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Abstract: Accurately obtaining a patient’s respiratory rate is crucial for promptly identifying any
sudden changes in their condition during emergencies. Typically, the respiratory rate is assessed
through a combination of impedance change measurements and electrocardiography (ECG). However,
impedance measurements are prone to interference from body movements. Conversely, a capnometer
coupled with a ventilator offers a method of measuring the respiratory rate that is unaffected by body
movements. However, capnometers are mainly used to evaluate respiration when using a ventilator
or an Ambu bag by measuring the CO2 concentration at the breathing circuit, and they are not used
only to measure the respiratory rate. Furthermore, capnometers are not suitable as wearable devices
because they require intubation or a mask that covers the nose and mouth to prevent air leaks during
the measurement. In this study, we developed a reliable system for measuring the respiratory rate
utilizing a small wearable MOx sensor that is unaffected by body movements and not connected to
the breathing circuit. Subsequently, we conducted experimental assessments to gauge the accuracy of
the rate estimation achieved by the system. In order to avoid the effects of abnormal states on the
estimation accuracy, we also evaluated the classification performance for distinguishing between
normal and abnormal respiration using a one-class SVM-based approach. The developed system
achieved 80% for both true positive and true negative rates. Our experimental findings reveal that
the respiratory rate can be precisely determined without being influenced by body movements.

Keywords: respiratory rate; MOx sensor; eCO2; wearable device

1. Introduction

The aging trend within Japan’s population has been steadily advancing in recent
years, posing challenges for managing the health of the elderly, as is particularly evident
in evacuation centers during disasters [1–4]. This issue is exacerbated by the scarcity
of healthcare personnel. In evacuation centers situated in sparsely populated regions,
there is a growing need to remotely monitor the health conditions of the elderly due to
the limited availability of medical staff [5]. Monitoring devices equipped with wireless
modules [6,7] have been proposed, which facilitate the acquisition and remote monitoring
of vital signs like heart rate, body temperature, and SpO2 using wearable technology [8].
From a medical standpoint, assessing an individual’s breathing status is crucial for remote
health management. In addition to SpO2 values, factors such as breathing rhythm, depth,
and frequency play a significant role in evaluating the respiratory status [9].

In general, methods for monitoring respiratory status are devised using thoracic
impedance [10] in conjunction with an electrocardiogram (ECG) or a method for mea-
suring the respiratory rate by analyzing pulse waves [11]. However, these methods are
susceptible to interference from body movements, requiring the subject to remain still
during the measurements. In clinical practice, capnometers [12,13], which measure CO2
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concentrations from exhalation, are widely used for monitoring the respiratory status at the
breathing circuit when using ventilators or Ambu bags. They can non-invasively measure
the end-expiratory carbon dioxide gas partial pressure (the end tidal CO2), which is an
approximation of the partial pressure of carbon dioxide gas. Although the respiratory
rate can also be obtained at the same time, capnometers are not solely used to measure
the respiratory rate, and the mouth needs to be covered with an oxygen mask to prevent
gas leakage.

Previous studies have used a method where a belt was wrapped around the chest
and the displacement of the thorax was measured with a strain gauge [14], a method
to accurately estimate the respiratory rate by combining an electrocardiography with
photoplethysmography [15], and a method using impedance pneumography, in which a
weak high-frequency current was applied to the thorax to convert impedance changes to
the respiratory rate [16]. However, these require wearing a belt and contact sensors on
the skin, which are cumbersome and require hygiene considerations. Therefore, studies
have been conducted to estimate the respiratory rate during walking and running based
on breathing sounds recorded with a microphone [17], and in non-contact studies, using
video cameras [18]. However, the use of microphones requires some privacy measures,
as outside environmental noises or conversations may be inadvertently caught due to
the microphone volume being more sensitive during lower breathing events, like during
resting, compared to the level of the volume sensitivity during larger breathing events, like
walking or running. Video cameras can also capture private, personal information from
the surrounding areas. Furthermore, the sensors themselves are expensive and require
advanced processing, making them difficult to produce at low cost.

