Towards Context-Aware Opinion Summarization for Monitoring Social Impact of News
<p>Workflow overview of the proposed model.</p> "> Figure 2
<p>Results of the Silhouette measure for the two clustering approaches in the topic detection on the TelecomServ dataset by applying (<b>a</b>) WordNet and (<b>b</b>) word embeddings based semantic processing approaches.</p> "> Figure 3
<p>Results of the Silhouette measure for the two clustering approaches in the topic detection on COVID-19 dataset by applying (<b>a</b>) WordNet and (<b>b</b>) word embeddings based semantic processing approaches.</p> "> Figure 4
<p>Averaged Silhouette values of compared topic detection approaches applied to the TelecomServ dataset.</p> "> Figure 5
<p>Average Silhouette values of compared topic detection approaches applied to the COVID-19 dataset.</p> "> Figure 6
<p>Results of <span class="html-italic">JSD<sub>News</sub></span> (Jensen–Shannon divergence focused on the news) applying (<b>a</b>) term and (<b>b</b>) sentence clustering, using WordNet and word embeddings on the TelecomServ dataset.</p> "> Figure 7
<p>Results of <span class="html-italic">JSD<sub>Opinions</sub></span> (Jensen–Shannon divergence focused on the opinions) applying (<b>a</b>) term and (<b>b</b>) sentence clustering, using WordNet and word embeddings on the TelecomServ dataset.</p> "> Figure 8
<p>Results of <span class="html-italic">JSD<sub>News</sub></span> applying (<b>a</b>) term and (<b>b</b>) sentence clustering, using WordNet and word embeddings on the COVID-19 dataset.</p> "> Figure 9
<p>Results of <span class="html-italic">JSD<sub>Opinions</sub></span> applying (<b>a</b>) term and (<b>b</b>) sentence clustering, using WordNet and word embeddings on the COVID-19 dataset.</p> ">
Abstract
:1. Introduction
2. Related Works
3. News-Focused Opinion Summarization Model
3.1. Preprocessing and Feature Extraction
3.2. Topic Detection
3.3. Sentiment Scoring
3.4. Topic-Sentence Mapping
3.5. Topic Contextualization
3.6. Sentences Ranking
- Explanatoriness scoring [40]: In this approach, the ranking of sentences in opinions is based on their usefulness for helping users understand the reasons of sentiments (e.g., “explanatoriness”). It is one of the reported proposals in which the context is considered for determining the importance of the sentences. Kin et al. [40] proposed three heuristics for scoring explanatoriness of a sentence (i.e., length, popularity, and discriminativeness):
- Sentence length: A longer sentence is very likely to be more explanatory than than a shorter one, since a longer sentence, in general, conveys more information.
- Popularity and representativeness: A sentence is very likely to be more explanatory if it contains more terms that occur frequently in all sentences.
- Discriminativeness relative to background: A sentence containing more discriminative terms that can distinguish opinionated sentences from background information is more likely explanatory.
- 2
- TextRank scoring [41]: TextRank is one of the most recognized standard and popular text summarization methods. This approach is conceived as a graph-based ranking model that is applied to an undirected graph extracted from natural language texts. In the graph, a sentence is represented as a vertex, and the “similarity” relation between two sentences determines the connexion (edge) between them. PageRank algorithm [42] is applied for computing the importance of a vertex (i.e., a sentence) within a graph.
- 3
- Sentences-to-news scoring: This approach consists of computing the relevance score of each sentence Sk through measuring the semantic similarity between the sentence and the keyword vector of the news. For this purpose, Mihalcea et al. similarity function [37] (Equation (1)) is applied. Besides, two variants of the word-to-word semantic similarity are evaluated. Different from the explanatoriness scoring conception, this approach allows us to directly put the sentence-relevance scoring process in alignment with the news context, with the independence of the topic to the one belongs.
3.7. Summary Construction
4. Experimental Results
4.1. Description of Datasets
- The news should have an interest in national scope;
- The news should have more than 50 associated opinions or comments.
4.2. Evaluation Metrics
4.3. Experimental Setup
- To measure the divergence between the automatic summary and the news content (JSD focused on the news), intending to know the correspondence level of the generated summary concerning the news.
