A Critical Comparison of 3D Digitization Techniques for Heritage Objects †
"> Figure 1
<p>Case studies (from left to right): Cycladic figurine copy, Roman capital replica, stone bust of Francis Joseph I of Austria, and small sculpture of Christ Crucified.</p> "> Figure 2
<p>Examples of partial and noise-containing reconstructions (from left to right): dataset 1 ARP, dataset 1 Regard3D 1.0.0 (R3D), dataset 3 VCM, dataset 3 R3D.</p> "> Figure 3
<p>Partial meshes generated with ARP (<b>left</b>) and FZA (<b>right</b>) from dataset 9.</p> "> Figure 4
<p>Scanning results. Untextured Stonex F6 SR mesh (<b>left</b>), untextured FARO Focus 3D X 330 mesh (<b>center</b>) and scalar field mapping of Hausdorff distances; maximum visualized distance: 1 cm.</p> "> Figure 5
<p>Textured photogrammetric meshes of the figurine copy, (from left to right) dataset 1 AMP, dataset 1 FZA, dataset 2 AMP, dataset 2 FZA, dataset 3 AMP, dataset 3 FZA.</p> "> Figure 6
<p>Untextured photogrammetric meshes of the figurine copy, (from left to right) dataset 1 AMP, dataset 1 FZA, dataset 2 AMP, dataset 2 FZA, dataset 3 AMP, dataset 3 FZA.</p> "> Figure 7
<p>Untextured photogrammetric meshes from dataset 4, (from left to right) AMP, FZA, P4D, ARP, VCM.</p> "> Figure 8
<p>Scalar field mapping of Hausdorff distances for dataset 4 photogrammetric results. Deviation between the ARP mesh and the AMP mesh (<b>left</b>), deviation between the ARP mesh and the FZA mesh (<b>center</b>), deviation between the ARP and the P4D mesh (<b>right</b>); maximum visualized distance: 1 cm.</p> "> Figure 9
<p>Textured photogrammetric meshes of the capital replica from dataset 5 (from left to right): AMP, VCM, R3D.</p> "> Figure 10
<p>Untextured photogrammetric meshes of the capital replica from dataset 5, (from left to right, and from top to bottom): AMP, FZA, P4D, ARP, VCM, R3D.</p> "> Figure 11
<p>Untextured meshes of the stone bust from dataset 6 (from left to right, and from top to bottom): F6 SR, AMP, FZA, ARP, VCM, R3D.</p> "> Figure 12
<p>Detail from the untextured photogrammetric meshes of the stone bust from dataset 6 (from left to right): F6 SR, FZA, ARP.</p> "> Figure 13
<p>Scalar field mapping of Hausdorff distances for dataset 6 photogrammetric results. Deviation between the AMP mesh and the FZA mesh (<b>left</b>), deviation between the AMP mesh and the ARP mesh (<b>center</b>), deviation between the AMP and the VCM mesh (<b>right</b>); maximum visualized distance: 1 cm.</p> "> Figure 14
<p>Untextured meshes of the small sculpture, (from left to right, and from top to bottom): F6 SR, AMP–dataset 7, AMP–dataset 8, FZA–dataset 7, FZA–dataset 8, and ARP–dataset 8.</p> "> Figure 15
<p>VCM-produced mesh from dataset 9 (smartphone camera).</p> "> Figure 16
<p>Scalar field mapping of Hausdorff distances between dataset 6 photogrammetric results and scanning results. Deviation between the F6 SR mesh and the AMP mesh (<b>upper left</b>), deviation between the F6 SR mesh and the FZA mesh (<b>upper right</b>), deviation between the F6 SR mesh and the ARP mesh (<b>lower left</b>), deviation between the F6 SR and the VCM mesh (<b>lower right</b>); maximum visualized distance: 1 cm.</p> ">
Abstract
:1. Introduction
- A copy of Early Cycladic II Spedos-variety marble figurine, dimensions: 4 cm × 4 cm × 16 cm;
- A Roman column capital replica, dimensions: 45 cm × 45 cm × 45 cm;
- A bust of Francis Joseph I of Austria from the Accademia Carrara di Bergamo (Province of Bergamo, Lombardy, Italy), dimensions: 40 cm × 50 cm × 90 cm; and
- A small 19th century religious stone sculpture of Christ Crucified from Castello di Casotto (Province of Cuneo, Piedmont, Italy), dimensions: 31 cm × 22 cm × 5 cm.