There are two types of CO2 sensors: non-dispersive infrared (NDIR) and Fourier-
transform infrared spectroscopy (FTIR), of which NDIR is used in studies of exhaled gas
management [19]. However, this method requires an optical path of a certain length
between the light-emitting and light-receiving parts, which makes it difficult for the sensor
to be compact and wearable. The FTIR method also uses infrared light as the source, the
interference of light using beam splitters, and mirrors to measure the concentration. The
beam splitters and mirrors are large and not suitable for wearing. With these limitations, it
is difficult to make a wearable CO2 sensor. This study proposes a method to measure the
respiratory rate using an eCO2 with an MOx sensor, for the development of a wearable,
non-contact device at a low cost.

As a background, a previous study [6] focused on wearable monitoring systems that
can, for example, gather vital data via wireless communication. With these systems, multi-
ple kinds of sensors, including thermopile, humidity, and ECG, are wirelessly connected,
and all measured data are gathered in a cloud server. Subsequently, a machine learning
method is applicable for detecting the heat strain status, for example. In our study, based on
the concept of wireless monitoring systems, we tried to measure the respiratory rate with
our device and create remote monitoring capabilities for the measurements. In addition,
machine learning methods can be applied for classifying between normal and abnormal
breathing, which should contribute to the improvement in the accuracy of the system.

While previous research has attempted to analyze the CO2 concentration from an
eCO2, the novelty of this study is in the detection of the respiration rate. This study
focuses on tracking the changes in CO2 levels and investigates the possibility of continuous
monitoring of the respiratory rate status in the CO2 levels using compact wearable eCO2
sensors, which can be designed to be small and resistant to artifacts produced from body
movements. The target is a method to estimate the normal breathing pattern while also
accounting for abnormal breathing events, such as coughing and yawning, as well as body
movement artifacts. In particular, we examined the potential of using a wearable metal
oxide (MOx) sensor indoors. These sensors are very reliable, highly cost-effective, and
designed to detect volatile organic compounds (VOCs). The sensor used in this study has
been shown to be suitable for indoor use and has good correlation with other MOx sensors
capable of measuring eCO2 levels [20]. While MOx sensors do not directly measure CO2
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levels, they can estimate the equivalent CO2 concentration (namely, eCO2) using linear
transformation based on the total VOC (TVOC) concentration, where the proportional
constant is the additive constant ranging at around 400 vol.-ppm CO2 in pollutant-free
outdoor air, and the bias is the factor between exhaled CO2 and TVOCs. The simplest form
of this relationship can be described using the following equation:

c(CO2) = a + b·c(TVOC) (1)

where c(CO2) is the CO2 concentration, c(TVOC) is the TVOC concentration, a is the additive
constant ranging at around 400 vol.-ppm CO2 in pollutant-free outdoor air, and b is the
factor between the exhaled CO2 and the TVOCs, as stated in [21].

In the developed system, we placed the sensor on a medical mouth shield that was
commonly used during the COVID-19 pandemic. This commonly available mouth shield
is produced by Virec (Model NK-002) and has a convenient shape and size. Considering
real-world scenarios, the effects of sleeping and other physical movements, as well as
the feasibility of detection and removal by filtering out coughing and yawning variables,
were investigated through an experimental evaluation. In a related experiment [22], it was
shown that a mouth shield is not necessarily needed when indoors; however, if used while
walking and running indoors and when moving outdoors, it may be needed due to wind
or airflow affecting the measurements. If a mouth shield is not used, the sensor is attached
in front of the mouth or under the nose. This can be performed, for example, by using a
flexible plastic frame to fix the sensor in front of the mouth or under the nose.

