclination on Permanent Slope Displacements Due to Earthquake Excitation. Appl. Sci. 2023, 13, 9868. [Google Scholar] [CrossRef]
- Yang, X.; Dai, X.; Li, W.; Lu, H.; Liu, C. Socio-Ecological Vulnerability in Aba Prefecture, Western Sichuan Plateau: Evaluation, Driving Forces and Scenario Simulation. ISPRS Int. J. Geo.-Inf. 2022, 11, 524. [Google Scholar] [CrossRef]
- Ba, Q.; Chen, Y.; Deng, S.; Wu, Q.; Yang, J. An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping. ISPRS Int. J. Geo.-Inf. 2017, 6, 18. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Miao, F.; Ruan, Q.; Wu, Y.; Qian, Z.; Kong, Z.; Qin, Z. Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model. Remote Sens. 2023, 15, 5427. [Google Scholar] [CrossRef]
- Yeon, Y.-K.; Han, J.-G.; Ryu, K.H. Landslide susceptibility mapping in injae, korea, using a decision tree. Eng. Geol. 2010, 116, 274–283. [Google Scholar] [CrossRef]
- Ahamad, G.N.; Shafiullah; Fatima, H.; Imdadullah; Zakariya, S.M. Influence of Optimal Hyperparameters on the Performance of Machine Learning Algorithms for Predicting Heart Disease. Processes 2023, 11, 734. [Google Scholar] [CrossRef]
- Du, Y.; Lu, Y.; Xie, M. A new attempt for early warning of unstable rocks based on vibration parameters. Bull. Eng. Geol. Env. 2020, 79, 4363–4368. [Google Scholar] [CrossRef]
- Du, Y.; Xie, M.; Jia, J. Stepped settlement: A possible mechanism for translational landslides. CATENA 2020, 187, 104365. [Google Scholar] [CrossRef]
- Gargani, J. Influence of Relative Sea-Level Rise, Meteoric Water Infiltration and Rock Weathering on Giant Volcanic Landslides. Geosciences 2023, 13, 113. [Google Scholar] [CrossRef]
- Mercurio, C.; Calderón-Cucunuba, L.P.; Argueta-Platero, A.A. Predicting Earthquake-Induced Landslides by Using a Stochastic Modeling Approach: A Case Study of the 2001 El Salvador Coseismic Landslides. ISPRS Int. J. Geo.-Inf. 2023, 12, 178. [Google Scholar] [CrossRef]
- Li, W.; Fan, X.; Huang, F.; Chen, W.; Hong, H.; Huang, J.; Guo, Z. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sens. 2020, 12, 4134. [Google Scholar] [CrossRef]
- Tempa, K.; Chettri, N.; Aryal, K.R.; Gautam, D. Geohazard vulnerability and condition assessment of the Asian highway AH-48 in Bhutan. Geomat. Nat. Hazards Risk 2021, 12, 2904–2930. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Indicator Layer | Data Sources |
---|---|---|---|
Risk | Hazard | DEM | https://www.gscloud.cn (accessed on 24 May 2022) |
Slope, aspect, curvature | Extracted via DEM | ||
Mean annual precipitation | www.resdc.cn (accessed on 7 June 2022) | ||
NDVI | Using Landset8 satellite data produced via ENVI | ||
Lithology | http://dc.ngac.org.cn/Home (accessed on 19 June 2022) | ||
Distance from fault | http://dc.ngac.org.cn/Home (accessed on 19 June 2022) | ||
Distance from road | Changbai County Transportation Bureau | ||
Exposure | Population density | Changbai Yearbook | |
Road density | Changbai County Transportation Bureau | ||
Building density | http://www.guihuayun.com/ (accessed on 24 May 2022) | ||
Vulnerability | Age of structure | Changbai Yearbook | |