2. Image-Based 3D Modeling
2.1. Data Acquisition
2.2. Processing Software and Parameters
- Agisoft Metashape Professional 1.5.1 (USD 3499);
- 3DFlow Zephyr Aerial 4519 (USD 4329) [34];
- Pix4Dmodel 4.5.3 (USD 49/month);
- Autodesk ReCap Photo 19.3.1.4 (web-based; ReCap Pro USD 54/month);
- Regard3D 1.0.0. (free and open sourced) which employs a K-GRraph matching algorithm and implements the Multi-View Environment [35] for dense scene reconstruction;
2.3. Results
3. Scanning
3.1. Data Acquisition
3.2. Processing
3.3. Results
4. Evaluation of the Results
5. Further Metric Comparisons
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pieraccini, M.; Guidi, G.; Atzeni, C. 3D digitizing of cultural heritage. J. Cult. Herit. 2001, 2, 63–70. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. An Updated Comparison on Contemporary Approaches for Digitization of Heritage Objects. In Proceedings of the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage (2019 MetroArchaeo), Florence, Italy, 4–6 December 2019; Catelani, M., Daponte, P., Eds.; IMEKO: Florence, Italy, 2019; pp. 1–6. Available online: https://www.imeko.org/publications/tc4-Archaeo-2019/IMEKO-TC4-METROARCHAEO-2019-1.pdf (accessed on 11 November 2020).
- Georgopoulos, A.; Stathopoulou, E.K. Data Acquisition for 3D Geometric Recording: State of the Art and Recent Innovations. In Heritage and Archaeology in the Digital Age; Vincent, M.L., López-Menchero Bendicho, V.M., Ioannides, M., Levy, T.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–26. ISBN 978-3-319-65369-3. [Google Scholar]
- Hassani, F. Documentation of cultural heritage; techniques, potentials, and constraints. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Agosto, E.; Ardissone, P.; Bornaz, L.; Dago, F. 3D Documentation of Cultural Heritage: Design and Exploitation of 3D Metric Surveys. In Applying Innovative Technologies in Heritage Science; Pavlidis, G., Ed.; Advances in Religious and Cultural Studies; IGI Global: Hershey, PA, USA, 2020; pp. 1–15. ISBN 978-1-79982-871-6. [Google Scholar]
- Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Haghshenas, S.; Hosseininaveh, A.; Varshosaz, M. The Performance Evaluation of Multi-Image 3D Reconstruction Software with Different Sensors. Measurement 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Arbace, L.; Sonnino, E.; Callieri, M.; Dellepiane, M.; Fabbri, M.; Iaccarino Idelson, A.; Scopigno, R. Innovative uses of 3D digital technologies to assist the restoration of a fragmented terracotta statue. J. Cult. Herit. 2013, 14, 332–345. [Google Scholar] [CrossRef]
- McPherron, S.P.; Gernat, T.; Hublin, J.-J. Structured light scanning for high-resolution documentation of in situ archaeological finds. J. Archaeol. Sci. 2009, 36, 19–24. [Google Scholar] [CrossRef]
- Lachat, E.; Macher, H.; Landes, T.; Grussenmeyer, P. Assessment of the Accuracy of 3D Models Obtained with DSLR Camera and Kinect v2. In SPIE Volume 9528, Videometrics, Range Imaging, and Applications XIII, Proceedings of the SPIE Optical Metrology Event, Munich, Germany, 21–25 June 2015; Remondino, F., Shortis, M.R., Eds.; SPIE: Bellingham, WA, USA, 2015; pp. 95280G-1–95280G-14. [Google Scholar]
