Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

Abstract

Public opinions on a topic may change over time. Topic Sentiment change analysis is a new research problem consisting of two main components: (a) mining opinions on a certain topic, and (b) detect significant changes of sentiment of the opinions on the topic and identify possible reasons causing each such change. In this paper, we discuss topic sentiment change analysis using data on the Web. We adopt probabilistic topic model and language grammar based sentiment analysis techniques, and integrate them together into a topic level sentiment analysis method. This method is capable of analyzing sentiment and identifying sentiment changes of a given topic from a set of documents covering this topic and possibly other topics. In addition, as the contents of relevant topics are differentiated, our method is also able to identify hot events which are possible causes of a sentiment change. Experimental results show that our method is very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://wordnet.princeton.edu/

  2. ftp://ftp.cs.cornell.edu/pub/smart/english.stop

  3. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW, pp. 519–528 (2003)

    Google Scholar 

  4. Gamon, M.: Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: ACL. COLING 2004. Association for Computational Linguistics, Stroudsburg, PA, USA (2004)

    Google Scholar 

  5. Hatzivassiloglou, V., McKeown, K.: Predicting the semantic orientation of adjectives. In: ACL, pp. 174–181 (1997)

    Google Scholar 

  6. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57. ACM, New York (1999)

    Google Scholar 

  7. Jia, L., Yu, C.T., Meng, W.: The effect of negation on sentiment analysis and retrieval effectiveness. In: CIKM, pp. 1827–1830 (2009)

    Google Scholar 

  8. Kamps, J., Marx, M., Mokken, R., de Rijke, M.: Using wordnet to measure semantic orientation of adjectives, vol. IV, pp. 1115–1118 (2004)

    Google Scholar 

  9. Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: CIKM, pp. 375–384 (2009)

    Google Scholar 

  10. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)

    Google Scholar 

  11. de Marneffe, M.C., Maccartney, B., Manning, C.D.: Generating typed dependency parses from phrase structure parses (2006)

    Google Scholar 

  12. Meena, A., Prabhakar, T.V.: Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 573–580. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C.: Topic sentiment mixture: modeling facets and opinions in weblogs. In: WWW, pp. 171–180 (2007)

    Google Scholar 

  14. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2007)

    Google Scholar 

  15. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. CoRR cs.CL/0205070 (2002)

    Google Scholar 

  16. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  17. Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Cambridge (1966)

    Google Scholar 

  18. Thomas, M., Pang, B., Lee, L.: Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In: EMNLP, pp. 327–335 (2006)

    Google Scholar 

  19. Turney, P.D., Littman, M.L.: Unsupervised learning of semantic orientation from a hundred-billion-word corpus. CoRR cs.LG/0212012 (2002)

    Google Scholar 

  20. Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical trends. In: KDD, pp. 424–433 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, Y., Meng, W., Yu, C. (2011). Topic Sentiment Change Analysis. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics