Fire Characteristics of Upholstery Materials in Seats
"> Figure 1
<p>Pictures of the three samples. (<b>a</b>) Imitation leather, (<b>b</b>) suede, and (<b>c</b>) microplush.</p> "> Figure 2
<p>Test equipment. (<b>a</b>) underlying panel and (<b>b</b>) upholstery for the experiment.</p> "> Figure 3
<p>The experiment using a burning cigarette on (<b>a</b>) Sample 1, (<b>b</b>) Sample 2, and (<b>c</b>) Sample 3.</p> "> Figure 3 Cont.
<p>The experiment using a burning cigarette on (<b>a</b>) Sample 1, (<b>b</b>) Sample 2, and (<b>c</b>) Sample 3.</p> "> Figure 4
<p>The experiment with Sample 2 using an equivalent to a match. (<b>a</b>) Ignition by the equivalent of match, and (<b>b</b>) residual after experiment.</p> ">
Abstract
:1. Introduction
1.1. Textile Materials in Seats
1.2. Sources of Combustion Initistion
2. Methodology
2.1. Samples
2.2. Flammability Assessment of Upholstered Furniture Using a Smoldering Cigarette
2.3. Flammability Assessment of Upholstered Furniture Using a Match Flame
3. Results and Discussion
3.1. The Results for a Smoldering Cigarette
3.2. The Ignition Using an Equivalent to a Match
3.3. Mathematical and Statistical Processing and Evaluation of Results
4. Conclusions
- Experiment with a smoldering cigarette: Sample 1: the test sample burned through, without the climate change presence of a flame. Sample 2: No active smoldering occurred. It burned through its thickness and the cigarette went out. Sample 3: burned through its entire thickness.
- Experiment using an equivalent to a match flame: None of the selected upholstery material complies with the EN 1021-2:2014 conditions. Sample 1: the whole test assembly burned through (including the stuffing: PUR foam) and flame burning spread across the whole surface of the test sample.
- Cushioning material is ignitable already in contact with a minor source of ignition and has a tendency to burn with an increasing intensity.
- The most appropriate parameters were observed for Sample 2 (PES/ACRYLIC).
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACRYL | Acrylic |
ANOVA | Analysis of Variance |
Ds | Specific smoke value |
FAA | Federal Aviation Administration |
FAR | Flammability Requirements for Aircraft |
HRR | Heat Release Rate |
MD | Martindale |
MSDS | Material Safety Data Sheet |
PES | polyester |
PUR | polyurethane |
PVC | polyvinyl chloride |
References
- Beňo, L.; Bugaj, M.; Chalas, R.; Němec, V. Materiály a Základní Strojní Součástky (Materials and Basic Machine Parts), 1st ed.; České Vysoké Učení Technické v Praze: Prague, Czech Republic, 2004. (In Czech) [Google Scholar]
- Mouritz, A.P. Fire Safety of Advanced Composites for Aircraft; Australian Transport Safety Bureau: Canberra, Australia, 2016; p. 30. Available online: https://www.atsb.gov.au/media/32739/grant_20040046.pdf (accessed on 10 April 2019).
- Flammability Requirements for Aircraft Seat Cushions; FAR 25.853; Federal Aviation Administration: Washington, DC, USA, 1986; p. 11.
- Nariadenie Vlády Slovenskej Republiky č. 661/2005 Z. z. o Ohlasovaní Udalostí v Civilnom Letectve (Regulation of the Government of the Slovak Republic No. 661/2005 Coll. on Occurrence Reporting in Civil Aviation); Government of the Slovak Republic: Bratislava, Slovakia, 2005. (In Slovak)
- Fire on Board. Available online: http://my-aviation.ru/main/aviation-english/31-fire-on-board.html (accessed on 25 March 2014).
- Hradecky, S. Accident: Kolavia T154 at Surgut on Jan 1st 2011, Aircraft Burned Down. Available online: http://my-aviation.ru/main/aviation-english/31-fire-on-board.html (accessed on 25 March 2014).
- Troitzsch, J. International Plastics Flammability Handbook, 2nd ed.; Oxford University Press: Oxford, UK, 1990; p. 517. [Google Scholar]
- Furniture—Testing of Ignitability and Burning Behaviour of Upholstered Furniture. Part 1: Ignition Source Smouldering Cigarette; EN 1021-1: 2014; CEN-CENELEC Management Centre: Brussels, Belgium, 2014.
