Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018
<p>Location of the study area.</p> "> Figure 2
<p>Comparison of remote sensing images before and after the collapse of the barrier lake.</p> "> Figure 3
<p>Digital elevation model (DEM) of the study area.</p> "> Figure 4
<p>Monthly precipitation in Milin County from May to October 2018.</p> "> Figure 5
<p>Recent earthquake distribution map for the study area (1949–2018).</p> "> Figure 6
<p>Comparison of remote sensing imagery on 26, 27, and 30 October 2017 for avalanche deposits in the Sedongpu Basin.</p> "> Figure 7
<p>Changes in gully and sediment in the upper margin of the Yarlung Zangbo River (2016–2018).</p> "> Figure 8
<p>The evolution mechanism of the disaster chain (avalanche–landslide–debris flow–barrier lake).</p> ">
Abstract
:1. Introduction
2. Analysis of the Disaster Chain Process
2.1. Study Area and Data
2.2. Disaster Body Formation Process
3. Analysis of the Causes of the Disaster Chain of Events
3.1. Analysis of the Hazard Factors Affecting the Disaster Chain
3.2. Long-Term Accumulation of Rock Debris
4. Discussion
5. Conclusions
- (1)
- There is a significant amplification effect in the avalanche chain.
- (2)
- The avalanche chain often shows a long chain effect.
- (3)
- The avalanche chain can show a shrinkage effect.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef]
- Managing Disaster Risks and Water under Climate Change in Central Asia and Caucasus. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/managing_disaster_risks_and_water_under_climate_change_in_ca_and_caucasus-compilation.pdf (accessed on 14 October 2019).
- Gariano, S.L.; Guzzetti, F. Landslides in a Changing Climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf (accessed on 14 October 2019).
- Xu, L.; Meng, X.; Xu, X. Natural hazard chain research in China: A review. Nat. Hazards 2014, 70, 1631–1659. [Google Scholar] [CrossRef]
- Wang, R.; Lian, F.; Yu, H.; Shi, P.J.; Wang, J.A. Classification and regional features analysis of global typhoon disaster chains based on hazard-formative environment. Geogr. Res. 2016, 35, 836–850. [Google Scholar]
- Shi, P.J.; Shuai, J.B.; Chen, W.F.; Lu, L.L. Study on large-scale disaster risk assessment and risk transfer models. Int. J. Disaster Risk Sci. 2010, 1, 1–8. [Google Scholar]
- Guo, Z.J.; Qin, B.Y. Brief discussion on disaster physics. J. Catastrophol. 1987, 2, 25–33. [Google Scholar]
- Feng, Y. The status of floods and droughts in disasters. Beijing Water 1995, 5, 9–12. [Google Scholar]
- Ni, H.Y.; Wang, D.W.; Bai, Y.J.; Liu, X.X. Structure Type and Countermeasures of Geo-hazard Chain Effects in Sunshui River Drainage, Sichuan, China. Mt. Res. 2016, 34, 451–459. [Google Scholar]
- Menoni, S. Chains of damages and failures in a metropolitan environment: Some observations on the Kobe earthquake in 1995. J. Hazard. Mater. 2001, 86, 101–119. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef]
- Carpignano, A.; Golia, E.; Di Mauro, C.; Bouchon, S. A methodological approach for the definition of multi-risk maps at regional level: First application. J. Risk Res. 2009, 12, 513–534. [Google Scholar] [CrossRef]
- Shi, P.J. Theory and practice on disaster system research in a fourth time. J. Nat. Disasters 2005, 14, 1–7. [Google Scholar]
- Shi, P.J. Establishing national integrated disaster reduction strategy and improving catastrophe risk governance capacity. J. Nat. Disasters 2008, 17, 1–8. [Google Scholar]
- Xiao, S.X. Originality structure sketch on chain-styled theory of disaster in eco-environment. Chin. J. Rock Mech. Eng. 2006, 25, 2594–2602. [Google Scholar]
- Liu, W.F.; Xiao, S.X.; Sui, Y.C.; Zhou, J.F.; Gao, H.W. Analysis of natural disaster chain and chain-cutting disaster mitigation mode. Chin. J. Rock Mech. Eng. 2006, 25, 2675–2681. [Google Scholar]
- Wen, C.J. Generalized disaster, disaster chain and their prevention and control. J. Catastrophol. 2000, 15, 13–18. [Google Scholar]
- Liu, A.H.; Wu, C. Research on risk assessment method of disaster chain based on complex network. Syst. Eng. Theory Pract. 2015, 35, 466–472. [Google Scholar]