Additionally, we developed a normal respiration rate detection method based on a
one-class support vector machine (SVM) because coughing and yawning strongly affect the
accuracy of respiration rate estimation. The purpose of SVM here is to determine whether
the respiration is normal or abnormal and to only measure the normal respiration from
the respiration rate. The developed detection system tries to distinguish the coughing and
yawning states as outlier respiration to establish the respiratory rate estimation only in the
normal states. We applied the short-term Fourier transform technique to the measured
eCO2 data for analysis of the time variation of each frequency component. Then, the short-
term Fourier transform results were employed for the one-class SVM algorithm as learning
data. We also carried out an experiment to evaluate the performance of the developed
one-class SVM-based system. Finally, the performance evaluation results are demonstrated
and discussed to determine if the respiration rate measurement method is reliable.

2. Materials and Methods
2.1. MOx Sensor

MOx sensors (metal oxide sensors) are used for measuring changes in the resistance
of metal oxides, such as tin oxide (SnO2) and zinc oxide (ZnO), caused by H2 molecules
and volatile organic compounds (VOCs). Figure 1 shows the process where the sensor is
heated to more than 200 degrees, and the electrons on the surface of the metal oxide are lost
between the electrons and the oxygen molecules. This ionizes the oxygen (O2) adsorbed on
the surface of the metal oxide, thus forming negative oxygen ions (O2− ).

When gases come into contact with the surface of the sensor, these gas molecules react
with the oxygen ions on the surface of the metal oxide. This chemical reaction causes the
oxygen ions to take electrons from the gas molecules and return them to the metal oxide.
The resulting electron transfer makes the metal oxide conductive and changes the resistance
of the sensor. eCO2 is calculated as the equivalent carbon dioxide concentration based on
the resistance value change based on the H2 concentration.
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Figure 1. MOx sensor working principle, where oxygen is adsorbed onto the surface of the metal
oxide.

We used a MOx sensor CCS811 (from ams OSRAM, Premstaetten, Austria) with a
high sampling rate and low power consumption as the eCO2 sensor. The advantages
of the device are miniaturization and real-time performance, as the sensor size is only
3 mm × 3 mm. The power consumption is approximately 1 mW to 46 mW, so, assuming
that the design has a low power consumption mode, we believe that the sensor can be
operated with a small battery. We can estimate the power consumption, including the
micro-hotplate, as follows. Assuming a small battery of 500 mAh, intermittent operation
with a duty ratio of 10% (i.e., working for 0.1 s during a 1 s period), and, additionally, that
the main power consumption arises from the use of the MOx sensor and the microcomputer
(Arduino, Monza, Italy), the final achievable lifetime (operating time per charge) would be
more than 150 h. This micro-hotplate-technology-based smart sensor also has a gas sensor
for detecting low concentrations of volatile organic compounds (VOCs), which are mainly
detected indoors with a microcomputer and an analog-to-digital (A/D) converter. An
example of the MOx sensor and the circuit configuration of the CCS811 used in this study
are shown in Figure 2. This configuration detects ethanol, organic compounds (VOCs), and
total volatile organic compounds (TVOCs) and outputs digital values of the sensor results
via an I2C interface. When a person generates VOCs, the equivalent level of CO2 (eCO2)
can be detected [23]. Figure 3 shows an example of the measured eCO2 concentrations
using the CCS811 sensor (the experimental setup is described in Section 2.2). The results
confirm the eCO2 concentration peaks during breathing and that the wearable MOx sensor
utilized in this study operates properly for breathing rate detection. For the filtering of
respiration data with machine learning, the sensor is connected from a wireless network to
a cloud server, where data processing is performed.

Figure 2. Circuit configuration of the wearable MOx sensor for detecting (eCO2) from the VOC and
TVOC levels.
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Figure 3. Measured waveforms of the wearable MOx sensor, showing the eCO2 concentration peaks
(indicated by the arrows).

2.2. Experimental Measurement Environment

Figure 4a shows the experimental measurement environment. The eCO2 concentra-
tions were measured in both the supine and lateral positions of the examinee using the
sensor in a mouth shield, as shown in Figure 4b. In addition, a 16 s period of apnea was cre-
ated immediately before the measurement started to stabilize the internal condition of the
wearable MOx sensor before commencing the eCO2 concentration measurement. Figure 4c
shows the equipment configuration where the sensor and MCU were incorporated into a
mouth shield, connected to a microcomputer and a laptop PC. Table 1 shows the details
of the exact laboratory equipment used in the measurement experiments, including the
wearable MOx sensor.