- Furniture—Testing of Ignitability and Burning Behaviour of Upholstered Furniture. Part 2: Ignition Source Match Flame Equivalent; EN 1021-2: 2014; CEN-CENELEC Management Centre: Brussels, Belgium, 2014.
- Wang, W.; Zhang, H.; Yang, R.; Ma, Q.J.; Liu, X.D.; Li, C.; Tao, Z.X. Controlling Effect of Oxygen Concentration on Fire Behavior in Low Air Pressure Cargo Compartment. In Proceedings of the ASME Summer Heat Transfer Conference, Bellevue, Washington, DC, USA, 9–12 July 2017. [Google Scholar] [CrossRef]
- ISO 9705-1:2016 Reaction to Fire Tests—Room Corner Test for Wall and Ceiling Lining Products—Part 1: Test Method for a Small Room Configuration; International Organization for Standardization: Geneva, Switzerland, 2016; Available online: https://www.iso.org/standard/59895.html (accessed on 10 May 2020).
- Turekova, I.; Mrackova, E.; Markova, I. Determination of Waste Industrial Dust Safety Characteristics. Int. J. Environ. Res. Public Health 2019, 16, 2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimandl, L. Iniciace elektrickou jiskrou (Initiation by electric spark). ARPOS 2004, 14–15, 21–23. (In Czech) [Google Scholar]
- Serafín, J. Stanovení teplotních mezí výbušnosti (Determination of temperature limits of explosion). In Požární Ochrana (Fire Protection), Ostrava, Czech Republic; SPBI: Ostrava, Czech Republic, 2007; pp. 542–546. [Google Scholar]
- Balog, K.; Kvarčák, M. Dynamika Požáru (Fire Dynamic), 1st ed.; SPBI: Ostrava, Czech Republic, 1999; p. 118. (In Czech) [Google Scholar]
- Turns, S.R. An Introduction to Combustion; The Pennsylvania State University: State College, PA, USA, 1996; p. 565. [Google Scholar] [CrossRef]
- Jenkins, B.; Baxter, L.; Miles, T. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Chen, W.; Ye, J.; Zhao, Q.; Jiang, J. Full-scale experiments of gypsum-sheathed cavity-insulated cold-formed steel walls under different fire conditions. J. Constr. Steel Res. 2020, 164, 105809. [Google Scholar] [CrossRef]
- Xu, M.; Cui, Z.; Tu, L.; Xia, Q.; Chen, Z. The effect of elevated temperatures on the mechanical properties of laminated bamboo. Constr. Build. Mater. 2019, 226, 32–43. [Google Scholar] [CrossRef]
- Polka, M. Leather Thermal and Environmental Parameters in Fire Conditions. Sustainability 2019, 11, 6452. [Google Scholar] [CrossRef] [Green Version]
- Tureková, I.; Balog, K. Parametre vznietivosti polyetylénu a aktivačná energia iniciácie procesu horenia (Fire parameters of polyethylene and activation energy of combustion process initiation). In Vedecké Práce MtF STU; MtF: Bratislava, Slovakia, 2001; pp. 181–186. (In Slovak) [Google Scholar]
- Volokitina, A.V. Improving the Assessment of the Natural Fire Hazard in Nature Reserves. Geogr. Nat. Resour. 2017, 38, 46–51. [Google Scholar] [CrossRef]
- Balog, K. Samovznietenie, 1st ed.; SPBI: Ostrava, Czech Republic, 1999; p. 133. [Google Scholar]
- Explosive Atmospheres. Explosion Prevention and Protection. Part 1: Basic Concepts and Methodology; EN 1127-1: 2012; CEN-CENELEC Management Centre: Brussels, Belgium, 2012.
- Miyamoto, K.; Huang, X.Y.; Hashimoto, N.; Fujita, O.; Fernandez-Pellob, C. Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf. J. 2016, 86, 32–40. [Google Scholar] [CrossRef]
- Osvaldova Makovická, L.; Gašpercová, S. The evaluation of flammability properties regarding testing methods. Civ. Environ. Eng. 2015, 11, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Stoliarov, S.I.; Zeller, O.; Morgan, A.B.; Levchik, S. An experimental setup for observation of smoldering-to-flaming transition on flexible foam/fabric assemblies. Fire Mater. 2018, 42, 128–133. [Google Scholar] [CrossRef]
- Lloyd, W. Validating a Change of Technique Proposed in Draft ISO7176-16 Ignitability Testing on Wheelchair Materials. Assist. Technol. 2012, 24, 220–226. [Google Scholar] [CrossRef]
- MSDS Material Safety Data Sheet of Sample 1. Available online: https://www.-garnize.eu/jaja/eshop/3-1-Kozenky/21-2-Roma (accessed on 31 January 2019).
