A Feasibility Study of a Respiratory Rate Measurement System Using Wearable MOx Sensors
<p>MOx sensor working principle, where oxygen is adsorbed onto the surface of the metal oxide.</p> "> Figure 2
<p>Circuit configuration of the wearable MOx sensor for detecting (eCO<sub>2</sub>) from the VOC and TVOC levels.</p> "> Figure 3
<p>Measured waveforms of the wearable MOx sensor, showing the eCO<sub>2</sub> concentration peaks (indicated by the arrows).</p> "> Figure 4
<p>Experimental environment: (<b>a</b>) physical setup overview, (<b>b</b>) attachment of the wearable MOx sensor in the mouth shield, and (<b>c</b>) equipment configuration diagram.</p> "> Figure 5
<p>Experimental results at rest: (<b>a</b>) eCO<sub>2</sub> concentrations and (<b>b</b>) normalized filter output, where the idling time of the eCO<sub>2</sub> sensor is indicated with the blue bar.</p> "> Figure 6
<p>Experimental results of time waveforms for eCO<sub>2</sub> concentration during body movement: (<b>a</b>) eCO<sub>2</sub> concentrations and (<b>b</b>) normalized filter output.</p> "> Figure 7
<p>Comparison of the estimated respiratory rates at rest and during body movement.</p> "> Figure 8
<p>(<b>a</b>) eCO<sub>2</sub> concentration obtained in this experiment (cough, yawn), and (<b>b</b>) normalized filter output (cough, yawn), where the blue, orange, and yellow bars indicate the idling of the sensor, coughing, and yawning, respectively.</p> "> Figure 9
<p>Comparison of the estimated respiratory rates for coughing and yawning.</p> "> Figure 10
<p>eCO<sub>2</sub> concentration in a rest state with an observed outlier.</p> "> Figure 11
<p>Examples of short-time Fourier transform (−5–5 Hz) measurements, showing the differences in the nasal, mouth, cough, and yawn frequency characteristics.</p> "> Figure 12
<p>Changes in the estimation accuracy for true negative rate (TNR), false positive rate (FPR), true positive rate (TPR), and false negative rate (FNR).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. MOx Sensor
2.2. Experimental Measurement Environment
2.3. Evaluation Method of Wearable MOx Sensor
2.4. Experiment 1: Measurement at Rest and during Body Movement
2.5. Experiment 2: Measurement with Coughing and Yawning
3. Experiment Results and Discussion
4. One-Class SVM-Based Normal Respiration Detection
4.1. Principle
4.2. Performance Evaluation
4.2.1. Setup
4.2.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishii, Y. Disasters and Respiratory Diseases (Special Feature/Disaster Medicine). Dokkyo J. Med. Sci. 2012, 39, 245–249. [Google Scholar]
- Yamauchi, K. Internal Diseases Learned from the Great Japan Earthquake~Characteristics, Response, and Prevention, Respiratory Diseases. J. Jpn. Soc. Intern. Med. 2014, 103, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, I. Long-term Health Effects of Dust Inhalation in the Great East Japan Earthquake: Assessing Asbestos Risk. J. Soc. Risk Anal. Jpn. 2011, 21, 175–182. [Google Scholar]
- Maeda, H.; Nakagawa, M.; Yokoyama, M. Hospital admissions for respiratory diseases in the aftermath of the great Hanshin earthquake. Jpn. J. Thorac. Dis. 1996, 34, 164–173. [Google Scholar]
- Akasaka, K.; Baba, R.; Isshiki, M.; Namba, T.; Abe, K. A Proposal for a System for Real-Time Monitoring of the Health Status of Disaster Victims in Evacuation Centers. In Proceedings of the 82nd National Conference of Information Processing Society of Japan, Nonoichi, Japan, 5–7 March 2020; Volume 1, pp. 193–194. [Google Scholar]
- Shimazaki, T.; Anzai, D.; Watanabe, K.; Nakajima, A.; Fukuda, M.; Ata, S. Heat stroke prevention in hot specific occupational environment enhanced by supervised machine learning with personalized vital signs. Sensors 2022, 22, 395. [Google Scholar] [CrossRef] [PubMed]
- Furuguchi, M.; Shibata, Y.; Hashimoto, K. Emergency Physical Condition Management System Using Wearable Devices. In Proceedings of the 78th National Conference of Information Processing Society of Japan, Yokohama, Japan, 10 March 2016; pp. 987–988. [Google Scholar]
- Tamura, T. Medical Applications of Wearable Sensors and Non-Contact Sensors. Jpn. J. Med. Instrum. 2020, 90, 11–23. [Google Scholar]
- Yamaguchi, M.; Sekiguchi, K. Development of Disease-Specific Nursing Processes, 4th ed.; Gakken Medical Shu-Jun-Sha: Shinagawa-ku, Japan, 2013. [Google Scholar]
- Suzuki, H.; Machi, T.; Shinohara, T.; Kaito, K.; Sato, M. Impedance Method in Non-Invasive Biometry. Jpn. Soc. Extra-Corpor. Technol. Med. 1977, 3, 357–360. [Google Scholar]
- Nakajima, K.; Tamura, T.; Miike, H. Simultaneous Heart Rate and Respiration Rate Monitoring by Photoelectric Pulse Wave Method Using Digital Filter. Jpn. J. Med. Electron. Biol. Eng. 1993, 31, 360–366. [Google Scholar]