Figure 4. Experimental environment: (a) physical setup overview, (b) attachment of the wearable
MOx sensor in the mouth shield, and (c) equipment configuration diagram.

Table 1. Details of experimental equipment.

Parts Part Name & Manufacturer Origin

MOx sensor KS0457 keyestudio CCS811 Carbon Dioxide Air Quality
Sensor, Shenzhen, China

Microcomputer board Arduino UNO A000066, Monza, Italy
Mouth shield Virec NK-002, Saitama, Japan

Pillow Polyester cushion, Tokyo, Japan
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2.3. Evaluation Method of Wearable MOx Sensor

The sampling rate of the wearable MOx sensor was set to the maximum possible
frequency of 4 Hz for the CCS881 device. Estimation of the respiratory rate was car-
ried out under two conditions: (1) at rest and turning over to simulate body movement,
and (2) at rest while coughing and yawning. In this environment, the eCO2 concentra-
tion was measured, and the respiratory rate was estimated by detecting peaks using the
thresholds obtained from the results. Peak detection was performed on the concentra-
tion time waveform. The respiratory rate R (bpm) in this study was calculated using the
following formula:

R =
Nr

T
(2)

where Nr and T are the number of breaths detected and the measurement time (min),
respectively. As a reference value for comparing with the estimated respiratory rate, a
metronome was used to ensure that the subject’s actual breathing rate was 22.5 bpm. In
this experiment, we set the target for normal breathing as 22.5 bpm, as this is at the center
of a typical breathing rate, which is roughly a single breath per three seconds. A normal
breathing rate is commonly assumed to be between 5 bpm to 40 bpm. The threshold in this
study was determined by the maximum value of the eCO2 concentration c. The threshold
t can be calculated as t = α·c, where the α is optimally selected between 0.4 and 0.6. It is
noted that the optimal coefficient α varies in each subject, so we need to set the optimal
value for each subject to achieve an accurate respiratory rate. To improve the sensitivity, we
set a bandpass filter to cover ranges from 16.5 to 28.5 bpm to suppress the superimposed
noises. In this study, one inhale and exhale were counted as one breath. Since the main
frequency component of the eCO2 concentration waveform data obtained from the MOx
sensor should be 22.5 bpm (=0.375 Hz), bandpass filtering with a low-frequency cut-off
frequency of 0.275 Hz and a high-frequency cut-off frequency of 0.475 Hz were applied to
the measured data. This was performed to reduce the effect of CO2 concentration changes
not related to respiration. The maximum normalized filter output exceeded a threshold
value of 0.369, which was then counted as one breath, and the subject’s breathing rate
was estimated. The threshold was calculated based on the normalized filter output with a
coefficient of around 0.4. The validity of the breathing rate estimation with the wearable
MOx sensor was verified by comparing the estimated breathing rate with the subject’s
actual breathing rate of 22.5 bpm. The respiratory measurement was performed using the
peak detection algorithm, which requires an appropriate threshold. Factors like coughing
affect the time–domain waveforms of the eCO2 concentration, so the optimal threshold is
the difference between normal and abnormal respiration.

2.4. Experiment 1: Measurement at Rest and during Body Movement

The breathing states of eight adult males during rest in a supine position were mea-
sured, including six nasal breaths and six oral breaths. Subsequently, in the same position,
six breaths were measured using nasal breathing and six using mouth breathing, while
transitioning between the left and right lateral decubitus positions to verify the effect of
body movements.

2.5. Experiment 2: Measurement with Coughing and Yawning

As in Experiment 1, the respiratory states of eight male adults at rest in a supine
position were measured for a total of 12 breaths, including both nasal and mouth breathing.
This was followed by coughing and yawning, and each action was repeated 12 times for a
total of 15.96 s. The effect of coughing and yawning on the respiratory rate was verified
from the obtained eCO2 concentration waveform.