Road classification | Changbai County Transportation Bureau | ||
Building types | http://www.guihuayun.com/ (accessed on 24 May 2022) | ||
Emergency responses and recovery capability | GDP | www.resdc.cn (accessed on 7 June 2022) | |
Educational status | Changbai County government official website (http://changbai.gov.cn/wzsy/) (accessed on 21 August 2022) | ||
Number of medical staff |
Target Layer | Criterion Layer | Criterion Layer Weights | Indicator Layer | Indicator Layer Weights |
---|---|---|---|---|
Risk | Hazard | 0.2330 | Slope (degree) | 0.0665 |
Aspect | 0.1151 | |||
Curvature | 0.1155 | |||
NDVI | 0.1521 | |||
Mean annual precipitation (mm) | 0.1016 | |||
Distance from fault (m) | 0.1377 | |||
Lithology | 0.1664 | |||
Distance from road (m) | 0.1450 | |||
Exposure | 0.1221 | Population density (p/km2) | 0.3526 | |
Road density (km/km2) | 0.2079 | |||
Building density | 0.4395 | |||
Vulnerability | 0.2729 | Age of structure | 0.4145 | |
Road classification | 0.3422 | |||
Building types | 0.2433 | |||
Emergency responses and recovery capability | 0.3720 | GDP | 0.5461 | |
Educational status | 0.2417 | |||
Number of medical staff | 0.2123 |
Criterion Layer | Category | Information Quantity | Indicator Layer | Category | Information Quantity |
---|---|---|---|---|---|
Hazard | Low | −3.3451 | Slope (degree) | 0–6.4314 | −1.8233 |
6.4314–11.6324 | −1.5189 | ||||
11.6324–17.4423 | −0.6277 | ||||
17.4423–23.8533 | −0.1079 | ||||
23.8533–30.8400 | 0.3197 | ||||
30.8400–39.0721 | 1.0671 | ||||
39.0721–70.2963 | 2.0259 | ||||
Medium | −2.7958 | Aspect | Flat | 0.0000 | |
North | 0.2573 | ||||
Northeast | 0.6518 | ||||
East | 0.3086 | ||||
Southeast | 0.1941 | ||||
South | −0.0200 | ||||
Southwest | −0.2762 | ||||
West | −2.0180 | ||||
Northwest | −1.0921 | ||||
Curvature | Concave | 0.1300 | |||
Flat | 0.0000 | ||||
Convex | −0.0408 | ||||
Higher | −1.5567 | NDVI | 0–0.4335 | −0.2555 | |
0.4335–0.5859 | 0.8270 | ||||
0.5859–0.7148 | 0.5974 | ||||
0.7148–0.8320 | −0.0809 | ||||
0.8320–1 | −0.7986 | ||||
Mean annual precipitation (mm) | 706–817 | −0.4274 | |||
817–942 | −0.0260 | ||||
942–1055 | 0.6101 | ||||
1055–1151 | −0.0005 | ||||
1151–1298 | 0.4425 | ||||
Highest | 1.2415 | Distance from fault (m) | 0–9857.54 | −0.5391 | |
9857.54–22,568.58 | 0.2497 | ||||
22,568.58–34,241.99 | 0.2229 | ||||
34,241.99–47,990.67 | 0.1358 | ||||
47,990.67–66,408.71 | −0.7098 | ||||
Lithology | Very hard rock | 0.1582 | |||
Hard rock | −0.2534 | ||||
Soft rock | −1.5518 | ||||
Distance from road (m) | 0–1036.19 | 0.9099 | |||
1036.19–2235.75 | −2.6964 | ||||
2235.75–3500 | −2.9131 | ||||
Exposure | Low | −1.9625 | Population density (p/km2) | 0.1858–342.7732 | −0.0185 |
342.7732–1536.2757 | 0.4348 | ||||
1536.2757–3718.4541 | 0.2052 | ||||
Medium | 0.3414 | Road density (km/km2) | 0–0.5101 | −2.1271 | |
0.5101–1.7344 | 0.3777 | ||||
1.7344–3.3667 | 1.5542 | ||||
Higher | 1.4598 | 3.3667–5.4072 | 1.0978 | ||
5.4072–26.0160 | 1.8249 | ||||
Highest | 1.3088 | Building density | Low | −0.0134 | |
Moderate | −0.2681 | ||||
High | 1.1611 | ||||