- Ackermann, J.; Goesele, M. A Survey of Photometric Stereo Techniques. FNT Comput. Graph. Vis. 2015, 9, 149–254. [Google Scholar] [CrossRef]
- Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Guidi, G.; Micoli, L.L.; Gonizzi, S.; Brennan, M.; Frischer, B. Image-based 3D capture of cultural heritage artifacts an experimental study about 3D data quality. In Proceedings of the 2015 Digital Heritage, Granada, Spain, 28 September–2 October 2015; IEEE: New York, NY, USA, 2015; pp. 321–324. [Google Scholar] [CrossRef] [Green Version]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Structure from Motion (SfM) Photogrammetry. In Geomorphological Techniques; Cook, S.J., Clarke, L.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2015; Chapter 2, Section 2.2. [Google Scholar]
- Graciano, A.; Ortega, L.; Segura, R.J.; Feito, F.R. Digitization of Religious Artifacts with a Structured Light Scanner. Virtual Archaeol. Rev. 2017, 8, 49. [Google Scholar] [CrossRef]
- Morita, M.; Bilmes, G. Applications of Low-Cost 3D Imaging Techniques for the Documentation of Heritage Objects. Opt. Pura Apl. 2018, 51, 50026:1–50026:11. [Google Scholar] [CrossRef]
- Sapirstein, P. A High-Precision Photogrammetric Recording System for Small Artifacts. J. Cult. Herit. 2018, 31, 33–45. [Google Scholar] [CrossRef]
- Ioannidis, C.; Piniotis, G.; Soile, S.; Bourexis, F.; Boutsi, A.-M.; Chliverou, R.; Tsakiri, M. Laser and Multi-Image Reverse Engineering Systems for Accurate 3D Modelling of Complex Cultural Artefacts. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Serna, C.G.; Pillay, R.; Trémeau, A. Data Fusion of Objects Using Techniques Such as Laser Scanning, Structured Light and Photogrammetry for Cultural Heritage Applications. In Computational Color Imaging; Trémeau, A., Schettini, R., Tominaga, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9016, pp. 208–224. ISBN 978-3-319-15978-2. [Google Scholar]
- Koutsoudis, A.; Vidmar, B.; Arnaoutoglou, F. Performance Evaluation of a Multi-Image 3D Reconstruction Software on a Low-Feature Artefact. J. Archaeol. Sci. 2013, 40, 4450–4456. [Google Scholar] [CrossRef]
- Nicolae, C.; Nocerino, E.; Menna, F.; Remondino, F. Photogrammetry Applied to Problematic Artefacts. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL–5, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Adamopoulos, E.; Bovero, A.; Rinaudo, F. Image-Based Metric Heritage Modeling in the Near-Infrared Spectrum. Herit. Sci. 2020, 8, 53. [Google Scholar] [CrossRef]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F. State of the art in high density image matching. Photogram. Rec. 2014, 29, 144–166. [Google Scholar] [CrossRef] [Green Version]
- Nabil, M.; Saleh, F. 3D Reconstruction from Images for Museum Artefacts: A Comparative Study. In Proceedings of the 2014 International Conference on Virtual Systems & Multimedia (VSMM), Hong Kong, China, 9–12 December 2014; IEEE: New York, NY, USA, 2014; pp. 257–260. [Google Scholar]
- Galizia, M.; Inzerillo, L.; Santagati, C. Heritage and technology: Novel approaches to 3D documentation and communication of architectural heritage. In Proceedings of the Le Vie dei Mercanti XIII International Forum, Capri, Italy, 11–13 June 2015; pp. 686–695. [Google Scholar]