- To measure the divergence between the automatic summary and the content of all opinions (JSD focused on opinions), intending to know the correspondence level of the generated summary concerning all opinions. The generated summary not only should be relevant to the news, but it should also be a good synthesis of the opinion set.
- Evaluating two topic detection approaches by using both term and sentence based granularities in the clustering process and comparing them by applying both WordNet and word-embedding-based semantic-processing approaches. Selecting the clustering and semantic-processing approaches that provide the best results for topic detection.
- Evaluating the automatically generated summaries from each solution in Table 2 according to JSD focused on the news (JSDNews) and JSD focused on opinions (JSDOpinions), considering both WordNet and word-embeddings-based semantic-processing approaches. The obtained results would provide more details to the evaluation of the different configurations of the proposed model.
- Comparing the results obtained by each solution in the previous tasks, identifying the best alternative for news-focused opinion summarization. TextRank-based [41] solutions are adopted as a baseline to evaluate the generated summaries according to the JSD measure. The best solution based on our model should work better than this popular and standard text summarization method.
4.4. Results and Discussion
4.5. Illustrative Examples
Context | News title: VALIENTES: Cuatro heroínas en la batalla contra la COVID-19 | ||
URL: http://www.cubadebate.cu/noticias/2020/03/30/cuatro-heroinas-en-la-batalla-contra-la-covid-19-fotos/ | |||
News fragment: A Celeste, Claudia, Esther y Melisa solo se les puede ver a través de un cristal en el Instituto de Medicina Tropical “Pedro Kourí” (IPK Cuba) y después de someterse a un complejo protocolo de seguridad (…) Ellas comparten 24 horas seguidas con la COVID-19 y necesitan una alta concentración, pues el virus pasa por sus manos y no se pueden equivocar (…) Gracias a ese arriesgado trabajo, cada día se sabe si una persona en Cuba padece o no de una pandemia que amenaza a toda la humanidad. Lo mismo ocurre en otros dos laboratorios en Villa Clara y Santiago de Cuba. | |||
Terms topic | ‘agradecerles’, ‘salud’, ‘héroe’ | ||
Opinions | Total: 171; Sentences: 347 | Pos. Score | Neg. Score |
Summary | Felicitaciones a todos los que están trabajando en la epidemia del coronavirus. | 1.25 | 1.0 |
Gracias, respeto, admiración, se merecen todo nuestros médicos, todo el personal de la salud y fuera de ella que esta dando todo para erredicar este virus. | 7.1 | 1.9 | |
Combatientes por la humanidad¡. | 1.9 | 1.4 | |
JSDOpinions | 0.374 | ||
JSDNews | 0.382 |
Context | News title: Cuba frente a la COVID-19, día 100: Últimas noticias | ||
URL: http://www.cubadebate.cu/noticias/2020/06/18/cuba-frente-a-la-covid-19-dia-100-ultimas-noticias/ | |||
News fragment: Cuba entra hoy, excepto La Habana y Matanzas, en la primera fase de la recuperación de la COVID-19. El presidente Miguel Díaz-Canel subrayó este miércoles la necesidad de intensificar en ambas provincias el trabajo para que, en el menor tiempo posible, también puedan pasar a la etapa pospandemia (…) Cuando se ha dispuesto el tránsito a la primera fase de la primera etapa pos-COVID-19, en 13 provincias de la Isla y el Municipio Especial Isla de la Juventud, Matanzas y La Habana figuran como las dos únicas dolorosas excepciones que por ahora no podrán retornar a la normalidad (…) Eliminar o mantener las restricciones (tránsito paulatino de una etapa a otras) responde a criterios sanitarios y no políticos, ha explicado Torres Iríbar (…) La tasa de incidencia acumulada es de 57,5 por 100 000 habitantes, con siete municipios por encima de la media provincial: Cotorro, Centro Habana, Cerro, Regla, La Habana del Este, La Lisa y La Habana Vieja (…) | |||