- Peters, K.; Buzna, L.; Helbing, D. Modelling of cascading effects and efficient response to disaster spreading in complex networks. Int. J. Crit. Infrastruct. 2008, 4, 46–62. [Google Scholar] [CrossRef]
- Martha, J.; Subbakrishna, S. Targeting a just-in-case supply chain for the inevitable next disaster. Supply Chain Manag. Rev. 2002, 6, 18–23. [Google Scholar]
- Wang, J.X.; Gu, X.Y.; Huang, T.R. Using Bayesian networks in analyzing powerful earthquake disaster chains. Nat. Hazards 2013, 68, 509–527. [Google Scholar] [CrossRef]
- Asghar, S.; Alahakoon, D.; Churilov, L. A comprehensive conceptual model for disaster management. J. Humanit. Assist. 2006, 1360, 1–15. [Google Scholar]
- Cyganik, K.A. Disaster preparedness in Virginia hospital center-Arlington after Sept 11, 2001. Disaster Manag. Response 2003, 1, 80–86. [Google Scholar] [CrossRef]
- Haddow, G.; Bullock, J.; Coppola, D.P. Introduction to Emergency Management; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- May, F. Cascading Disaster Models in Postburn Flash Flood. In The Fire Environment—Innovations, Management, and Policy; Butler, B.W., Cook, W., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; pp. 443–464. [Google Scholar]
- Cui, Y.; Kong, J.M.; Tian, S.J. The critical role for heavy rainfall in the evolution of the mountain hazards chains. J. Mt. Sci. 2011, 29, 87–94. [Google Scholar]
- Xu, M.Z.; Wang, Z.Y.; Qi, L.J. Disaster chains initiated by the Wenchuan earthquake. J. Mt. Sci. 2012, 30, 502–512. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, L.Z.; Cao, Z.Y.; Zhang, X.; Xu, Z.; Gong, J. Network Simulation and Visual Analysis of Spatiotemporal Process: A Case Study of Dam-break Flood Routing. J. Geo Inf. Sci. 2015, 17, 215–221. [Google Scholar]
- Li, W.X.; Wang, Z.Y.; Wang, X.Z.; Qi, L.J.; He, X.Y. Secondary Mountain Disaster Chain Induced by the Wenchuan Earthquake and the Result of Chain-cutting Engineering in the Xiaogangjian Gully. J. Mt. Sci. 2014, 32, 336–344. [Google Scholar]
- Clague, J.; Evans, S. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat. Sci. Rev. 2000, 19, 1763–1783. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.A.; Chen, M.; Shi, P.J. Review on research methods of disaster loss accumulation and amplification of disaster chains. Prog. Geogr. 2014, 33, 1498–1511. [Google Scholar]
- Shi, P.J.; Lu, L.L.; Wang, M.; Wang, J.A.; Chen, W.F. Disaster system: Disaster cluster, disaster chain and disaster compound. J. Nat. Disasters 2014, 23, 1–12. [Google Scholar]
- Li, M.; Tang, H.M.; Ye, S.Q. Research on Chain rule of typical geological disaster. J. Catastrophol. 2008, 23, 1–5. [Google Scholar]
- Keefer, D.K. Investigating landslides caused by earthquakes—A historical review. Surv. Geophys. 2002, 23, 473–510. [Google Scholar] [CrossRef]
- Meng, J.J.; Yang, Q. Research advances of chain-cutting disaster mitigation from gestation source in China. J. Saf. Environ. 2012, 12, 246–251. [Google Scholar]
- Tong, L.Q.; Tu, J.N.; Pei, L.X.; Guo, Z.C.; Zheng, X.W.; Fan, J.H.; Zhong, C.; Liu, C.L.; Wang, S.S.; He, P.; et al. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi peak, Yarlung Zangbo River. J. Eng. Geol. 2018, 26, 1552–1561. [Google Scholar]
- Wang, C.Z.; Yao, L.K.; Huang, Y.D.; Sarfraz, A. Railway Alignment Design Mitigation Strategies in High Risk Area of Landslide and Collapse Damming with the Chain of Quake Lake Disasters. Railw. Stand. Des. 2019, 63, 1–7. [Google Scholar]
- Xu, Q.; Zheng, G.; Li, W.L.; He, C.Y.; Dong, X.J.; Guo, C.; Feng, W.K. Study on successive landslide damming events of Jinsha River in Baige Village on October 11 and November 3, 2018. J. Eng. Geol. 2018, 26, 1534–1551. [Google Scholar]
- Xia, J.S.; Dong, P.L. Spatial characteristics of physical environments for human settlements in Jinsha River watershed (Yunnan section), China. Geomat. Nat. Hazards Risk 2019, 10, 544–561. [Google Scholar] [CrossRef]
- Peng, D.L.; Xu, Q.; Dong, X.J.; Qi, X.; Ju, Y.Z.; Li, H.J. Accurate and efficient method for loess landslide fine mapping with high resolution close-range photogrammetry. J. Eng. Geol. 2017, 25, 424–435. [Google Scholar]