- Bianconi, F.; Catalucci, S.; Filippucci, M.; Marsili, R.; Moretti, M.; Rossi, G.; Speranzini, E. Comparison between two non-contact techniques for art digitalization. J. Phys. Conf. Ser. 2017, 882, 012005. [Google Scholar] [CrossRef] [Green Version]
- Evgenikou, V.; Georgopoulos, A. Investigating 3D Reconstruction Methods for Small Artifacts. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Menna, F.; Nocerino, E.; Remondino, F.; Dellepiane, M.; Callieri, M.; Scopigno, R. 3D Digitization of an Heritage Masterpiece—A Critical Analysis on Quality Assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 675–683. [Google Scholar] [CrossRef]
- Kersten Thomas, P.; Przybilla, H.-J.; Lindstaedt, M. Investigations of the Geometrical Accuracy of Handheld 3D Scanning Systems. Photogramm. Fernerkund. Geoinf. 2016, 2016, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Kersten, T.P.; Lindstaedt, M.; Starosta, D. Comparative Geometrical Accuracy Investigations of Hand-Held 3D Scanning Systems—An Update. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Morena, S.; Barba, S.; Álvaro-Tordesillas, A. Shining 3D EinScan-Pro, Application and Validation in the Field of Cultural Heritage, from the Chillida-Leku Museum to the Archaeological Museum of Sarno. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W18, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Santagati, C.; Lo Turco, M.; Bocconcino, M.M.; Donato, V.; Galizia, M. 3D Models for all: Low-cost acquisition through mobile devices in comparison with image based techniques. Potentialities and weaknesses in cultural heritage domain. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W8, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Boboc, R.G.; Gîrbacia, F.; Postelnicu, C.C.; Gîrbacia, T. Evaluation of Using Mobile Devices for 3D Reconstruction of Cultural Heritage Artifacts. In VR Technologies in Cultural Heritage; Duguleană, M., Carrozzino, M., Gams, M., Tanea, I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 904, pp. 46–59. ISBN 978-3-030-05818-0. [Google Scholar]
- Gaiani, M.; Apollonio, F.I.; Fantini, F. Evaluating smartphones color fidelity and metric accuracy for the 3D documentation of small artifacts. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, R.; Farenzena, M.; Fusiello, A. Improving the Efficiency of Hierarchical Structure-and-Motion. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: New York, NY, USA, 2010; pp. 1594–1600. [Google Scholar]
- Fuhrmann, S.; Langguth, F.; Moehrle, N.; Waechter, M.; Goesele, M. MVE—An image-based reconstruction environment. Comput. Graph. 2015, 53, 44–53. [Google Scholar] [CrossRef]
- Wu, C. Towards linear-time incremental structure from motion. In Proceedings of the 2013 International Conference on 3D Vision (3DV 2013), Seattle, WA, USA, 29 June–1 July 2013; IEEE Computer Society: New York, NY, USA, 2013; pp. 127–136. [Google Scholar]
- Wu, C.; Agarwal, S.; Curless, B.; Seitz, S.M. Multicore bundle adjustment. In Proceedings of the 2011 CVPR, Providence, RI, USA, 20–25 June 2011; pp. 3057–3064. [Google Scholar]
- Furukawa, Y.; Curless, B.; Seitz, S.M.; Szeliski, R. Towards Internet-scale multi-view stereo. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: New York, NY, USA, 2010; pp. 1434–1441. [Google Scholar]
- Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Callieri, M.; Ranzuglia, G.; Dellepiane, M.; Cignoni, P.; Scopigno, R. Meshlab as a complete open tool for the integration of photos and colour with high-resolution 3D geometry data. In Proceedings of the 2008 Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008; pp. 129–136. [Google Scholar]
- Wu, C. SiftGPU: A GPU Implementation of Scale Invariant Feature Transform (SIFT). 2007. Available online: http://www.cs.unc.edu/~ccwu/siftgpu/lowesift (accessed on 29 January 2013).
- Alcantarilla, P.; Nuevo, J.; Bartoli, A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. In Proceedings of the British Machine Vision Conference 2013, Bristol, UK, 9–13 September 2013; British Machine Vision Association: Bristol, UK, 2013; pp. 13.1–13.11. [Google Scholar]
- Wang, Z.; Fan, B.; Wu, F. Local Intensity Order Pattern for Feature Description. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: New York, NY, USA, 2011; pp. 603–610. [Google Scholar]
- De Luca, D.; Del Giudice, M.; Grasso, N.; Matrone, F.; Osello, A.; Piras, M. Handheld Volumetric Scanner for 3D Printed Integrations of historical Elements: Comparisons and Results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Patrucco, G.; Rinaudo, F.; Spreafico, A. A New Handheld Scanner for 3D Survey of Small Artifacts: The STONEX F6. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 895–901. [Google Scholar] [CrossRef] [Green Version]
Type | Mid-Size DSLR | Compact DSLR | Huawei P30 Phone Camera |
---|---|---|---|
Brand | Canon | Canon | Sony |
Model | EOS 5DS R | EOS 1200D | IMX 650 |
Resolution | 52 MP | 18 MP | 40 MP |
Sensor Size | full frame | APS-C | 1/1.7” |
Pixel Size | 4.14 mm | 4.31 mm | 0.93 mm |
Sensor Type | CMOS | CMOS | CMOS BSI |
Lens used | Canon EF 24–105 mm f/4L IS USM | Canon EF-S 18–55 mm IS II | 5.6 mm (integrated) |
Dataset | Object | Camera Model | Mega- Pixels | f (mm) | Distance (m) | No. of Images | f-Stop | Exposure (s) | ISO |
---|---|---|---|---|---|---|---|---|---|
1 | Figurine copy | EOS 5DS R | 52 | 24 | 0.25 | 50 | f/7.1 | 1/20 | 200 |
2 | Figurine copy | EOS 1200D | 18 | 18 | 0.20 | 50 | f/8 | 1/20 | 200 |
3 | Figurine copy | Exmor RS IMX650 | 40 | 5.6 | 0.25 | 50 | f/8 | 1/20 | 200 |
4 | Capital replica | EOS 5DS R | 52 | 35 | 0.88 * | 50 | f/7.1 | 1/40 | 200 |
5 | Capital replica | EOS 1200D | 18 | 18 | 0.69 * | 50 | f/8 | 1/40 | 200 |
6 | Stone bust | EOS 1200D | 18 | 18 | 0.90 * | 50 | f/16 | 1/60 | 100 |
7 | Small sculpture | EOS 1200D | 18 | 18 | 0.38 | 142 | f/16 | 1/15 | 100 |
8 | Small sculpture | EOS 1200D | 18 | 55 | 0.27 | 60 | f/16 | 1/15 | 100 |
9 | Small sculpture | Exmor RS IMX650 | 40 | 5.6 | 0.12 | 60 | f/1.8 | 1/50 | 100 |
Reconstruction Step | Parameter | Value |
---|---|---|
Feature detection and matching alignment | Key point density | High (50K) |
Tie point density | High (50K) | |
Pair preselection | Higher matches | |
Camera model fitting | Refine | |
Dense matching | Point density | High |
Depth filtering | Moderate | |
Mesh generation | Max number of faces | 5M (10M for capital replica) |
Surface interpolation | Limited | |