Terms topic | ‘habanero’, ‘provincia’, ‘fase’, ‘etapa’, ‘indisciplina’ | ||
Opinions | Total: 70; Sentences: 225 | Pos. Score | Neg. Score |
Summary | Como habanero, me siento muy apenado de que el epicentro actual y cola de la epidemia de covid 19 en cuba sea debido al comportamiento de los pobladores en mi provincia. | 4.5 | 12.4 |
Soy habanero y siento lo que diré, lo que es una pena, pero con el anuncio de que matanzas y la habana son las únicas provincias que no entran en la fase 1 de la etapa recuperativa parece que esperan compulsar a los pobladores de la habana a disciplinarse para poder llegar a esa etapa cunado la tendencia de los últimos tiempos es exactamente lo contrario de cada vez mas indisciplina. | 12.1 | 14.5 | |
Veo como va en aumento las personas en las calles y la indisciplina en general como no uso o el mal uso del nasobuco, las aglomeraciones, las personas en las calles | 14.7 | 15.6 | |
JSDOpinions | 0.255 | ||
JSDNews | 0.357 |
5. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balahur, A.; Kabadjov, M.; Steinberger, J.; Steinberger, R.; Montoyo, A. Challenges and solutions in the opinion summarization of user-generated content. J. Intell. Inf. Syst. 2012, 39, 375–398. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A. Systematic Literature Review on Opinion Mining of Big Data for Government Intelligence. Webology 2017, 14, 6–47. [Google Scholar]
- Zhao, J.; Liu, K.; Xu, L. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Comput. Linguist. 2016, 42, 595–598. [Google Scholar] [CrossRef]
- Sun, S.; Luo, C.; Chen, J. A review of natural language processing techniques for opinion mining systems. Inf. Fusion 2017, 36, 10–25. [Google Scholar] [CrossRef]
- Ravi, K.; Ravi, V. A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowl. Based Syst. 2015, 84, 14–46. [Google Scholar] [CrossRef]
- Moussa, M.E.; Mohamed, E.H.; Haggag, M.H. A survey on opinion summarization techniques for social media. Futur. Comput. Inform. J. 2018, 3, 82–109. [Google Scholar] [CrossRef]
- Condori, R.E.L.; Pardo, T.A.S. Opinion summarization methods: Comparing and extending extractive and abstractive approaches. Expert Syst. Appl. 2017, 78, 124–134. [Google Scholar] [CrossRef]
- Li, P.; Huang, L.; Ren, G.-J. Topic Detection and Summarization of User Reviews. arXiv 2020, arXiv:2006.00148. [Google Scholar]
- Rossetti, M.; Stella, F.; Zanker, M. Analyzing user reviews in tourism with topic models. Inf. Technol. Tour. 2015, 16, 5–21. [Google Scholar] [CrossRef]
- Chakraborty, R.; Bhavsar, M.; Dandapat, S.K.; Chandra, J. Tweet Summarization of News Articles: An Objective Ordering-Based Perspective. IEEE Trans. Comput. Soc. Syst. 2019, 6, 761–777. [Google Scholar] [CrossRef]
- Kilgarriff, A.; Fellbaum, C. WordNet: An Electronic Lexical Database. Language 2000, 76, 706. [Google Scholar] [CrossRef] [Green Version]
- Kamath, U.; Liu, J.; Whitaker, J. Deep Learning for NLP and Speech Recognition; Springer Nature Switzerland: Cham, Switzerland, 2019. [Google Scholar]