3. Experiment Results and Discussion

Figure 5a shows an example of a time waveform of the eCO2 concentration at rest,
as obtained from this experiment. The results in this figure show a sharp peak that
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corresponds to the subject’s breathing, indicating the possibility of estimating a respiratory
rate. Figure 5b shows the time waveform of a normalized filter output when using bandpass
filtering for the measured data of the subject’s eCO2 concentration. We used two process
steps: one was bandpass filtering, and the other was normalization. The bandpass filtering
had a low-frequency cut-off frequency of 0.275 Hz and a high-frequency cut-off frequency
of 0.475 Hz, which were applied to the measured data. Then, normalization was adapted,
where the maximum value was normalized to 1. Because of the bandpass filtering, the DC
component could be removed. The appropriate threshold shown in red indicates that the
subject’s respiratory rate could be estimated.

Figure 5. Experimental results at rest: (a) eCO2 concentrations and (b) normalized filter output,
where the idling time of the eCO2 sensor is indicated with the blue bar.

Figure 6a,b show the time waveforms of the eCO2 concentration when body motion
was introduced and the resulting output waveforms of the normalized bandpass filters,
respectively. In terms of both the comparison of the time waveforms of the eCO2 concen-
trations in Figures 5a and 6a and comparing the filter outputs in Figures 5b and 6b, no
significant differences were found in the results obtained at rest and during body movement
that would affect estimation accuracy. It was also found that the system was able to detect
the concentrations of eCO2 without being affected by body movements, and it enabled
estimation of the respiratory rate.

Figure 6. Experimental results of time waveforms for eCO2 concentration during body movement:
(a) eCO2 concentrations and (b) normalized filter output.

Table 2 and Figure 7 show the mean values and standard deviation results for the
eight subjects measured both at rest and during body movement. For the reference value
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of 22.5 bpm in the experiment, an average estimate of 22.03 bpm was achieved, and an
absolute error of 0.47 bpm was obtained with good estimation accuracy. In addition, a
standard deviation of 1.555 bpm was observed, and it was confirmed that the standard
deviation of the change due to individual differences was relatively small, at less than
2 bpm. There were no significant changes in the means or standard deviations of the
estimated respiratory rates for the eight subjects at rest or in body motion, indicating that
the system was also highly unaffected by body movements.

Table 2. Estimated respiratory rate statistics at rest and during movement.

Average Standard
Deviation

Rest 22.03 bpm 1.555 bpm

Movement 22.03 bpm 1.555 bpm

Figure 7. Comparison of the estimated respiratory rates at rest and during body movement.

The next step was to investigate the effects of coughing and yawning on measuring
eCO2 levels at rest. Figure 8a shows the measured waveform of the eCO2 concentration with
coughing and yawning. Here, 48 to 64 s was the time waveform of the eCO2 concentration
measured with coughing, and 64 to 80 s was the time waveform of the eCO2 concentration
measured with yawning. In the waveform of the measured eCO2 concentration, the
presence of coughing and yawning resulted in a superimposition of different frequency
components. It can also be observed that coughing had higher-frequency components than
breathing, while yawning had lower-frequency components than breathing.

Figure 8. (a) eCO2 concentration obtained in this experiment (cough, yawn), and (b) normalized
filter output (cough, yawn), where the blue, orange, and yellow bars indicate the idling of the sensor,
coughing, and yawning, respectively.

Figure 8b shows the time waveform after applying a bandpass filter to the measured
eCO2 concentration data during coughing and yawning. Since the eCO2 changes caused
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by coughing and yawning had frequencies close to respiration, the bandpass filters used in
this experiment did not adequately eliminate these changes. In the filter output shown in
Figure 8b, a peak value of at least 0.369 is present in the measured waveform of the eCO2
due to deletion detected at around 70 s, which resulted in a false single breath detection.
This suggests that depending on the type of yawn, a temporal waveform of yawning may
occur that has components similar to the frequency characteristics of breathing.