- Medical Equipment Center. Basic Knowledge of Medical Devices; Yakuji Nippo, Limited.: Chiyoda-ku, Japan, 2008; pp. 85–88. [Google Scholar]
- Nassar, B.S.; Schmidt, G.A. Capnography for monitoring of the critically Ill patient. Clin. Chest Med. 2022, 43, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, S.; Nikolaidis, K.; Plagemann, T.; Goebel, V.; Traaen, G.M.; Øverland, B.; Akerøy, L.; Hunt, T.E.; Loennechen, J.P.; Steinshamn, S.L.; et al. A clinical evaluation of a low-cost strain gauge respiration belt and machine learning to detect sleep apnea. Smart Health 2023, 27, 100373. [Google Scholar] [CrossRef]
- Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.; Johnson, A.E.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale, R.; Clifton, D.A. Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review. IEEE Rev. Biomed. Eng. 2017, 11, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Aqueveque, P.; Gómez, B.; Monsalve, E.; Germany, E.; Ortega-Bastidas, P.; Dubo, S.; Pino, E.J. Simple Wireless Impedance Pneumography System for Unobtrusive Sensing of Respiration. Sensors 2020, 20, 5228. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Nicolò, A.; Innocenti, L.; Bravi, M.; Miccinilli, S.; Sterzi, S.; Sacchetti, M.; Schena, E.; Massaroni, C. Respiratory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone. Biosensors 2023, 13, 637. [Google Scholar] [CrossRef] [PubMed]
- Tarassenko, L.; Villarroel, M.; Guazzi, A.; Jorge, J.; Clifton, D.A.; Pugh, C. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiol. Meas. 2014, 35, 807. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.P.; Howe, T.A.; Malarvili, M.B. Real-time human respiration carbon dioxide measurement device for cardiorespiratory assessment. J. Breath Res. 2018, 12, 026003. [Google Scholar] [CrossRef] [PubMed]
- Pietraru, R.N.; Nicolae, M.; Mocanu, Ș.; Merezeanu, D.-M. Easy-to-Use MOX-Based VOC Sensors for Efficient Indoor Air Quality Monitoring. Sensors 2024, 24, 2501. [Google Scholar] [CrossRef] [PubMed]
- Meinsberg KSI. Survey Report: Signal Processing on Metal Oxide Gas Sensors to Estimate the Indoor Carbon Dioxide Concentration on the Example IDT’s ZMOD4410 Gas Sensor Module. 2018. Available online: https://www.renesas.com/us/en/document/rep/ksi-report-review-renesas-eco2-solution-technology-evaluation (accessed on 10 April 2024).
- Stoukatch, S.; Fagnard, J.F.; Dupont, F.; Laurent, P.; Debliquy, M.; Redouté, J.M. Low Thermal Conductivity Adhesive as a Key Enabler for Compact, Low-Cost Packaging for Metal-Oxide Gas Sensors. IEEE Access 2022, 10, 19242–19253. [Google Scholar] [CrossRef]
- Dutta, S.; Sivaraj, D.; Joga Rao, V.S.; Kumar, H.; Kalita, K. Development of air quality monitoring and notification system using nordic thingy IoT Kit. In Proceedings of the Industry Interactive Innovations in Science, Engineering & Technology (I3SET2K19), Kalyani, India, 13–14 December 2019. [Google Scholar]
- Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [CrossRef]
- Tang, Y.; Fan, E.; Yan, C.; Bai, X.; Zhou, J. Discriminative weighted band selection via one-class SVM for hyperspectral imagery. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2765–2768. [Google Scholar] [CrossRef]
Parts | Part Name & Manufacturer Origin |
---|---|
MOx sensor | KS0457 keyestudio CCS811 Carbon Dioxide Air Quality Sensor, Shenzhen, China |
Microcomputer board | Arduino UNO A000066, Monza, Italy |
Mouth shield | Virec NK-002, Saitama, Japan |
Pillow | Polyester cushion, Tokyo, Japan |
Average | Standard Deviation | |
---|---|---|
Rest | 22.03 bpm | 1.555 bpm |
Movement | 22.03 bpm | 1.555 bpm |
Average | Standard Deviation | |
---|---|---|
w/o cough, yawn | 22.03 bpm | 1.555 bpm |
w cough, yawn | 26.72 bpm | 2.043 bpm |
Predicted | |||
---|---|---|---|
Actual | Neg. | Pos. | |
Neg. | TNR 78.03% | FPR 21.97% | |
Pos. | FNR 21.97% | TPR 78.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuda, M.; Hyry, J.; Omoto, R.; Shimazaki, T.; Kobayashi, T.; Anzai, D. A Feasibility Study of a Respiratory Rate Measurement System Using Wearable MOx Sensors. Information 2024, 15, 492. https://doi.org/10.3390/info15080492
Fukuda M, Hyry J, Omoto R, Shimazaki T, Kobayashi T, Anzai D. A Feasibility Study of a Respiratory Rate Measurement System Using Wearable MOx Sensors. Information. 2024; 15(8):492. https://doi.org/10.3390/info15080492
Chicago/Turabian StyleFukuda, Mitsuhiro, Jaakko Hyry, Ryosuke Omoto, Takunori Shimazaki, Takumi Kobayashi, and Daisuke Anzai. 2024. "A Feasibility Study of a Respiratory Rate Measurement System Using Wearable MOx Sensors" Information 15, no. 8: 492. https://doi.org/10.3390/info15080492