- Yang, H.; Luo, L.; Chueng, L.P.; Ling, D.; Chin, F. Deep Learning and Its Applications to Natural Language Processing. In Deep Learning: Fundamentals, Theory and Applications; Huang, K., Hussain, A., Wang, Q.-F., Zhang, R., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2019; pp. 89–109. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the 1st International Conference on Learning Representations (ICLR 2013), Scottsdale, AZ, USA, 2–4 May 2013. [Google Scholar]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.; Kochut, K. Text Summarization Techniques: A Brief Survey. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Abualigah, L.M.; Bashabsheh, M.Q.; Alabool, H.; Shehab, M. Text Summarization: A Brief Review. In Recent Advances in NLP: The Case of Arabic Language, Studies in Computational Intelligence; Abd El Aziz, M., Al-qaness, M.A.A., Ewees, A.A., Dahou, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar]
- Gambhir, M.; Gupta, V. Recent automatic text summarization techniques: A survey. Artif. Intell. Rev. 2017, 47, 1–66. [Google Scholar] [CrossRef]
- Amplayo, R.K.; Lapata, M. Informative and Controllable Opinion Summarization. arXiv 2019, arXiv:1909.02322. [Google Scholar]
- Lloret, E.; Boldrini, E.; Vodolazova, T.; Martínez-Barco, P.; Muñoz, R.; Palomar, M. A novel concept-level approach for ultra-concise opinion summarization. Expert Syst. Appl. 2015, 42, 7148–7156. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, R.; Peruri, H.C.; Vishnu, U.; Goyal, P.; Bhattacharya, S.; Ganguly, N. Read what you need: Controllable Aspect-based Opinion Summarization of Tourist Reviews. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; pp. 1825–1828. [Google Scholar] [CrossRef]
- Jiang, Y.; Meng, W.; Yu, C. Topic Sentiment Change Analysis. In Proceedings of the Machine Learning and Data Mining in Pattern Recognition, MLDM 2011, New York, NY, USA, 30 August–3 September 2011; LNCS 6871. Springer: Berlin/Heidelberg, Germany, 2011; pp. 443–457. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Noorian, Z.; Bagheri, E.; Ding, C.; Al-Obeidat, F. Topic and sentiment aware microblog summarization for twitter. J. Intell. Inf. Syst. 2018, 54, 129–156. [Google Scholar] [CrossRef]
- Rohit, S.V.K.; Shrivastava, M. Using Argumentative Semantic Feature for Summarization. In Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 30 January–1 February 2019; pp. 456–461. [Google Scholar]
- Abdi, A.; Shamsuddin, S.M.; Aliguliyev, R.M. QMOS: Query-based multi-documents opinion-oriented summarization. Inf. Process. Manag. 2018, 54, 318–338. [Google Scholar] [CrossRef]
- Wang, L.; Raghavan, H.; Cardie, C.; Castelli, V. Query-Focused Opinion Summarization for User-Generated Content. In Proceedings of the COLING 2014, the 25th International Conference on Computational Linguistics, Dublin, Ireland, 23–29 August 2014; Dublin City University and Association for Computational Linguistics. pp. 1660–1669. [Google Scholar]
- Conrad, J.G.; Leidner, J.L.; Schilder, F.; Kondadadi, R. Query-based opinion summarization for legal blog entries. In Proceedings of the 12th International Conference on Extending Database Technology Advances in Database Technology-EDBT ’09, New York, NY, USA, 8–12 June 2009; pp. 167–176. [Google Scholar]
- Luo, W.; Zhuang, F.; He, Q.; Shi, Z. Exploiting relevance, coverage, and novelty for query-focused multi-document summarization. Knowl. Based Syst. 2013, 46, 33–42. [Google Scholar] [CrossRef]
- Ramón Hernández, A.; García Lorenzo, M.M.; Simón-Cuevas, A.; Arco, L.; Serrano-Guerrero, J. A semantic polarity detection approach: A case study applied to a Spanish corpus. Procedia Comput. Sci. 2019, 162, 849–856. [Google Scholar] [CrossRef]
- Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics (ACL), Doha, Qatar,, 25–29 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 1532–1543. [Google Scholar] [CrossRef]