Finally, Table 3 and Figure 9 show the means and standard deviations of the estimated
respiratory rate with and without coughing and yawning conditions. The results show
that coughing and yawning are influenced by the estimated accuracy of the breathing rate.
The estimated mean breathing rate was 26.72 bpm, with an absolute error of 4.22 bpm
compared to the reference value of 22.5 bpm.

Table 3. Estimated respiratory rate means and standard deviations with and without coughing and
yawning.

Average Standard
Deviation

w/o cough, yawn 22.03 bpm 1.555 bpm

w cough, yawn 26.72 bpm 2.043 bpm

Figure 9. Comparison of the estimated respiratory rates for coughing and yawning.

4. One-Class SVM-Based Normal Respiration Detection
4.1. Principle

The support vector machine (SVM) is a machine learning algorithm that aims to
find a hyperplane that maximally separates two different classes as a binary classification.
Although SVM is commonly used as a supervised learning method for binary classification,
this study employed a one-class SVM for outlier detection as an unsupervised learning
method [24,25]. Let us define a vector (d × 1) x as [x1, x2, · · · , xd]

T , and the i-th vector

x (1 ≤ i ≤ n) is expressed by x(i) =
[

x(i)1 , x(i)2 , · · · , x(i)d

]T
. In the one-class SVM algorithm,

feature extraction applies nonlinear transformation for mapping x to a higher dimension.
Here, we also define the feature vector (h × 1) as ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕh(x)]

T,
where ϕj(x) (1 ≤ j ≤ j) is a nonlinear function to extract the futures of the vector x. The
inner product of the future vector ϕ(x) and a parameter vector w (h × 1) is given by

f (x) = wT ·ϕ(x) (3)

Note that the inner product f
(

x(i)
)

for x(i) should be a scalar value. For outlier

classification, we classify the data x(i) into two clusters based on a positive threshold ρ.
Taking into consideration that w corresponds to the direction of the feature vector ϕ(x) if x
is correct data (non-outlier data), the cluster of the correct data should concentrate around
a certain value of f (x). Furthermore, the inner product with w and the feature vector of the
outlier data, which is orthogonal to that of the correct data, can be expected to have a value
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close to 0. Therefore, outlier detection based on the one-class SVM can be performed with
the following equations:

f
(

x(i)
)
≥ ρ (4)

f
(

x(i)
)
< ρ. (5)

Here, the data x(i) can be classified as correct data when Equation (4) is satisfied. On
the other hand, the data x(i) that satisfy Equation (5) can be detected as outlier data.

The larger the dataset, the better it is able to account for human differences and to
prevent over-training. However, in this study, data augmentation was used to increase the
size of the dataset. Data augmentation was performed by adding AWGN from −10 dB to
10 dB in 0.1 dB increments to the raw respiration data. Four normal respirations and four
abnormal respirations were measured per person, and the data expansion increased the
number of measurements by approximately 200-fold.

4.2. Performance Evaluation
4.2.1. Setup

To evaluate the accuracy of classification between normal and outlier respiration, the
eCO2 concentration was measured using the MOx sensor used in the previous experiment.
The MOx sensor was attached to the front of the subject’s mouth. There were eight adult
male subjects between the ages of 21 and 25 in the experiment. In each measurement,
the eCO2 concentration was measured under apnea, nasal respiration, mouth respiration,
coughing, and yawning situations at a rest state, and under apnea, nasal respiration, and
mouth respiration situations during body movement. Of the eight subjects, six were
assigned to training data and two to test data. Only normal breathing (nasal and mouth)
was used for the training data, and both normal and abnormal breathing (apnea, cough,
and absence of breath) were used for the test data. The SVM input was short-time Fourier
transform (STFT) respiratory data, and the output of the SVM was a one-dimensional value,
so the normality or abnormality was estimated using a threshold value. The closer the
output is to the training data, which are normal respiration data, the larger the value of
the output. After estimation was performed on all test data, the TNR, FPR, TPR, and FNR
were obtained.