Vulnerability | Low | −0.9880 | Age of structure | Lowest | 0.3363 |
Lower | 0.1452 | ||||
Moderate | −0.3172 | ||||
Higher | 0.0856 | ||||
Highest | −0.9880 | ||||
Medium | −0.3172 | Road classification | Lowest | 0.0687 | |
Lower | 0.0917 | ||||
Moderate | −0.1332 | ||||
Higher | 0.2076 | Higher | 0.2410 | ||
Highest | 0.0000 | ||||
Highest | 0.0768 | Building types | Low | 0.1961 | |
Moderate | −0.2068 | ||||
High | 0.0367 | ||||
Emergency responses and recovery capability | Low | −1.4252 | GDP | Lowest | 0.1511 |
Lower | −0.3131 | ||||
Medium | −0.9220 | Moderate | −0.9223 | ||
Higher | −1.4275 | ||||
Highest | 0.0000 | ||||
Higher | −0.4696 | Educational status | Low | −0.0397 | |
Moderate | 0.0166 | ||||
High | 0.3363 | ||||
Highest | 0.1704 | Number of medical staff | Low | −0.0197 | |
Moderate | 0.0251 | ||||
High | 0.3363 |
Area | Std. Error | Asymptotic Sig. | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
0.776 | 0.02 | 0 | 0.736 | 0.815 |
Hyperparameters | Search Range and Step Size | Optimal Value of the Hyperparameters |
---|---|---|
n_estimators | (25, 500, 25) | 75 |
min_samples_split | (1, 250, 1) | 84 |
min_samples_leaf | (1, 110, 2) | 25 |
Risk Level | Number of Grids | Proportion | Number of Collapses | Proportion |
---|---|---|---|---|
Low risk | 400,325 | 51.25% | 1 | 0.64% |
Medium risk | 190,432 | 24.38% | 20 | 12.74% |
Higher risk | 123,452 | 15.80% | 26 | 16.56% |
Highest risk | 66,974 | 8.57% | 110 | 70.06% |
Risk Level | Number of Grids | Proportion |
---|---|---|
Low risk | 483,874 | 61.92% |
Medium risk | 111,994 | 14.33% |
Higher risk | 102,814 | 13.16% |
Highest risk | 82,740 | 10.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Z.; Lang, Q.; Zhang, Y.; Zhang, J.; Chen, Y.; Pan, Z. Risk Assessment of Landslide Collapse Disasters along National Highways Based on Information Quantity and Random Forest Coupling Methods: A Case Study of the G331 National Highway. ISPRS Int. J. Geo-Inf. 2023, 12, 493. https://doi.org/10.3390/ijgi12120493
Nie Z, Lang Q, Zhang Y, Zhang J, Chen Y, Pan Z. Risk Assessment of Landslide Collapse Disasters along National Highways Based on Information Quantity and Random Forest Coupling Methods: A Case Study of the G331 National Highway. ISPRS International Journal of Geo-Information. 2023; 12(12):493. https://doi.org/10.3390/ijgi12120493
Chicago/Turabian StyleNie, Zuoquan, Qiuling Lang, Yichen Zhang, Jiquan Zhang, Yanan Chen, and Zengkai Pan. 2023. "Risk Assessment of Landslide Collapse Disasters along National Highways Based on Information Quantity and Random Forest Coupling Methods: A Case Study of the G331 National Highway" ISPRS International Journal of Geo-Information 12, no. 12: 493. https://doi.org/10.3390/ijgi12120493
APA StyleNie, Z., Lang, Q., Zhang, Y., Zhang, J., Chen, Y., & Pan, Z. (2023). Risk Assessment of Landslide Collapse Disasters along National Highways Based on Information Quantity and Random Forest Coupling Methods: A Case Study of the G331 National Highway. ISPRS International Journal of Geo-Information, 12(12), 493. https://doi.org/10.3390/ijgi12120493