- Verberne, S.; Krahmer, E.; Wubben, S.; Bosch, A.V.D. Query-based summarization of discussion threads. Nat. Lang. Eng. 2019, 26, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Angioni, M.; Devola, A.; Locci, M.; Tuveri, M.L.A.F. An Opinion Mining Model Based on User Preferences. In Proceedings of the 18th International Conference on WWW (Internet 2019), IADIS-International Association for the Development of the Information Society, Cagliari, Italy, 7–8 November 2019; pp. 183–185. [Google Scholar] [CrossRef]
- Dalal, M.K.; Zaveri, M.A. Semisupervised Learning Based Opinion Summarization and Classification for Online Product Reviews. Appl. Comput. Intell. Soft Comput. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Manning, C.; Prabhakar, R.; Schütze, H. An Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Pedersen, T.; Patwardhan, S.; Michelizzi, J. WordNet:Similarity-Measuring the Relatedness of Concepts. In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-04), San Jose, CA, USA, 25–29 July 2004; pp. 1024–1025. [Google Scholar]
- Mihalcea, R.; Corley, C.; Strapparava, C. Corpus-based and Knowledge-based Measures of Text Semantic Similarity. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI’06), Boston, MA, USA, 16–20 July 2006; pp. 775–780. [Google Scholar]
- Baccianella, S.; Esuli, A.; Sebastiani, F. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the 7th International Conference on Language Resources and Evaluation, Valleta, Malta, 17–23 May 2010; pp. 2200–2204. [Google Scholar]
- Amores, M.; Arco, L.; Borroto, C. Unsupervised Opinion Polarity Detection based on New Lexical Resources. Comput. Sist. 2016, 20, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Castellanos, M.G.; Hsu, M.; Zhai, C.; Dayal, U.; Ghosh, R. Ranking explanatory sentences for opinion summarization. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval-SIGIR ’13, Dublin, Ireland, 28 July–1 August 2013; p. 1069. [Google Scholar]
- Mihalcea, R.; Tarau, P. TextRank: Bringing Order into Texts. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP’04), Barcelona, Spain, 25–26 July 2004; pp. 404–411. [Google Scholar]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Networks ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Lin, C.-Y. Rouge: A Package for Automatic Evaluation of Summaries. In Proceedings of the Text Summarization Branches Out, Barcelona, Spain, 25–26 July 2004; pp. 74–81. [Google Scholar]
- Louis, A.; Nenkova, A. Automatically evaluating content selection in summarization without human models. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, 6–7 August 2009; pp. 306–314. [Google Scholar]
- Saggion, H.; Torres-Moreno, J.M.; da Cunha, I.; SanJuan, E. Multilingual Summarization Evaluation without Human Models. In Proceedings of the Coling 2010: Poster; Beijing, China, 23–27 August 2010, Association for Computational Linguistics: Stroudsburg, PA, USA, 2010; pp. 1059–1067. [Google Scholar]
- Coavoux, M.; Elsahar, H.; Gallé, M. Unsupervised Aspect-Based Multi-Document Abstractive Summarization. In Proceedings of the 2nd Workshop on New Frontiers in Summarization, Hong Kong, China, 3–4 November 2019; pp. 42–47. [Google Scholar]
- Elsahar, H.; Coavoux, M.; Gallé, M.; Rozen, J. Self-Supervised and Controlled Multi-Document Opinion Summarization Hady. arXiv 2020, arXiv:2004.14754. [Google Scholar]
- Valladares-Valdés, E.; Simón-Cuevas, A.; Olivas, J.A.; Romero, F.P. A Fuzzy Approach for Sentences Relevance Assessment in Multi-document Summarization. In International Workshop on Soft Computing Models in Industrial and Environmental Applications; Springer: Cham, Switzerland, 2019; pp. 57–67. [Google Scholar]