Figure 10 shows an example of the eCO2 measurement data at the rest state, where
not only normal respiration but also outlier respiration was observed. The data were
pre-processed for the removal of the DC component, interpolation on the time domain, and
short-time Fourier transform (STFT). The STFT was used to analyze the time variation of
the frequency components in the measured eCO2 concentration.

Figure 10. eCO2 concentration in a rest state with an observed outlier.



Information 2024, 15, 492 11 of 14

Figure 11 shows examples of the STFT for the measured data, where we can see
that nasal breathing had a certain, narrower frequency component that was stronger and
had less temporal variation. Mouth breathing had a wider frequency range than the nasal
breathing, but the temporal variation was as small as the nasal breathing. On the other hand,
abnormal breathing, depicted as coughs and yawns, had patterns that were characterized
by a wider frequency range compared to normal breathing, while also having greater
temporal variation.

Figure 11. Examples of short-time Fourier transform (−5–5 Hz) measurements, showing the differ-
ences in the nasal, mouth, cough, and yawn frequency characteristics.

Then, for evaluating the one-class SVM-based classification, two datasets (test and
learning datasets) were randomly selected from all measurement data. The true negative
rate (TNR), false positive rate (FPR), true positive rate (TPR), and false negative rate (FNR)
were employed as the evaluation metrics.

4.2.2. Results and Discussion

Figure 12 shows the changes in the estimation accuracy with respect to the threshold
value ρ. All four evaluation metrices were sensitive to the threshold setting, so we should
further optimize the threshold to achieve better performance. Additionally, Table 4 shows
the confusion matrix when the threshold value was optimized for the TPR and TNR criteria.
From these results, it can be confirmed that one-class SVM-based classification achieved a
TNR and TPR of approximately 80% by appropriately selecting the threshold value.
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Figure 12. Changes in the estimation accuracy for true negative rate (TNR), false positive rate (FPR),
true positive rate (TPR), and false negative rate (FNR).

Table 4. Confusion matrix (TPR, TNR, FNR, and FPR) showing true negative and true positive rates
values achieving close to 80% % indicated by the red colour.

Predicted

Actual

Neg. Pos.

Neg. TNR
78.03%

FPR
21.97%

Pos. FNR
21.97%

TPR
78.03%

5. Conclusions

This study investigated a method for estimating respiration rates which could reduce
the effects that body movement has on measurements. A respiratory rate estimation
system based on thresholds was developed for measuring the eCO2 concentration with a
wearable MOx sensor. The accuracy of the respiratory rate estimation was assessed through
experimental evaluation. The results show that the developed system was able to estimate
the respiration rate and was almost unaffected by body movements, achieving an accuracy
of absolute error of 0.47 bpm. In this study, we found that it was possible to appropriately
measure our target of 22.5 bpm. However, it is important to evaluate the developed system
at not only a single frequency of 22.5 bpm but also at various frequencies. In future work,
we aim to evaluate the developed system in wide ranges, such as from a single-digit bpm to
40 bpm. To expand the use of this wearable respiratory-rate-measuring device, we would
like also to consider its use in daily activities like walking or running. In addition, during
coughing and yawning, waveforms with frequency components similar to breathing were
generated. As a result, it was confirmed that the accuracy of the estimated respiratory rate
deteriorated under these conditions. For distinguishing between normal and abnormal
respiration, a classification method using a one-class SVM-based approach was used and
achieved 80% for the TPR and TNR. However, optimization should be performed to achieve
a better performance. Future work includes expanding the experiments to include a wider
range of subjects and introducing adaptive filters that dynamically eliminate the time
waveforms of the eCO2 concentration generated by coughing and yawning. We are also
considering experimental evaluations with multiple target frequencies and want to compare
the respiration rates with those using not only a metronome but also a chest belt for more
accurate results. Additionally, a study on a method that could combine eCO2 sensors and
microphones or other wearable sensors is being considered.
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