Texture generation | Texture size | 8192 × 8192 pixels |
Color balancing | Disabled |
Dataset 1 | Dataset 2 | Dataset 3 | |||||
---|---|---|---|---|---|---|---|
Software | AMP | FZA | AMP | FZA | AMP | FZA | |
Sparse Cloud | Images Aligned | 50 | 50 | 50 | 50 | 50 | 42 |
Matching time (hh:mm:ss) | 00:00:40 | 00:02:48 | 00:00:18 | 00:01:40 | 00:00:41 | 00:05:34 | |
Alignment time (hh:mm:ss) | 00:00:19 | 00:01:11 | 00:00:06 | 00:00:20 | 00:00:10 | 00:00:34 | |
Tie points (1000 points) | 98 | 24 | 29 | 19 | 77 | 27 | |
Projections (1000 points) | 321 | 136 | 92 | 91 | 212 | 118 | |
Adjustment error (pixels) | 0.49 | 0.79 | 0.54 | 0.46 | 0.65 | 0.72 | |
Resolution (mm/pixel) | 0.05 | 0.05 | 0.06 | 0.06 | 0.04 | 0.04 | |
Dense Cloud | Processing time (hh:mm:ss) | 00:10:31 | 01:16:39 | 00:04:31 | 00:24:03 | 00:09:09 | 00:46:40 |
Point count (1000 points) | 1832 | 591 | 1169 | 370 | 2414 | 3920 | |
Triangle Mesh | Processing time (hh:mm:ss) | 00:00:21 | 00:00:08 | 00:00:16 | 00:00:47 | 00:00:30 | 00:00:10 |
Faces (1000 triangles) | 4482 | 1168 | 2846 | 737 | 5000 | 1551 | |
Vertices (1000 points) | 2246 | 589 | 1427 | 369 | 2514 | 783 | |
Texture | Processing time (hh:mm:ss) | 00:04:07 | 00:04:01 | 00:02:46 | 00:01:25 | 00:05:49 | 00:02:32 |
Total time (hh:mm:ss) | 00:15:58 | 01:24:47 | 00:07:57 | 00:28:15 | 00:16:19 | 00:55:30 |
Dataset 4 | Dataset 5 | ||||||
---|---|---|---|---|---|---|---|
Software | AMP | FZA | P4D | AMP | FZA | P4D | |
Sparse Cloud | Images Aligned | 50 | 50 | 50 | 50 | 50 | 50 |
Matching time (hh:mm:ss) | 00:01:05 | 00:10:14 | 0:00:51 | 00:01:04 | 00:09:23 | 00:00:49 | |
Alignment time (hh:mm:ss) | 00:00:33 | 00:01:02 | 0:02:53 | 00:00:21 | 00:00:27 | 0:01:50 | |
Tie points (1000 points) | 197 | 78 | 1262 | 102 | 52 | 547 | |
Projections (1000 points) | 535 | 361 | 2697 | 258 | 247 | 1126 | |
Adjustment error (pixels) | 0.98 | 1.44 | 0.17 | 0.69 | 0.94 | 0.11 | |
Resolution (mm/pixel) | 0.08 | 0.09 | 0.08 | 0.16 | 0.16 | 0.16 | |
Dense Cloud | Processing time (hh:mm:ss) | 00:23:15 | 01:44:35 | 00:11:35 | 00:07:51 | 00:31:01 | 00:03:15 |
Point count (1000) | 43,611 | 2168 | 12,032 | 10,941 | 1811 | 3742 | |
Manual denoizing | no | no | no | no | no | no | |
Triangle Mesh | Processing time (hh:mm:ss) | 00:36:40 | 00:00:27 | 00:07:20 | 00:03:44 | 00:00:21 | 00:00:44 |
Faces (1000 triangles) | 10,000 | 4245 | 10,000 | 9995 | 3587 | 10,000 | |
Vertices (1000 points) | 7739 | 2935 | 7445 | 5507 | 2293 | 6773 | |
Texture | Processing time (hh:mm:ss) | 00:36:16 | 00:07:00 | 00:35:40 | 00:11:35 | 00:04:36 | 00:10:02 |
Total time (hh:mm:ss) | 01:37:49 | 02:03:18 | 0:58:19 | 00:24:35 | 00:45:48 | 00:16:40 |
Dataset 6 | ||||||
---|---|---|---|---|---|---|
Software | VCM | R3D | ARP | AMP | FZA | |
Sparse Cloud | Images aligned | 50 | 48 | 50 | 50 | 50 |
Matching time (hh:mm:ss) | 00:02:19 | 00:03:36 | 00:00:36 | 00:00:59 | ||
Alignment time (hh:mm:ss) | 00:01:03 | 00:00:30 | 00:00:13 | 00:17:34 | ||
Tie points (1000 points) | 23 | 143 | 59 | 48 | ||
Projections (1000 points) | 75 | 498 | 156 | 205 | ||
Adjustment error (pixels) | 1.30 | 0.17 | 0.52 | 0.60 | ||
Dense Cloud | Processing time (hh:mm:ss) | 00:11:39 | 00:23:01 | 00:05:37 | 00:22:22 | |
Point count (1000 points) | 1582 | 11,786 | 9880 | 2666 | ||
Triangle Mesh | Processing time (hh:mm:ss) | 00:06:05 | 00:01:02 | 00:06:31 | 00:02:01 | |
Faces (1000 triangles) | 1451 | 252 | 1003 | 5000 | 3737 | |
Vertices (1000 points) | 726 | 127 | 1848 | 2500 | 1873 | |
Texture | Processing time (hh:mm:ss) | 00:01:52 | 00:00:48 | 00:03:10 | 00:03:54 | |
Total time (hh:mm:ss) | 0:22:58 | 0:28:57 | 0:16:07 | 0:46:50 |
Dataset 7 | Dataset 8 | Dataset 9 | ||||||
---|---|---|---|---|---|---|---|---|
Software | AMP | FZA | AMP | FZA | VCM | AMP | FZA | |
Sparse Cloud | Images aligned | 142 | 69 | 60 | 60 | 60 | 60 | 23 |
Matching time (hh:mm:ss) | 00:01:05 | 00:03:40 | 00:01:55 | 0:01:39 | 00:01:22 | 00:01:38 | 0:02:58 | |
Alignment time (hh:mm:ss) | 0:00:24 | 00:09:05 | 00:01:19 | 00:46:48 | 00:01:28 | 00:00:55 | 0:28:02 | |
Tie points (1000 points) | 89 | 36 | 420 | 132 | 54 | 88 | 34 | |
Projections (1000 points) | 273 | 154 | 1270 | 803 | 253 | 242 | 127 | |
Adjustment error (pixels) | 0.52 | 0.52 | 0.35 | 0.47 | 1.02 | 1.15 | 1.43 | |
Resolution (mm/pixel) | 0.09 | 0.09 | 0.02 | 0.02 | 0.02 | 0.02 | 0.2 | |
Dense Cloud | Processing time (hh:mm:ss) | 00:23:10 | 00:55:20 | 00:14:27 | 00:42:16 | 00:15:43 | 00:25:30 | 00:25:06 |
Point count (1000 points) | 2058 | 4211 | 9980 | 3958 | 1764 | 11,325 | 1720 | |
Triangle Mesh | Processing time (hh:mm:ss) | 00:01:23 | 00:02:30 | 00:02:58 | 00:03:34 | 00:06:03 | 00:05:32 | 00:01:13 |
Faces (1000 triangles) | 4846 | 4605 | 5000 | 4839 | 3864 | 5000 | 2061 | |
Vertices (1000 points) | 2424 | 2312 | 2563 | 2500 | 1935 | 2504 | 1055 | |
Texture | Processing time (hh:mm:ss) | 00:09:25 | 00:18:25 | 00:03:59 | 00:09:50 | 00:09:47 | 00:04:09 | 00:02:51 |
Total time (hh:mm:ss) | 0:35:27 | 1:29:00 | 0:24:38 | 1:44:07 | 0:34:23 | 0:37:44 | 1:00:10 |
Type | Phase-Based Laser Scanner | Handheld Structured Light Scanner | Handheld Structured Light Scanner |
---|---|---|---|
Brand | FARO | FARO | STONEX |
model | Focus 3D X 330 | Freestyle3D | F6 SR |
Accuracy | 2 mm | 1.5 mm | 0.09 mm |
Point density | 0.2 mm | 0.2 mm | 0.4 mm |
Depth of field | 0.6–130 m | 0.3–0.8 m | 0.25–0.5 m |
Acquisition speed | up to 976,000 points/s | up to 88,000 points/s | up to 640,000 points/s |
Noise level | 0.3 mm | 0.7 mm | 0.5 mm |
Approx. price | EUR 25,000 | EUR 13,000 | EUR 10,000 |
STONEX F6 SR | FARO Focus3D X 330 | FARO Freestyle | |
---|---|---|---|
Acquisition duration (mm:ss) | 02:16 | 90:56 | 10:40 |
Registration duration (mm:ss) | 05:08 | 14:35 | --- |
Denoising duration (mm:ss) | 24:15 | 2:26 | 00:02 |
Meshing duration (mm:ss) | 01:23 | 04:01 | 01:27 |
Cloud points (1000 points) | 20,928 | 1289 | 435 |
Mesh triangles (1000 triangles) | 6350 | 6488 | 1951 |
Dataset 2 AMP | Dataset 3 AMP | Dataset 1 FZA | Dataset 2 FZA | Dataset 3 FZA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dataset 1 AMP | 0.15 | 0.11 | 0.17 | 0.14 | 0.21 | 0.29 | 0.16 | 0.15 | 0.19 | 0.18 |
Dataset 2 AMP | 0.19 | 0.16 | 0.23 | 0.28 | 0.21 | 0.18 | 0.18 | 0.14 | ||
Dataset 3 AMP | 0.18 | 0.17 | 0.17 | 0.14 | 0.15 | 0.10 | ||||
Dataset 1 FZA | 0.20 | 0.20 | 0.17 | 0.16 | ||||||
Dataset 2 FZA | 0.16 | 0.10 | ||||||||
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