- MSDS Material Safety Data Sheet of Sample 2. Available online: https://www.sashe.sk-/idealdecor/detail/toccare-imperia-13-lahkocistitelna (accessed on 31 January 2019).
- MSDS Material Safety Data Sheet of Sample 3. Available online: https://kremik.sk/1806-nabytkove-latky-mikroplys-pony (accessed on 31 January 2019).
- Kukfisz, B. Analysis of fire safety requirements in the range of flammability and intensity of smoke emission of selected upholstery materials. Przemysl Chemiczny 2018, 97, 2115–2119. [Google Scholar] [CrossRef]
- Gašpercová, S. Textil isolation from fire protection point of view. In Wood and Fire Safety, Vysoké Tatry, Štrbské Pleso, Slovak Republic; Žilinská Univerzita: Žilina, Slovakia, 2016; pp. 33–38. (In Slovak) [Google Scholar]
- Gašpercová, S.; Osvaldová Makovická, L.; Kadlicová, P. Additional thermal insulation materials and their reaction on fire. In Fire Protection, Safety and Security 2017, Zvolen, Slovak Republic; Technická Univerzita vo Zvolene: Zvolen, Slovakia, 2017; pp. 51–56. (In Slovak) [Google Scholar]
- Shi, L.; Yit, M.; Chew, L. Fire behaviors of polymers under autoignition conditions in a cone calorimeter. Fire Saf. J. 2013, 61, 243–253. [Google Scholar] [CrossRef]
- Shi, L.; Yit, M.; Chew, L. A review of fire processes modeling of combustible materials under external heat flux. Fuel 2013, 106, 30–50. [Google Scholar] [CrossRef]
- Meng, W.; Wu, W.; Zhang, W.; Cheng, L.; Jiao, Y.; Qu, H.; Xu, J. Biotemplated facile synthesis of three-dimensional micro/nanoporous tin oxide: Improving the flammable and mechanical properties of flexible PVC. Micro Nano Lett. 2019, 14, 828–830. [Google Scholar] [CrossRef]
- Wanna, J.T.; Polo, A.; Schettino, D. The smoldering potential of used upholstery fabrics: Unsoiled vs soiled. J. Fire Sci. 1996, 14, 144–158. [Google Scholar] [CrossRef]
Parameter | Criteria |
---|---|
Ignition and spread of flame | Using Bunsen burner test |
Heat release for non-metallic materials | Cone calorimeter test for the heat flow of 35 kW.m2 |
Fire intensity (heat flow) | |
Total HRR of the test material | Lower than or equal to 65 kW.m−2 for two minutes |
Maximum HRR (Heat Release Rate) | Lower than or equal to 65 kW.m−2 in five-minute test |
Specific smoke value (Ds) | Lower than or equal to 200 for four minutes |
Fire properties using cone calorimeter | |
Heat flow | 50 kW/m2 |
Surface temperature on polymer composite | Maximum temperature approximately 700 °C |
Technical Parameters | Upholstered Material from Material Safety Data Sheets (MSDSs) | ||
---|---|---|---|
Sample 1 (Figure 1a) [29] | Sample 2 (Figure 1b) [30] | Sample 3 (Figure 1c) [31] | |
Color | Grey | Light | Red/Wine |
Quality | Imitation leather | Suede | Microplush |
Composition—surface | Fabric 1: 100% PES | 80% PES | 98% PES |
100% PVC | 20% acrylic | 2% cotton | |
Width (cm) | 140 | 150 | 140 |
Weight (g.m−2) | 390 | 280 | 280 |
Thickness (mm) | (0.70 ± 0.1) | (0.65 ± 0.1) | (0.70 ± 0.1) |
Martindale 2 | 60,000 MD | 45,000 MD | 50,000 MD |
Note | No surface treatment, clean with natural texture | Leather with a protective layer ensures greater resistance against sunlight, water and dirt | Covering material—microplush—with a delicate print |
Criteria | Sample 1 | Sample 2 | Sample 3 | |
---|---|---|---|---|
Smoldering | Burning spreading dangerously | No | No | Yes |