- Chai, H.J.; Liu, H.C.; Zhang, Z.Y. The catalog of Chinese landslide dam events. J. Geol. Hazards Environ. Preserv. 1995, 6, 1–9. [Google Scholar]
- Chai, H.J.; Liu, H.C.; Zhang, Z.Y. The temporal—Spatial distribution of damming landslides in China. J. Mt. Sci. 2000, 18, 51–54. [Google Scholar]
- Li, D.; Lu, X.; Yang, X.; Chen, L.; Lin, L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology 2018, 322, 41–52. [Google Scholar] [CrossRef]
- Hu, W.T.; Yao, T.D.; Yu, W.S.; Yang, W.; Gao, Y. Advances in the study of glacier avalanches in High Asia. J. Glaciol. Geocryol. 2018, 40, 1141–1152. [Google Scholar]
- Yang, W.T.; Wang, M.; Shi, P.J.; Shen, L.L.; Liu, L.Y. Object-oriented rapid identification of landslides based on terrain factors segmentation and classification. J. Nat. Disasters 2015, 24, 1–6. [Google Scholar]
- Shangguan, D.H.; Liu, S.Y.; Ding, Y.J.; Guo, W.Q.; Xu, B.Q.; Xu, J.L.; Jiang, Z.L. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef]
- Chen, H.J.; Yang, J.P.; Tan, C.P. Responsivity of glacier to climate change in China. J. Glaciol. Geocryol. 2017, 39, 16–23. [Google Scholar]
- Liang, Y.F.; Pei, X.J.; Cui, S.H.; Zhu, L.; Gao, H.H.; Dong, Y. Study on Geological Disaster Chain Effect of Huangdongzi Gully Induced by Wenchuan Earthquake and Breaking Measures. J. Catastrophology 2018, 33, 201–209. [Google Scholar]
- Frattini, P.; Riva, F.; Crosta, G.; Fusl, N. Rock-avalanche geomorphological and hydrological impact on an alpine watershed. Geomorphology 2016, 262, 47–60. [Google Scholar] [CrossRef]
- Immerzeel, W.; Van, B.L.; Bierkens, M. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Schaub, Y.; Huggel, C.; Cochachin, A. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-ice-avalanche-induced impact waves at Mount Hualcand Lake 513, Peru. Landslides 2016, 13, 1445–1459. [Google Scholar] [CrossRef]
- Nian, T.K.; Wu, H.; Chen, G.Q.; Zheng, D.F.; Zhang, Y.J.; Li, D.Y. Research progress on stability evaluation method and disaster chain effect of landslide dam. Chin. J. Rock Mech. Eng. 2018, 37, 1796–1812. [Google Scholar]
- Yang, K.; Liu, Q. Supraglacial drainage system: A review. J. Glaciol. Geocryol. 2016, 38, 1666–1678. [Google Scholar]
- Shroder, J.; Haeberli, W.; Whiteman, C. Snow and Ice-Related Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 607–646. [Google Scholar]
- Liu, C.Z. Preliminary findings on Dazhai landslide-debris flow disaster in Guizhou Province of June 28, 2010. J. Eng. Geol. 2010, 18, 623–630. [Google Scholar]
- Ash, M.; Brennan, P.; Keylock, C.; Vriend, N.; McElwaine, J.; Sovilla, B. Two-dimensional radar imaging of flowing avalanches. Cold Reg. Sci. Technol. 2014, 102, 41–51. [Google Scholar] [CrossRef]
- Qi, X.; Yu, B.; Zhu, Y. Experimental study on the clastic deposition forming debris flow. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 1950–1959. [Google Scholar]
- Wang, G.F.; Zhang, T.B.; Zhang, J.P.; Wu, H.; Yang, Q.L.; Ge, X.Y. Comparative Study of Glaciers Information Extraction Method Based on Remote Sensing Image. Geospat. Inf. 2010, 8, 43–46. [Google Scholar]
- Wang, Y.; Lin, Q.G.; Shi, P.J. Spatial pattern and influencing factors of landslide casualty events. J. Geogr. Sci. 2018, 28, 259–374. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Chen, F.; Pan, D. Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018. Int. J. Environ. Res. Public Health 2019, 16, 4707. https://doi.org/10.3390/ijerph16234707
Jia H, Chen F, Pan D. Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018. International Journal of Environmental Research and Public Health. 2019; 16(23):4707. https://doi.org/10.3390/ijerph16234707
Chicago/Turabian StyleJia, Huicong, Fang Chen, and Donghua Pan. 2019. "Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018" International Journal of Environmental Research and Public Health 16, no. 23: 4707. https://doi.org/10.3390/ijerph16234707
APA StyleJia, H., Chen, F., & Pan, D. (2019). Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018. International Journal of Environmental Research and Public Health, 16(23), 4707. https://doi.org/10.3390/ijerph16234707