FZA | P4D | ARP | VCM | R3D | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AMP | 0.66 | 0.45 | 0.75 | 1.30 | 0.76 | 0.59 | 0.69 | 0.54 | 0.80 | 0.57 |
FZA | 0.80 | 1.50 | 0.72 | 0.78 | 0.72 | 0.71 | 0.79 | 0.68 | ||
P4D | 0.95 | 2.14 | 0.94 | 1.06 | 0.96 | 1.07 | ||||
ARP | 0.80 | 0.67 | 0.82 | 0.64 | ||||||
VCM | 0.60 | 0.59 | ||||||||
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
FZA | P4D | ARP | VCM | R3D | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AMP | 0.60 | 0.45 | 0.68 | 0.81 | 0.72 | 0.99 | 0.50 | 0.50 | 5.45 | 3.33 |
FZA | 0.94 | 1.06 | 1.04 | 1.23 | 0.73 | 0.68 | 5.37 | 3.23 | ||
P4D | 1.07 | 1.51 | 0.90 | 0.95 | 5.48 | 3.22 | ||||
ARP | 1.05 | 1.51 | 5.55 | 3.23 | ||||||
VCM | 5.37 | 3.26 | ||||||||
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
FZA | ARP | VCM | R3D | |||||
---|---|---|---|---|---|---|---|---|
AMP | 0.82 | 0.58 | 1.28 | 0.89 | 0.69 | 0.82 | 1.03 | 1.31 |
FZA | 1.21 | 1.31 | 1.00 | 1.15 | 1.11 | 1.37 | ||
ARP | 1.44 | 1.19 | 1.68 | 1.5 | ||||
VCM | 1.21 | 1.36 | ||||||
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
AMP–Dataset 7 | FZA–Dataset 7 | AMP–Dataset 8 | VCM–Dataset 9 | |||||
---|---|---|---|---|---|---|---|---|
AMP–Dataset 8 | 0.70 | 1.45 | 0.81 | 1.53 | 0.24 | 0.48 | 0.28 | 0.86 |
mean abs. | std. dev. | mean abs. | std. dev. | mean abs. | std. dev. | mean abs. | std. dev. |
AMP | FZA | P4D | ARP | VCM | R3D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3D X 330 | 0.84 | 2.18 | 1.01 | 1.57 | 1.32 | 2.14 | 1.17 | 1.69 | 1.21 | 1.79 | 1.01 | 1.04 |
F6 SR | 1.72 | 1.75 | 1.23 | 1.40 | 1.23 | 1.43 | 1.48 | 1.61 | 1.21 | 1.39 | 1.17 | 1.35 |
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
AMP | FZA | P4D | ARP | VCM | R3D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3D X 330 | 1.46 | 1.96 | 1.29 | 1.90 | 1.37 | 2.16 | 1.42 | 2.04 | 1.25 | 2.09 | 5.75 | 3.30 |
F6 SR | 1.53 | 2.16 | 1.54 | 1.41 | 1.22 | 1.43 | 1.51 | 1.69 | 1.31 | 1.44 | 6.22 | 3.33 |
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
AMP | FZA | ARP | VCM | R3D | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F6 SR | 0.63 | 0.73 | 0.66 | 0.65 | 1.22 | 1.00 | 0.75 | 0.92 | 1.11 | 1.38 |
Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev | Mean abs. | Std. dev |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamopoulos, E.; Rinaudo, F.; Ardissono, L. A Critical Comparison of 3D Digitization Techniques for Heritage Objects. ISPRS Int. J. Geo-Inf. 2021, 10, 10. https://doi.org/10.3390/ijgi10010010
Adamopoulos E, Rinaudo F, Ardissono L. A Critical Comparison of 3D Digitization Techniques for Heritage Objects. ISPRS International Journal of Geo-Information. 2021; 10(1):10. https://doi.org/10.3390/ijgi10010010
Chicago/Turabian StyleAdamopoulos, Efstathios, Fulvio Rinaudo, and Liliana Ardissono. 2021. "A Critical Comparison of 3D Digitization Techniques for Heritage Objects" ISPRS International Journal of Geo-Information 10, no. 1: 10. https://doi.org/10.3390/ijgi10010010
APA StyleAdamopoulos, E., Rinaudo, F., & Ardissono, L. (2021). A Critical Comparison of 3D Digitization Techniques for Heritage Objects. ISPRS International Journal of Geo-Information, 10(1), 10. https://doi.org/10.3390/ijgi10010010