Test assembly has burnt out | No | No | No | |
Test assembly has burned through by smoldering towards edges | No | No | No/Yes | |
Test assembly has burned through by smoldering in its thickness | Yes | Yes | Yes | |
Smoldering of the test assembly for more than 60 s | No | No | No | |
Presence of active smoldering during the final inspection | No | No | No/Yes | |
Burning | Occurrence of flames | No | No | No |
Experimental parameters | ||||
Smoldering time (min) | 15.788 ± 0.443 | 11.83 ± 0.408 | 13.212 ± 0.137 | |
Length of the burnt-though sample (cm) | 11.856 ± 0.343 | 6.156 ± 0.328 | 15.01 ± 0.142 |
Criteria | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Fire spreading dangerously | Yes | No | Yes |
Burned out test assembly | Yes | No | Yes |
Burned area up to the edges | Yes | No | Yes |
Burned in its entire thickness | Yes | Yes | Yes |
Flame burning for more than 120 s | Yes | Yes | Yes |
Sample (Content) | Experiment No. | Weight (g) | Time of Smoldering (min) | Length of Thermal Degradation (cm) |
---|---|---|---|---|
1 (PES/PVC) | 1 | 390 | 15.12 | 12.23 |
2 | 390 | 16.42 | 11.32 | |
3 | 390 | 15.55 | 12.04 | |
4 | 390 | 16.07 | 11.59 | |
5 | 390 | 15.78 | 12.10 | |
2 (PES/ACRYL) | 1 | 280 | 12.23 | 5.80 |
2 | 280 | 11.32 | 6.50 | |
3 | 280 | 12.05 | 5.90 | |
4 | 280 | 11.35 | 5.98 | |
5 | 280 | 12.20 | 6.60 | |
3 (PES) | 1 | 280 | 13.25 | 15.05 |
2 | 280 | 13.05 | 15.10 | |
3 | 280 | 13.11 | 14.80 | |
4 | 280 | 13.45 | 15.20 | |
5 | 280 | 13.20 | 14.90 |
Source of Variation | SS | df | MS | F | p-Value | F Critical |
---|---|---|---|---|---|---|
Sample | 50.80405 | 1 | 50.80405 | 387.7432 | 10.1016/5.5 × 10−15 | 4.259677 |
Columns | 165.3223 | 2 | 82.66114 | 630.8807 | 1.79 × 10−21 | 3.402826 |
Interaction | 76.41521 | 2 | 38.2076 | 291.6054 | 1.45 × 10−17 | 3.402826 |
Within | 3.1446 | 24 | 0.131025 | |||
Total | 295.6861 | 29 |
Criterion | Correlations | Time of Smoldering | Length of Degradation |
---|---|---|---|
weight | Pearson correlation | 0.917 ** | 0.163 |
Significance (2-tailed) | 0.000 | 0.561 | |
N | 15 | 15 | |
Spearman’s rho correlation coefficient | 0.818 ** | 0.000 | |
Sig. (2-tailed) | 0.000 | 1.000 | |
N | 15 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makovická Osvaldová, L.; Marková, I.; Vandlíčková, M.; Gašpercová, S.; Titko, M. Fire Characteristics of Upholstery Materials in Seats. Int. J. Environ. Res. Public Health 2020, 17, 3341. https://doi.org/10.3390/ijerph17093341
Makovická Osvaldová L, Marková I, Vandlíčková M, Gašpercová S, Titko M. Fire Characteristics of Upholstery Materials in Seats. International Journal of Environmental Research and Public Health. 2020; 17(9):3341. https://doi.org/10.3390/ijerph17093341
Chicago/Turabian StyleMakovická Osvaldová, Linda, Iveta Marková, Miroslava Vandlíčková, Stanislava Gašpercová, and Michal Titko. 2020. "Fire Characteristics of Upholstery Materials in Seats" International Journal of Environmental Research and Public Health 17, no. 9: 3341. https://doi.org/10.3390/ijerph17093341
APA StyleMakovická Osvaldová, L., Marková, I., Vandlíčková, M., Gašpercová, S., & Titko, M. (2020). Fire Characteristics of Upholstery Materials in Seats. International Journal of Environmental Research and Public Health, 17(9), 3341. https://doi.org/10.3390/ijerph17093341