Datasets/Characteristics | #News | #Opinions | #Opinions/News | #Sentences | #Sentences/Opinion | #Terms | #Terms/Opinion |
---|---|---|---|---|---|---|---|
TelecomServ | 80 | 15,776 | 197.2 | 34,665 | 2.2 | 917,674 | 58.2 |
COVID-19 | 85 | 21,707 | 255.4 | 55,447 | 2.5 | 1,587,813 | 73.1 |
Topic Detection Approaches | Semantic Processing Based on WordNet | Semantic Processing Based on Word Embeddings | ||||
---|---|---|---|---|---|---|
Relevance Scoring | Relevance Scoring | |||||
Explanatoriness Scoring | TextRank Scoring (Baseline) | Sentence-to-News Scoring | Explanatoriness Scoring | TextRank Scoring (Baseline) | Sentence-to-News Scoring | |
Term clustering | OS1-WN | OS3-WN | OS4-WN | OS1-we | OS3-we | OS4-we |
Sentence Clustering | OS2-WN | OS5-WN | OS6-WN | OS2-we | OS5-we | OS6-we |
Compared Solutions | TelecomServ | COVID-19 | ||
---|---|---|---|---|
JSDOpinions | JSDNews | JSDOpinions | JSDNews | |
OS1-WN | 0.296 | 0.465 | 0.351 | 0.448 |
OS2-WN | 0.361 | 0.443 | 0.390 | 0.447 |
OS4-WN | 0.331 | 0.418 | 0.376 | 0.431 |
OS5-WN | 0.374 | 0.435 | 0.408 | 0.449 |
OS6-WN | 0.369 | 0.430 | 0.403 | 0.443 |
Baseline 1: OS3-WN TextRank [41] | 0.335 | 0.449 | 0.390 | 0.449 |
Compared Solutions | TelecomServ | COVID-19 | ||
---|---|---|---|---|
JSDOpinions | JSDNews | JSDOpinions | JSDNews | |
OS1-we | 0.278 | 0.487 | 0.314 | 0.453 |
OS2-we | 0.403 | 0.479 | 0.420 | 0.474 |
OS4-we | 0.388 | 0.388 | 0.392 | 0.404 |
OS5-we | 0.424 | 0.473 | 0.445 | 0.474 |
OS6-we | 0.416 | 0.459 | 0.439 | 0.460 |
Baseline 2: OS3-we TextRank [41] | 0.370 | 0.457 | 0.411 | 0.458 |
Compared Solutions | TelecomServ (80 News) | COVID-19 (85 News) | ||||||
---|---|---|---|---|---|---|---|---|
Statistics Variables | Statistics Variables | |||||||
Mean-Difference | z-Value | p-Value | #Items-Best | Mean-Difference | z-Value | p-Value | #Items-Best | |
OS1-WN | −0.07 | −7.5094 | <0.00001 | 76 | −0.04 | −6.6506 | <0.00001 | 69 |
OS2-WN | −0.06 | −6.052 | <0.00001 | 67 | −0.04 | −6.6377 | <0.00001 | 67 |
OS3-WN | −0.07 | −6.4606 | <0.00001 | 66 | −0.04 | −6.7884 | <0.00001 | 72 |
OS4-WN | −0.05 | −3.6639 | <0.00043 | 52 | −0.03 | −4.8421 | <0.00001 | 55 |
OS5-WN | −0.06 | −5.1576 | <0.00001 | 61 | −0.05 | −6.8702 | <0.00001 | 72 |
OS6-WN | −0.05 | −4.4902 | <0.00001 | 61 | −0.05 | −6.375 | <0.00001 | 67 |
OS1-we | −0.09 | −7.9135 | <0.00001 | 80 | −0.06 | −7.4688 | <0.00001 | 80 |
OS2-we | −0.09 | −7.809 | <0.00001 | 79 | −0.06 | −7.9639 | <0.00001 | 81 |
OS3-we | −0.06 | −7.5053 | <000001 | 76 | −0.08 | −7.9553 | <0.00001 | 81 |
OS5-we | −0.09 | −7.6592 | <0.00001 | 76 | −0.06 | −7.9209 | <0.00001 | 82 |
OS6-we | −0.08 | −7.2742 | <0.00001 | 73 | −0.06 | −7.3869 | <0.00001 | 73 |
Average | −0.07 | - | - | 70 | −0.05 | - | - | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramón-Hernández, A.; Simón-Cuevas, A.; Lorenzo, M.M.G.; Arco, L.; Serrano-Guerrero, J. Towards Context-Aware Opinion Summarization for Monitoring Social Impact of News. Information 2020, 11, 535. https://doi.org/10.3390/info11110535
Ramón-Hernández A, Simón-Cuevas A, Lorenzo MMG, Arco L, Serrano-Guerrero J. Towards Context-Aware Opinion Summarization for Monitoring Social Impact of News. Information. 2020; 11(11):535. https://doi.org/10.3390/info11110535
Chicago/Turabian StyleRamón-Hernández, Alejandro, Alfredo Simón-Cuevas, María Matilde García Lorenzo, Leticia Arco, and Jesús Serrano-Guerrero. 2020. "Towards Context-Aware Opinion Summarization for Monitoring Social Impact of News" Information 11, no. 11: 535. https://doi.org/10.3390/info11110535